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H I G H L I G H T S

• Z-scheme AgBr/Bi2WO6 composites
featuring Ag NPs electron mediator
were fabricated.

• AgBr/Bi2WO6 composites exhibited
superior photocatalytic activity for TC
degradation.

• Ag NPs endowed the superior transfer
and separation of photogenerated
carriers.

• Z-scheme charge transfer mechanism
enhanced the redox ability.

• Photocatalytic mechanism and de-
gradation pathway of TC were re-
vealed.
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A B S T R A C T

A novel hierarchical flower-like AgBr/Bi2WO6 Z-scheme photocatalyst was prepared through the simplified
hydrothermal and deposition-precipitation method. The as-prepared photocatalysts exhibited excellent photo-
catalytic performance for tetracycline (TC) degradation. Especially, AgBr (20 wt%)/Bi2WO6 displayed the op-
timal TC removal efficiency (87.5%) within 60min of visible light illumination. Besides, no obvious decrease in
photocatalytic performance was observed after four cycles. The excellent photocatalytic performance could be
ascribed to the synergistic effect between electron mediator Ag nanoparticles (Ag NPs) and Z-scheme hetero-
junction charge transfer mechanism, which enhanced the light harvest capability, separation efficiency of photo-
generated carriers and redox ability. Moreover, three-dimensional excitation-emission matrix fluorescence
spectroscopy (3D EEMs) and liquid chromatography-mass spectrometry (LC-MS) analyses shed light on the
mineralization behavior and the detailed decomposition pathway of TC. This work opened up a new road to
efficient Z-scheme heterojunction design and provided novel insights into antibiotics elimination mechanism in
photocatalysis.
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1. Introduction

The increasing environmental pollution seriously threatened the
development of human society [1–8] and numerous technologies were
developed to remove pollutants from the environment [9–16]. Photo-
catalysis technology had aroused widespread concern in environmental
remediation due to its green and available traits [17–19]. Nevertheless,
the most common semiconductor TiO2 could only be excited by ultra-
violet light, which restricted its practical application thus brought
challenge to the exploration of new visible-light-driven semiconductor
photocatalysts [20–22].

Bismuth tungstate (Bi2WO6), the simplest member of the Aurivillius
oxide family, had been highlighted for the visible photocatalytic ac-
tivity. However, single Bi2WO6 still had a poor photocatalytic perfor-
mance due to the fast recombination of photogenerated carriers and the
unsatisfied optical absorption capacity. Generally, there were two ways
to boost the photocatalytic performance of Bi2WO6. Firstly, morphology
optimization of Bi2WO6. Based on different synthesis methods and
conditions, the obtained materials expressed different dimensional
morphologies with diverse specific surface areas [23,24], among which,
hierarchical self-assembly superstructures presented the better de-
gradation performance due to the larger specific surface area [25]. A
great quantity of researches related to hierarchical flower-like Bi2WO6

had been reported, such as CdS QDs/Bi2WO6 [26], Bi2WO6/BiPO4 [25]
and g-C3N4/RGO/Bi2WO6 [27], which exhibited superior photo-
catalytic performance for various pollutants. The larger specific surface
area endowed the pollutant molecules more active sites. Furthermore,
the hierarchical flower-like structure of Bi2WO6 extended the trans-
mission path of visible light and advanced the light harvesting capacity
by scattering and diffusing light inside the structure [28]. Secondly,
heterojunction construction of Bi2WO6. There were three heterojunc-
tion types: conventional heterojunction (type-I, type-II and type-III), p-
n heterojunction and Z-scheme heterojunction [29,30]. Conventional
type-I and type-III heterojunction were unfavorable for photocatalysis
because electrons and holes accumulated in the same semiconductor
and couldn’t be separated owing to the staggered bandgap, respec-
tively. Moreover, type-II and p-n heterojunction couldn’t avoid the
defect of declined redox ability because electrons and holes accumu-
lated in lower reduction and oxidation potentials, respectively [30]. In
contrast to the ways of heterojunction construction above, Z-scheme
heterojunction photocatalyst united electrons with holes via contact
interface mediator, which retained the more negative conduction band
(CB) potential and the more positive valence band (VB) potential,
showing higher separation efficiency of photo-generated carriers and
enhanced reduction and oxidation ability [29]. Silver halide (AgX, X
=Cl, I, Br) was known for the photosensitive characteristic in photo-
graphic films [31]. AgX had also attracted concerns in photocatalytic
field due to its great visible light response [32,33]. However, single AgX
irregular particle spheres were inclined to agglomerate together thus
causing unsatisfied photocatalytic performance [34]. It was anticipated
to choose a suitable substrate to scatter AgX, restrain the aggregation
and reduce the particle size strikingly. Therefore, it was reasonable to
combine Bi2WO6 with AgBr to synthesize heterojunction, which si-
multaneously improved the photogenerated electron-hole pairs se-
paration efficiency of Bi2WO6 and lowered the agglomeration of AgBr.
Photocatalysts exhibited as thin film or suspended powders. Thin film
photocatalysts featured for easy re-collection compared to powder
photocatalysts [35]. However, the preparation of photocatalyst films
first need to prepare the precursor solution and then deposited powder
photocatalyst onto the solid substrates, which increased the preparation
difficulty of catalyst [36,37]. To focus more on the synthesis method
and still achieve the perfect photocatalytic activity, powder photo-
catalyst was fabricated.

