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A B S T R A C T

Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants (BFRs), are widely used in
various commercial products. PBDEs have attracted increasing attention due to their toxicity and bioaccumu-
lation potential. Biodegradation associated technologies are cost-effective and environmentally friendly for
possible removal of PBDEs from the environments. In this review, both aerobic and anaerobic biodegradation of
PBDEs and the methods for accelerated degradation are discussed. Generally, the degradation of higher PBDEs
(higher degree of bromination) is slower than that of lower PBDEs (lower degree of bromination) under both
anaerobic and aerobic conditions. The aerobic degradation pathways of PBDEs include cleavage of aromatic
ring, debromination, and hydroxylation, while reductive debromination dominates the initial pathway of
anaerobic degradation. A number of methods to overcome the chemical inactivity and low bioavailability of
PBDEs for degradation enhancement are discussed, such as the addition of external carbon sources, surfactants
and vitamin B12. In addition, coupling of chemical degradation and biodegradation is also reviewed.

1. Introduction

Polybrominated diphenyl ethers (PBDEs) are a class of brominated
flame retardants, which have been widely used in the production of
commercial and household products, such as foams, textiles, and plas-
tics, for over four decades (Stiborova et al., 2015). There are 209
congeners for PBDEs based on different bromine substitutions. The
names and molecular structures of PBDEs appearing in this review are
shown in Table 1. Three major commercial PBDEs are reported, in-
cluding deca-BDEs, octa-BDEs, and penta-BDEs (De Wit, 2002). The
higher toxicity and bioaccumulation has resulted in the prohibition of
production and usage of penta-BDEs and octa-BDEs in Europe and USA
in 2003 and 2006, respectively (Stiborova et al., 2015). However, deca-
BDEs were excluded in the bans and the contribution of deca-BDEs
usually occupied over 75% of the whole PBDEs (Article, 2014). Recent
studies reported that deca-PBDEs could be reductively debrominated
into lower PBDEs, which are one of the sources of lower PBDEs in the
environment detected (Orihel et al., 2016).

Due to the increasing accumulation of PBDEs in the environment,
PBDEs contamination has been found in air, water, soil, sediments, and

even biota (Wang et al., 2011; Zeng et al., 2013b). For example, high
concentration of BDE-209 was detected in male birds in waste man-
agement facilities (Gentes et al., 2015), and PBDEs was even detected in
the arctic biosphere (Rotander et al., 2012). In China, Guiyu Town,
Guangdong Province is one of the largest e-waste recycling centers and
PBDEs is detected in all of the environmental samples and even in
human bodies (Jiang et al., 2014). PBDEs have attracted great attention
due to its biotoxicity, such as endocrine disruption effect to mammalian
tissues (Song et al., 2015). PBDEs toxicity is different from that of di-
benzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesti-
cides. For example, the neurotoxicity and dioxin-like endocrine dis-
ruption induced by PBDEs were observed in mice (Jacobson et al.,
2016; Tang et al., 2008; Zeng et al., 2013a).

Although the bioaccumulation of PBDEs in the environment is
widely studied, the technology for bioremediation of PBDEs con-
taminated sites has not been sufficiently investigated. Biodegradation is
considered as an economical and safe way for PBDEs removal (Chen
et al., 2016a, 2017b; Ming et al., 2017). However, owing to high hy-
drophobicity and low bioavailability of the compounds the efficiency of
PBDE biodegradation is relatively low, thus some methods are proposed
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to enhance the degradation, such as the use of surfactants. In addition,
information regarding the detailed degradation mechanisms and lim-
itations in complex systems is still scarce. In this paper the key factors
affecting PBDEs biodegradation, such as microbes, kinetics and path-
ways, are discussed. Furthermore, the methods for enhancing PBDE
biodegradation are summarized.

2. Anaerobic biodegradation

2.1. Microbial community

PBDEs affect the structure of microbial community depending on
the degree of bromination of PBDEs (Ma et al., 2016). Bacterial com-
munity in the river sediments was altered immediately and irreversibly
throughout the incubation period owing to amendment with BDE-153
and BDE-154, which were transformed less than 20% after 70 days.
Similar results were observed and demonstrated that BDE-154 was one
of the most influential factors on the bacterial community compared to
lower PBDEs in mangrove microcosms (Wang et al., 2014). However,
the bacterial community did not change significantly upon amendment
of BDE-47, which was completely transformed after 63 days in the Nan-
Kan River sediment. These results show that higher PBDEs have more
pronounced impact on the microbial community structure than lower
PBDEs.

The concentrations of PBDEs also have influence on microbial
community. Low concentration (1mg/L and 10mg/L) of BDE-15 and
BDE-209 had only small and transitory effect on the bacterial com-
munity, which was changed intensely by BDE-15 and BDE-209 at high
concentration (100mg/L) in soils (Liu et al., 2011). The result was
consistent with the study of Huang et al. (2014) who also found that the
bacterial community changed significantly upon exposure to a higher
concentration of BDE-209. The microbial community structure in se-
diments from Lianjing River was highly related to the concentrations of
deca-BDEs and octa-BDEs (Qiu et al., 2012). This is probably due to the
increase of the toxicity of PBDEs with increasing concentrations.