Stimulated by the discussions above and the previous reports
[38–40], a novel hierarchical flower-like Z-scheme AgBr/Bi2WO6 pho-
tocatalyst was successfully synthesized through the simplified

hydrothermal and in-situ deposition–precipitation method, which ex-
pressed better control of flower-like morphology. The photocatalytic
performance was creatively evaluated with the degradation of TC under
visible light irradiation. The mineralization and degradation pathway
of TC were explored with three-dimensional excitation-emission matrix
fluorescence spectroscopy (3D EEMs) and liquid chromatography-mass
spectrometry (LC-MS) methods. The recyclability experiment was per-
formed by filtration. Moreover, the effects of initial TC concentration,
coexistence ions, pH and light sources were also comprehensively stu-
died. At last, the Z-scheme charge transfer mechanism with Ag nano-
particles (Ag NPs) as the electron mediator was validated by radicals
trapping and electron spin resonance (ESR) experiments.

2. Experimental section

2.1. Materials

sodium tungstate dihydrate (Na2WO4·2H2O), Bismuth nitrate pen-
tahydrate (Bi(NO3)3·5H2O), silver nitrate (AgNO3), potassium bromide
(KBr), 1, 4-benzoquinone (BQ), sodium oxalate (Na2C2O4) and iso-
propanol (IPA) purchased from Chinese medicine group chemical re-
agent co., Ltd were all analytical reagents. Ultrapure water was gained
from the Milli-Q ultrapure (18.25MΩ cm) system in this experiment.

2.2. Synthesis of Bi2WO6 and AgBr/Bi2WO6 heterojunctions

Flower-like spherical Bi2WO6 was synthesized through a hydro-
thermal method. Typically, Bi(NO3)3·5H2O (0.97 g) was ultrasonically
dissolved in 60mL of nitric acid solution (0.4 mol L−1) for 6min.
0.05mol L−1 of Na2WO4 solution was added drop by drop into the
above solution and magnetically stirred for 60min at a speed of
500 r min−1. Then the resulting suspension was poured into a 100mL
Teflon-lined autoclave which was sealed in a stainless steel tank and
heated at 160 °C for 20 h. Subsequently, after naturally cooling to room
temperature, the product (denoted as BWO) was washed and dried at
70℃ for 10 h.

AgBr/Bi2WO6 heterojunctions were synthesized by a depos-
ition–precipitation method. Briefly, Bi2WO6 (0.7 g) and Proportionate
amounts of AgNO3 were ultrasonically dissolved in 50mL of deionized
water then magnetically stirred for 30min in the dark. Afterwards, the
corresponding KBr solution was added dropwise with stirring in the
dark for 60min. Lastly, the yellow precipitate was washed then dried at
60 °C for 10 h. According to the amount of AgNO3 (0.2, 0.4, 0.9,
2.5 mmol), samples of AgBr (5 wt%)/Bi2WO6, AgBr (10 wt%)/Bi2WO6,
AgBr (20 wt%)/Bi2WO6 and AgBr (40 wt%)/Bi2WO6 were obtained
(denoted as ABW-5, ABW-10, ABW-20 and ABW-40, respectively).
Single AgBr was prepared through the same step in the absence of
Bi2WO6. Fig. 1 displayed the schematic illustration of the synthetic
processes of single BWO and ABW composites.

2.3. Characterization

The crystal structure of the sample was obtained by X-ray diffraction
(XRD, Bruker D8 Advance instrument) in a 2θ range of 10–80°. The
morphology was examined by field-emission scanning electron micro-
scope (SEM, Hitachi S4800) and transmission electron microscopy
(TEM, Tecnai G20). X-ray photoelectron spectroscopy (XPS) was per-
formed (Thermo ESCALAB250XI spectrometer with monochromatic Al
Kα radiation) to measure the surface elements and valence state of the
prepared samples. UV–vis diffuse reflectance spectra (DRS, Hitachi U-
4100) were measured with BaSO4 as the reference. The Brunauer-
Emmett-Teller (BET) specific surface area was analyzed on TRISTAR-
3000 analyzer. Three-dimensional excitation-emission matrix fluores-
cence spectroscopy (3D EEMs) was performed on F-4500 spectro-
fluorimeter. Edinburgh FLsp920 transient fluorescence spectrometer
was adopted for photoluminescence (PL) spectroscopy. The electron
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spin resonance (ESR) measurements were performed on Bruker ER200-
SRC spectrometer (visible light, λ > 420 nm). The Zeta potential of the
material under different pH values was detected with Zeta-sizer Nano-
ZS (Malvern). Electrochemical measurements were carried out via a
CHI760E electrochemical workstation with a standard three-electrode
system. The details were provided in the Supporting Information.