2.2. Pathways of debromination

The reductive debromination, which includes ortho-, meta- and para-
debromination, dominates the pathways of PBDEs removal under
anaerobic conditions. Because BDE-209 is the key source of lower
PBDEs in environment and the bioaccumulation of BDE-47 is detected
frequently in biota, the debromination pathways of BDE-209 and BDE-
47 are used as examples for further discussion below.

It is reported that BDE-209 can be debrominated into three types of
nona-BDE and three types of octa-BDEs in sewage sludge amended with
inducers (Gerecke et al., 2005), or into three nona-BDEs, five octa-
BDEs, one hepta-BDE and one hexa-BDE in enrichment cultures
amended with zero-valence iron (ZVI) (Chen et al., 2014). Formation of
three nona-BDEs was also observed for debromination of BDE-209 in
sediment and biomimetic system amended with vitamin B12 (Tokarz Iii
et al., 2008). nona-BDEs can be further debrominated into lower PBDEs
(tri-BDEs) in sediment with addition of electron donors (Qiu et al.,
2012) and in anaerobic microcosms from organic compost (Chang
et al., 2016). tri-BDEs resulted from the multi-step debromination of
BDE-209 were further debrominated into two di-BDEs and one mono-
BDE in PBDEs-adapted sediment (Huang et al., 2014). The primary
pathway of BDE-209 debromination in soils under anaerobic conditions
is shown in Fig. 1.

The first step of anaerobic debromination of BDE-47 is conversion
into tri-BDEs (BDE-17 or 28) under anaerobic conditions. ortho-debro-
mination of BDE-47 into BDE-28 took place first, and then BDE-28 was
debrominated into BDE-15 (ortho-debromination) in a culture con-
sisting of Dehalococcoides and Desulfovibrio spp. (Lee et al., 2011). Ding
et al. (2013) reported that BDE-47 was only debrominated into BDE-17
(para-debromination) and BDE-17 was debrominated into BDE-4 (para-
debromination) in a sediment-free enrichment culture. In the mangrove
sediment, more than 90% of BDE-47, however, were debrominated into
both BDE-28 and BDE-17 after 7 months of incubation (Zhu et al.,
2014a). Metabolism rather than complete debromination of BDE-47
was also observed in sediment microcosms. BDE-47 was decreased over
30% in several of the microcosms without a significant accumulation of
by-products except for a slightly increase of BDE-17, indicating that

Table 1
Names and molecular structures of the numbered PBDEs in the article.

Classification Abbreviation Names Molecular Structure

Mono-PBDEs BDE-1 2-monoPBDEs

BDE-3 4-monoPBDEs

Di-PBDEs BDE-4 2,2′-diPBDEs

BDE-7 2,4-diPBDEs

BDE-15 4,4′-diPBDEs

Tri-PBDEs BDE-17 2,2′,4-triPBDEs

BDE-28 2,4,4′-triPBDEs

Tetra-PBDEs BDE-47 2,2′,4,4′-tetraPBDEs

BDE-49 2,2′,4,5′-tetraPBDEs

BDE-66 2,3′,4,4′-tetraPBDEs

Penta-PBDE BDE-85 2,2′,4,4′,5-pentaPBDEs

BDE-99 2,2′,4,4′,5-pentaPBDEs

BDE-100 2,2′,4,4′,6-pentaPBDEs

Hexa-PBDEs BDE-138 2,2′,3,4,4′,5′-hexaPBDEs

BDE-153 2,2′,4,4′,5,5′-hexaPBDEs

BDE-154 2,2′,4,4′,5,6′-hexaPBDEs

Hepta-PBDE BDE-183 2,2′,3,4,4′,5′,6-heptaPBDEs

BDE-184 2,2′,3,4,4′,6,6′-heptaPBDEs

Octa-PBDEs BDE-196 2,2′,3,3′,4,4′,5,6′-
octaPBDEs

BDE-197 2,2′,3,3′,4,4′,6,6′-
octaPBDEs

Nona-PBDEs BDE-206 2,2′,3,3′,4,4′,5,5′,6-
nocaPBDEs

BDE-207 2,2′,3,3′,4,4′,5,6,6′-
nocaPBDEs

BDE-208 2,2′,3,3′,4,5,5′,6,6′-
nocaPBDEs

Deca-PBDEs BDE-209 2,2′,3,3′,4,4′,5,5′,6,6′-
decaPBDEs
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Fig. 1. The pathway of BDE-209 debromination in soils
under anaerobic conditions (based on Tokarz Iii et al.,
2008). (O, ortho-debromination; M, meta-debromina-
tion; P, para-debromination).
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BDE-47 was likely to be metabolized (Tokarz Iii et al., 2008). The
pathway of BDE-47 debromination under anaerobic conditions was
shown in Fig. 2.

2.3. First-order kinetics of PBDEs debromination

First-order kinetics is often used to describe PBDEs debromination
under anaerobic conditions with half-life and the rate constant (k) as
the characteristic parameters of the transformation. The half-lives and
rate constants (k) of PBDEs in sediments and sludge under anaerobic
conditions are shown in Table 2. The half-lives of PBDEs debromination
range from 2.7 d (BDE-3) to more than a decade (BDE-209), indicating
that debromination of PBDEs under anaerobic conditions is generally a
slow process. Apart from limited microbial population, low bioavail-
ability of PBDEs is another major limiting factor in soil systems since
PBDEs had to contact microbial cells or enzymes before debromination
can occur. The processes of PBDEs debromination can be enhanced by

some methods, such as the use of micro zero-valence iron (MZVI) and
vitamin B12. The half-life (rate constants k) of BDE-209 was 13.4 h (1.24
d−1) in Jhongsing sludge incubated with micro zero-valence iron
(mZVI) (Shih et al., 2012b). The half-lives (rate constants k) of BDE-209
and BDE-99 were 18 s (3327 d−1) and 19.9 h (0.836 d−1), respectively,
at an initial concentration of 0.3 μg/g in biomimetic system amended
with vitamin B12 (Tokarz Iii et al., 2008).

2.4. Effect of bromination degree on debromination

Usually, debromination of higher PBDEs is more difficult due to
their higher hydrophobicity and lower bioavailability. In a study con-
ducted by Yen et al. (2009), less than 20% of BDE-99, 100, 153 and 154
were transformed in the river sediment but BDE-47 was converted to a
negligible level within 70 days. In another study, less than 10% of octa-,
hepta- and hexa-BDEs were debrominated in the cultures containing
Dehalococcoides sp., Dehalobacter restrictus and Desulfitobacterium

Fig. 2. The pathway of BDE-47 debromination under anaerobic
conditions (based on Lee et al., 2011; Ding et al., 2013). (O,
ortho-debromination; M, meta-debromination; P, para-debromi-
nation).
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hafniense after three months, while it was much faster for BDE-99 and
BDE-47, which was debrominated completely in weeks (Robrock et al.,
2008). However, under some conditions the chemical property of
higher PBDEs can be labile, resulting in readily reaction with nucleo-
philes and a higher debromination rate. For example, the order of
debromination rates in Erren river sediment after 56 days of incubation
were BDE-15 < BDE-28 < BDE-47 < BDE-99 < BDE-209 (Huang
et al., 2014). In the biomimetic system amended with vitamin B12,
debromination of BDE-209 was faster than that of BDE-99 and debro-
mination of BDE-99 was faster than that of BDE-47. The results show
that the effect of bromination degree on debromination depends highly
on the specific incubation conditions.

3. Aerobic biodegradation

Due to extreme hydrophobicity and sorptive binding with organic
compounds in the soils, PBDEs are regularly monitored under anaerobic
conditions, where anaerobic microbes play the dominant role (Zhu
et al., 2014b). Therefore, comparing to anaerobic degradation, only few
studies were focused on the aerobic degradation of PBDEs (Robrock
et al., 2009). However, aerobic degradation of PBDEs does take place
and sometimes is unique with key features different from anaerobic
degradation.

3.1. Microorganisms

The specific strains that could aerobically degrade aromatic com-
pounds, such as PCBs and PCCF, were supposed to be able to transform
PBDEs due to the similarity of chemical structure of PBDEs to these
compounds. The degradation of PBDEs ranging from mono-BDEs to
hexa-BDEs by the ether-degrading bacteria and two PCBs-degrading
strains under aerobic conditions was reported (2009). Zhou et al.
(2007) used white-rot fungi to remove BDE-209 from liquid culture
because these fungi could rapidly transform a wide range of aromatic
compounds to achieve a removal rate of 42.2% within 10 days. Strains
isolated from the media where PBDEs are the sole carbon source can be
the aerobic degraders of PBDEs. For example, Vonderheide et al. (2006)
showed that degradation of penta-BDEs under aerobic conditions by
consortia isolated from penta-BDEs-spiked soils took place. Interest-
ingly, however, they reported a timeframe for a complete removal of
only a few minutes. A new strain identified as Pseudomonas stutzeri was
isolated from a PBDE contaminated site located in Shandong, China to
degrade BDE-47 under aerobic conditions, and the degradation rate was
94.7% with BDE-47 as the sole carbon source in the liquid culture
within 14 d of incubation (Zhang et al., 2013). Between 62 and 78% of
the total amount of 11 PBDEs containing BDE-28, 47, 49, 66, 85, 99,
100, 153, 154, 183 and 209 were transformed by indigenous microbes
under aerobic conditions in two industrially contaminated sewage
sludge after 11 months (2015).

3.2. Pathways of biodegradation

The processes for PBDEs degradation under aerobic conditions in-
clude adsorption on cell surface, assimilation into the cells, breaking
down aromatic ring, and then mineralization (Wang et al., 2016b).
PBDEs were catalyzed and mineralized by various enzymes, then con-
verted into harmless carbon dioxide and water through tricarboxylic
acid cycle (TCA cycle). 4-bromophenol and 4-bromocatechol were de-
tected from the degradation of BDE-3 by Sphingomonas sp. SS3 (Schmidt
et al., 1992) and Cupriavidus sp. (Wang et al., 2015). BDE-3 can even be
degraded into 2-hydroxymuconic acid by Sphingomonas sp. PH-07 (Kim
et al., 2007). 2,4-dibromophenol was identified as the product from the
aerobic degradation of BDE-7 and BDE-28 (Kim et al., 2007). BDE-15
was hydroxylated by 2,3-dioxygenase and produce 2′,3′-dihydroxy-4,4′-
dibromodiphenyl ether in the presence of Sphingomonas sp. PH-07 (Kim
et al., 2007), and was debrominated into 4-bromophenol and 4-bro-
mocatechol by Sphingomonas sp. SS33 (Schmidt et al., 1993). These
intermediates are strong evidences for the ring-cleavage pathway for
PBDEs degradation. However, up to date the literatures regarding such
a pathway are still very limited and the degradation pathways of di-
phenyl ether (Kim et al., 2007; Pfeifer et al., 1993; Schmidt et al., 1992;
Wang et al., 2015) are often used as the reference for PBDEs degrada-
tion. The proposed pathways for the biodegradation of diphenyl ethers
are shown in Fig. 3. (Kim et al., 2007; Pfeifer et al., 1993; Schmidt et al.,
1992; Wang et al., 2015).

Except for the cleavage of aromatic ring and ether bond, debromi-
nation of higher PBDEs also occurs in the aerobic experiments, which
compares to reductive debromination of PBDEs under anaerobic con-
ditions. Lower PBDEs of BDE-154, BDE-28 and BDE-15 had been de-
tected in the aerobic degradation of BDE-209 by strain JP12 (Lu et al.,
2013). Shi et al. (2013) showed that BDE-209 was aerobically trans-
formed by Pseudomonas aeruginosa into lower PBDEs, including two
nona-BDEs, four octa-BDEs, one hepta-BDEs. Meanwhile, hydroxylation
of PBDEs was frequently detected (Kim et al., 2007; Schmidt et al.,
1992; Wang et al., 2015). Mono-PBDEs was transformed to hydro-
xylated mono-PBDEs by Burkholderia xenovorans (Robrock et al., 2009).
BDE-209 was converted to OH-PBDEs by crude enzyme extracted from
Pseudomonas aeruginosa (Liu et al., 2015).

3.3. First-order kinetics of PBDEs biodegradation

The half-life and rate constant k for First-order kinetics of aerobic
biodegradation of PBDEs are shown in Table 3. By comparing between
Table 2 and Table 3, it is clear that degradation rates of PBDEs under
aerobic conditions are generally higher than that under anaerobic
conditions. Also, degradation rates of higher PBDEs are lower than that
of lower PBDEs under the same conditions, likely due to lower bioa-
vailability and less microbial population for higher PBDEs. Moreover,
higher rates with PBDEs-degrading strains in the culture than that in
sediments and sewage sludge were observed and the possible reason is

Table 2
Parameters for the First-order kinetics for biodegradation of PBDEs under anaerobic conditions.

PBDEs Half-lives (d) K (d−1) Sites References

BDE-209 18 s 3327 biomimetic system with vitamin B12 Tokarz Iii et al., 2008
> a decade – Sediment from Celery Bog Park Tokarz Iii et al., 2008
31.5 0.0220 PBDEs-adapted sediment Huang et al., 2014
630 0.00110 Jhongsing sludge Shih et al., 2012b
578 0.00120 Li-Ming sludge Shih et al., 2012b
13.4 h 1.24 in Jhongsing sludge with MZVI Shih et al., 2012b

BDE-3 2.67 0.260 Li-Ming sludge Shih et al., 2012a
3.30 0.210 Jhongsing sludge

BDE-153 7.6–165 0.0912–0.0042 Eight sediments Zhu et al., 2014b
BDE-47 76.2 0.00910 Sediment from mangrove Zhu et al., 2014b

56.9 0.0122 Sediment from pond Zhu et al., 2014b
BDE-99 19.9 h 0.836 biomimetic system with vitamin B12 Tokarz Iii et al., 2008
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that microbial activity in cultures under controlled conditions is higher
than that in sediments and sewage sludge. Another reason is the dif-
ference in bioavailability of PBDEs in the two systems, which is more
limited in sediments and sewage sludge. Many studies conducted with
complex systems did not provide any further insights or substantial
information for a better understanding of the degradation process or the
mechanisms involved of the target chemicals of choice (Gu, 2016).

3.4. Effect of bromination degree on degradation

Biodegradation of PBDEs is strongly relevant to the degree of bro-
mination under aerobic conditions. BDE-3 was transformed by 23%
within 8 days by an isolated Sphingomonas sp. in the liquid culture,
while only 8% of BDE-15 were transformed by the same strain (Kim
et al., 2007). More than 90% of the mono- and di-PBDEs were degraded
in 3 days by Burkholderia xenovorans, but only 10–45% of penta-PBDEs
and 18% of hexa-PBDEs were transformed (Robrock et al., 2009). In
sediment, the degradation rates of PBDEs were in the order of BDE-
100 < BDE-99 < BDE-47 < BDE-28 < BDE-15 under aerobic con-
ditions (Yang et al., 2015). Therefore, the higher PBDEs were more
difficult to degrade than lower PBDEs, likely due to their larger size,

higher hydrophobicity and lower bioavailability to the microbes, which
is similar to that under anaerobic condition. Furthermore, large number
of bromines on PBDE molecule are unfavorable for hydroxylation and
sterically hinder enzymatic reaction and attack (Robrock et al., 2009).

Specific position of bromination substitution exhibits potential im-
pact on PBDEs stability and degradation. BDE-7 and BDE-15 were
catabolized by 14% and 8%, respectively, in 8 days by Sphingomonas sp.
in a culture supplemented with diphenyl ether, where BDE-7 was
converted to brominated catechol, which, however, was not detected
for BDE-15. BDE-15 was generated from degradation of BDE-28 (tri-
BDEs), while no brominated metabolite was observed from degradation
of BDE-30 (tri-BDEs) (Kim et al., 2007). The reason was that BDE-30
had a non-substituted phenyl moiety, which resembled the required
target site to form the 2, 3-dihydrodiol of diphenyl ether. According to
Robrock et al. (2009), Rhodococcus sp. was responsible for degradation
of BDE-7, but not BDE-4 (di-BDEs). Burkholderia xenovorans was capable
of transforming BDE-138 (hexa-BDEs), but not BDE-153 (hexa-BDEs)
and 149 (hexa-BDEs). The bromine substitution affected the degrada-
tion rate either by limiting the accessibility of catabolic enzymes to the
target site or by significantly decreasing PBDEs bioavailability (Kim
et al., 2007).

Fig. 3. The pathway for the biodegradation of diphenyl
ether by Sphingomonas sp. strain SS3, Sphingomonas sp.,
Pseudomonas cepacia and Cupriavidus sp. under aerobic
conditions (based on Pfeifer et al., 1993; Schmidt et al.,
1992; Wang et al., 2015; and Kim et al., 2007).

Table 3
Parameters for the First-order kinetics for biodegradation of PBDEs under aerobic conditions.

PBDEs Half-lives (d) K (d−1) Sites or strains References

BDE-209 74.5 0.00930 Sediments under Da-An bridge Chou et al., 2016
128.4 0.00540 Sediments under Yi-Li bridge Chou et al., 2016
105.0 0.00660 Sludge from WWTPs Chou et al., 2016
180–240 0.00385–0.00282 Sludge from WWTPs Stiborova et al., 2015

BDE-99 14.1 0.0492 Sediment from river Yang et al., 2015
BDE-47 2.2 0.315 Pseudomonas stutzeri Zhang et al., 2013

9.1 0.0762 Pseudomonas stutzeri Xin et al., 2014
12.8 0.0542 Sediment from river Yang et al., 2015
16.2 0.0428 Pseudomonas putida Lv et al., 2016a

BDE-28 5.8 0.120 Sediment from river Yang et al., 2015
BDE-15 2.9 0.239 Sediment from river Yang et al., 2015

14.9 0.0465 Pseudomonas putida Lv et al., 2016a
BDE-3 10.8 0.0642 Pseudomonas putida Lv et al., 2016a
DE 6.2 0.112 Pseudomonas putida Lv et al., 2016a
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4. Methods for degradation enhancement

4.1. Carbon sources

The biomass for PBDEs degradation can be increased after the ad-
dition of alternative carbon sources, which subsequently resulted in
increasing capability of PBDE degradation. This phenomenon is widely
recognized as co-metabolism for many persistent and toxic pollutants
(Gu, 2016). PBDE degradation was increased approximately by
10%–15.7% with addition of yeast extract as the co-substrate in a
sewage sludge (Stiborova et al., 2015). A slightly enhancement on de-
gradation of BDE-47 by Pseudomonas stutzer was observed with ethanol
and glucose as carbon and energy sources in 6 days (Zhang et al., 2013).
Degradation of BDE-209 was promoted due to the use of phenol, to-
luene and biphenyl at low concentrations, but the degradation was
inhibited at high concentrations of these compounds (Lu et al., 2013).
The highest efficiency of BDE-209 degradation was observed when the
mass ratio of BDE-209 and glucose was 1:5, while excessive glucose
inhibited the degradation (Shi et al., 2013). The explanation was that
strains would mainly utilize easily metabolized carbon source when a
high concentration of the easily utilizable carbon source existed, which
caused inhibition on degradation of the other one. Furthermore, in the
presence of mixed culture, not only the biomass of PBDEs-degrading
strains is increased, but growth of other strains is also enhanced si-
multaneously. The other strains may compete for limited nutrients
available and thus decrease PBDEs degradation. Therefore, an appro-
priate concentration of carbon source is important for PBDE degrada-
tion.

4.2. Electron acceptors

Lack of appropriate electron acceptor is one of the major limiting
factors for biodegradation of refractory compounds under anaerobic
conditions. Oxygen was the preferential electron acceptor under
aerobic conditions, while electron acceptors were usually absent and
the microbial metabolism was suppressed under anaerobic conditions.
Relationship between any selective substrate and electron acceptor is
governed by thermodynamics in the form of free energy yield. The
addition of electron acceptors stimulated anaerobic degradation of
PBDEs because they not only stimulate growth of the microbes but also
consume the excess electrons to enhance microbial activity
(Cunningham et al., 2001). Ferric iron, CO2, sulfate, and nitrate, can be
used as the electron acceptors (Cunningham et al., 2001; Farhadian
et al., 2008). The addition of nitrate, sulfate and bicarbonate increased
the debromination rate of BDE-209 by 13.6%, 36.4% and 27.3%, re-
spectively (Huang et al., 2014). Zhang et al. (2014) showed that NaNO3

and NH4NO3 accelerated PBDEs degradation, resulting in removal rates
of 33.4% and 42.3% after 50 days, respectively. The debromination rate
of octa-BDEs was increased due to presence of trichloroethene (TCE) as
electron acceptor in soils and sediments at 28 locations (Lee and He,
2010). The removal efficiency of BDE-47 was increased from 47.3% to
58.2% in the rhizosphere soils with the addition of NO3

− (Chen et al.,
2015b). Although the addition of electron acceptors was an appropriate
method to increase PBDE degradation, only a few studies were reported
and the secondary pollution of electron acceptors should be high-
lighted, for example, carcinogenic nitrite (NO2

−) can be produced
owing to the reduction of nitrate (NO3

−) under anaerobic conditions.

4.3. Surfactants

Bioavailability of PBDEs was limited partially due to high hydro-
phobicity of the chemicals. Surfactants can enhance solubility and
bioavailability of hydrophobic organic compounds (Yang et al., 2003;
Liu et al., 2017), and thus have the potential to enhance biodegradation
of PBDEs, but the toxicity and destructive nature of this class of che-
micals are limitations for applications. The debromination rates for

BDE-209 were enhanced by 50.0% and 31.8%, respectively, with the
addition of Brij 30 and Brij 35 in sediments after 56 days of incubation
(Huang et al., 2014). Debromination for BDE-209 degradation by
white-rot fungi was promoted significantly after 10 days with addition
of β-cyclodextrin and low concentrations of Tween 80, while Tween
80 at high concentrations inhibited degradation of BDE-209 because the
growth of white-rot fungi was inhibited (Zhou et al., 2007). Lu et al.
(2013) showed that Tween 80 slightly enhanced the degradation of
BDE-209, but Triton X-100 did not significantly affect the degradation
and Tergitol NP-10 slightly decreased the degradation by Bacillus
cereus. Degradation of PBDEs might be inhibited by surfactants due to
the toxicity of them to microbial growth. Such inhibitory effect of
surfactants can be mitigated by using biosurfactants, a class of surfac-
tant produced by microbes or plants. The rate of BDE-209 degradation
was increased due to the solubilization of tea saponin in mineral salts
medium (Tang et al., 2014). The debromination rates of BDE-209 was
increased up to 45.5% with surfactin within 56 d in the sediments
(Huang et al., 2014). Biosurfactants function not only to solubilize
pollutants for assimilation, but also serve as a carbon and energy
source. As a result, the claimed degradation is much more complicated
to interpret for the detailed mechanisms involved.

4.4. Inducers

The role of inducers was to induce the production of dioxygenases
which cleaves the aromatic ring of PBDEs in the process of biode-
gradation of PBDEs. The chemical structure of inducers was similar to
PBDEs and they are easier to be biodegraded by microbes, and then
degradation of PBDEs was increased due to the induced production of
enzyme. Such a pathway was superior to debromination of PBDEs,
which produced more toxic lower PBDEs. Meanwhile, the inducers not
only enhance production of the dioxygenase, but also acted as an al-
ternative carbon and energy source for microbial growth. Therefore, the
use of inducers was an efficient and environmentally friendly way to
increase biodegradation of PBDEs. The removal of mono- and di-BDEs
by Sphingomonas sp. with 1,2-dioxygenase were described by Schmidt
et al. (1992, 1993). Production of dioxygenase was induced by 4-bro-
mobiphenyl as the inducer, which enhanced degradation of PBDEs in
sewage sludge from waste water treatment plants (WWTPs) (Stiborova
et al., 2015). The degradation of mono-, di- and tri-BDEs was ac-
celerated greatly by Sphingomonas sp. with 2,3-dioxygenase induced by
diphenyl ether (Kim et al., 2007). Degradation of BDE-47 was enhanced
in the presence of diphenyl and PCB-65 by Pseudomonas stutzeri within
6 days, and diphenyl and PCB-65 were inducers to produce dioxygenase
(Zhang et al., 2013). However, current inducers are not suitable for
cleaning up contaminated sites due to the high cost or toxicity, as a
result alternative inducers are needed (Stiborova et al., 2015). More-
over, not all of substances with similar chemical structure could act as
the inducer. The strain of Sphingomonas sp. could grow in the presence
of diphenyl ether but it was unable to utilize biphenyl and brominated
biphenyl (Kim et al., 2007). The degradation of BDE-209 was sup-
pressed significantly by tetrabromobisphenol A because the competitive
effect of the compound is stronger than its enzyme-inducing effect (Lu
et al., 2013). Therefore, more information on how to choose the ap-
propriate inducer to enhance PBDE degradation is required.

4.5. Vitamin B12

Coenzyme vitamin B12 is well-known to reductively dehalogenate
halogenated organic compounds in the biomimetic system (Woods
et al., 1999). The debromination rate of BDE-209 was promoted by
36.4% with application of vitamin B12 after 56 days of testing (Huang
et al., 2014). BDE-209 and BDE-99 were slightly degraded in the
anaerobic sediment microcosms over 8 months, but completely debro-
minated within 5min and 7 days in the biomimetic system amended
with B12, respectively (Tokarz Iii et al., 2008). Similar results was
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reported by Gaul et al. (2006), in which penta-PBDEs mixtures were
transformed completely in the presence of B12 in a few minutes. The
considerably high rate of PBDE degradation with B12 results in pro-
duction of lower PBDEs. The hypothesis is that higher PBDEs were re-
ductively debrominated into lower PBDEs with B12, and then the pro-
duct was degraded and mineralized through TCA cycle.

4.6. Use of organic compost

Aerobic composting is one of the most effective biological methods
used to treat persistent organic pollutants (POPs), which consists of
heating, thermophilic, cooling and maturing stages (Raj and Antil,
2011; Shao et al., 2017; Wu et al., 2016). PBDEs in natural soils was
difficult to remove, while the organic compost was a potential method
for PBDE degradation enhancement (Zhang et al., 2014; Barrena et al.,
2008). BDE-209 was removed by 66% and 62% during 120 days in the
compost materials containing 6-month bagasse/pig manure and 3-
month pig manure, respectively (Chang et al., 2016). BDE-47 de-
gradation was enhanced up to 15% in agricultural waste-composting
pile compared with the control group after 45 days. In different stages,
BDE-47 degradation was correlated to different physicochemical para-
meters and microbes (Chen et al., 2016b). The compost contains plenty
of humus, which can mediate electron transfer and reductive dehalo-
genation (Zhang and Katayama, 2012). High molecular chemicals in-
cluding PBDEs can be polymerized into the humus and stabilized. This
is particularly favorable for degradation of higher PBDEs.

4.7. Multiple methods

4.7.1. Zero-valence iron (ZVI) reduction and biodegradation
The ZVI-bioremediation technology can be an efficient method to

treat higher PBDEs, which are firstly reductively debrominated to lower
PBDEs with ZVI, and then the product was metabolized by microbes.
Degradation of BDE-209 by Rhodococcus sp. was observed to be pro-
moted with co-existing zero-valence iron/activated carbon within 144-
h timeframe of the study (Liu et al., 2016). Kim et al. (2012) showed
that BDE-209 was reductively debrominated to lower PBDEs with nano-
ZVI in 20 days, and the metabolites were biologically transformed to
bromophenol and metabolites of lower level in 4 days. BDE-209 deb-
romination can be enhanced through the synergistic effect of ZVI and
microbes, and even debromination of lower PBDEs that could not be
biodegraded by microbe alone was enhanced (Chen et al., 2014). Sti-
mulation of BDE-209 degradation was reported with synergistic effect
of micro ZVI and anaerobic sludge (Shih et al., 2012b). Combination of
ZVI and microbes could not only increase the efficiency of PBDEs re-
moval, but also promoted complete mineralization of PBDEs. However,
the potential toxicity of nano-ZVI to microbes is a concern since re-
cently it has been shown that microbial growth was inhibited by nano-
ZVI and the rate of BDE-209 degradation was decreased (Kim et al.,
2012).

4.7.2. Photolysis and biodegradation
Photolysis, such as ultraviolet (UV) light-based photolysis, is one of

the important processes for degradation of POPs in various environ-
mental matrix (Chen et al., 2015a, 2017a; Deng et al., 2016). The photo
debromination of PBDEs is due to the generation of active free radicals
by UV radiation (Wang et al., 2016a,b,c), thus combined microbial
degradation with UV light radiation was an economic and efficient
treatment method for PBDE contamination (Chou et al., 2013). The
removal of PBDEs was detected with positive matrix factorization be-
cause of photochemical and microbial degradation in the sediment
samples from San Francisco Bay (Rodenburg et al., 2014). Suh et al.
(2009) showed that the biodegradation of PBDEs was increased in the
presence of UV irradiation. The enhancement of BDE-209 degradation
was observed with UV irradiation at 365 nm over 10 months comparing
to inoculation in the darkness (Chou et al., 2013). Higher PBDEs were

reductively debrominated to lower PBDEs with the pretreatment of UV,
and then lower PBDEs were introduced into TCA cycle and biodegraded
(Shih and Wang, 2009).

4.7.3. Hydrogen peroxide oxidation and biodegradation
Hydrogen peroxide (H2O2) as the oxidant in chemical remediation

or as the donor of oxygen for in situ bioremediation of organic pollutant
compounds was reported (Lee and Hosomi, 2001). Combination of
H2O2 with microbial degradation for the removal of PBDEs had been a
popular method in recent years (Xu et al., 2011). The total removal of
PBDEs was observed to be 50.8% and 56.5%, respectively, in micro-
cosms with 0.5 and 1 μL of H2O2 in microcosms after 50 days (Zhang
et al., 2014). The high concentration of BDE-47 was completely mi-
neralized to harmless products in a short time with the combined
treatment, in which sequential processes of reductive debromination by
nZVI/Pd, fenton-like oxidation, and microbial degradation by Pseudo-
monas putida are involved (Lv et al., 2016b). Li et al. (2016) reported
that the degradation of higher PBDEs was enhanced due to combination
of fenton-like oxidation and Phanerochaete chrysosporium-based biode-
gradation in soils. Therefore, an appropriate pre-treatment with H2O2-
based oxidation can be very beneficial for the subsequent biodegrada-
tion and mineralization of PBDEs. The drawback of the method is the
effect of H2O2 on the microbial community structure in soils due to the
toxicity of H2O2 to the microbial growth (Schrader and Hess, 2004).

4.7.4. Plant uptake and biodegradation
Plant uptake and PBDEs biodegradation in the rhizosphere are two

key processes controlling the fate of PBDEs in the contaminated soils
under certain circumstances (Zhu et al., 2014a). Chen et al. (2015b)
found that BDE-47 degradation in the rhizosphere soils was sig-
nificantly stronger compared to the non-planted soils due to abundant
PBDE-degrading communities in the rhizosphere soils. penta-BDEs
mixture consisting of BDE-47, 99 and 100 were taken up by a mixture of
plants, including zucchini and radish, and accumulated in roots and
shoot tissues (Mueller et al., 2006). In a greenhouse study, Huang et al.
(2011) showed that lower PBDEs (mono-BDEs to hexa-BDEs) were
taken up in plant roots from soils and the order of PBDEs concentration
in plant tissues followed the order of roots > stems > leaves, which
agree with the patterns established for different metals and metalloids
(Yu and Gu, 2007a,b, 2008a,b; Yu et al., 2007). BDE-209 accumulated
in the roots and shoot tissues of radish, alfalfa, summer squash,
pumpkin, ryegrass and maize, and the debromination and hydroxyla-
tion of BDE-209 were observed in soils and plant samples. Moreover,
higher proportion of lower PBDEs in plant tissues compared to soils
indicated that lower PBDEs were easier to be taken up by plants (Huang
et al., 2009). The combined method of plant uptake and microbial
degradation can be an economic and environmentally friendly way to
increase PBDEs removal from the contaminated soil, though the de-
gradation is slower compared to other combined methods. The ad-
vantages of phytoremediation include low maintenance and natural
process operation for years to achieve thorough cleaning up of the soil
and sediment matrix economically. In doing so, some chemical can be
phyto-extracted from soil and respired into the atmosphere for photo-
oxidation, e.g., methyl tert-butyl ether (MTBE) (Yu and Gu, 2006).

5. Remark and prospect

Contamination of PBDEs remains an environmental issue because
commercial products containing BDE-209 is still in production around
the world. They can be debrominated into lower PBDEs under natural
conditions, contributing to the new release of PBDEs in the environ-
ment. BDE-47 (tetra-PBDEs) and BDE-99 (penta-PBDEs) dominate the
concentration in biota, thus the bioaccumulation and toxicity of BDE-47
and BDE-99 to ecosystem and human are new foci of this group of
pollutants. The exact pathways of biodegradation of PBDEs are still
under exploration and stable isotope-labeling can be an effective tool
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for delineation of the information.
The low rates of PBDEs biodegradation shown in this review are

owing to chemical stability and low bioavailability of PBDEs, thus a
number of methods have been proposed to enhance the removal of
PBDEs. The common methods include the addition of carbon sources,
electron acceptors, surfactants and inducers. Recently, some novel ap-
proaches are applied to PBDEs bioremediation such as use of vitamin
B12 and organic compost, and vitamin B12 can act as super reducing
agent for debromination. Combined methods are proposed to enhance
the efficiency of degradation and degradation by plants and microbes is
the one with the most potential for practical applications on sites due to
the environmental friendliness of the method. Application of chemicals,
such as electron acceptors, surfactants and inducers, to the rhizosphere
soils to enhance the joint degradation of PBDEs by plants and microbe is
worth of further research.
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