2.4. Photocatalytic degradation processes

TC was selected as the model pollutant to evaluate the photo-
catalytic performance of the prepared photocatalysts under visible light
irradiation. The Xe lamp with 420 nm filter was used as the light source.
Briefly, 50mg of material was dispersed into TC solution (50mL,
20mol L−1). Before illumination, the suspension was stirred in the dark
for 30min to reach the adsorption–desorption equilibrium. 4mL of
suspension was taken with a syringe every 10min of visible light irra-
diation and passed through a 0.45 µm filter to obtain the supernatant
liquid. A UV–vis spectrophotometer (Shimadzu UV-2450) was used to
measure the concentration of TC (absorption wavelength: 357 nm). For
a change, 4mL of suspension was collected every 30min to perform
TOC analysis with Shimadzu total organic analyzer. Trapping experi-
ments of active species were carried out by adding isopropanol (IPA,
50mM), sodium oxalate (Na2C2O4, 50 mM), and 1, 4-benzoquinone
(BQ, 0.4 mM) to capture hydroxyl radicals (%OH), holes (h+) and su-
peroxide radicals (O2

–), respectively. Photodegradation intermediates
evaluation based on the LC-MS system and the solution toxicity during
treatment assessment were supplied in the Supporting Information.

3. Results and discussions

3.1. Characterizations

XRD technique was adopted to analyze the compositions and crystal
structures of the samples. Fig. 2 revealed the XRD patterns of single
BWO, single AgBr, ABW-5, ABW-10, ABW-20 and ABW-40 composites.
Characteristic peaks at 2θ values of 28.31°, 32.93°, 47.16° and 55.83°
agreed well with (1 1 3), (0 2 0), (2 2 0) and (3 1 3) crystal planes of

orthorhombic BWO (JCPDS NO. 73–1126) [27]. Characteristic peaks 2θ
values of 26.73°, 30.96°, 44.35°, 55.04°, 64.48° and 73.26° could be
related to (1 1 1), (2 0 0), (2 2 0), (2 2 2), (4 0 0) and (4 2 0) crystal
planes of AgBr (JCPDS NO. 06-0438) [41]. The peaks of single BWO
and single AgBr were unambiguous and there were no additional dif-
fraction peaks, which reflected the fine crystallinity and high purity of
the two samples. As depicted in Fig. 2, BWO modified with various
ratios of AgBr included crystal phases of the two components. Among
all the peaks existing in the composites, some peaks of AgBr gradually
emerged and then boosted (crystal planes (2 2 0), (2 2 2), (4 0 0),
(4 2 0)) or the peak existed all the time and its intensity enhanced
(crystal planes (2 0 0)) with the increase of AgBr in the ABW compo-
sites, which exactly coincided with the variety of AgBr. The above
analyses all proved that ABW composites were successfully obtained.

The elemental composition and chemical state of ABW-20

Fig. 1. Schematic illustration of the synthetic processes of single BWO and ABW composites.

Fig. 2. XRD patterns of single BWO, single AgBr, ABW-5, ABW-10, ABW-20 and
ABW-40 composites.
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composite were measured with XPS. Fig. 3a displayed the full survey
spectrum of ABW-20, including elements of W, Bi, Br, C, Ag and O,
among which peak for C derived from the adventitious hydrocarbon in
the XPS instrument [42]. Peaks with binding energy of 367.99 eV and
374.07 eV were ascribed to Ag 3d5/2 and Ag 3d3/2 (Fig. 3b), which
could not be further divided, implying that only Ag+ emerged in the
fabrication of the sample [43]. XPS of Br 3d locating at 68.45 eV and
69.50 eV (Fig. 3c) could be resolved to two peaks, which belonged to Br
3d5/2 and Br 3d3/2 of Br−, respectively [41]. Peaks at 159.10 eV and
164.70 eV were in line with Bi 4f7/2 and Bi 4f5/2, respectively (Fig. 3d)
[27]. One peak at 35.50 eV was indexed to W 4f7/2, and the other peak
at 37.50 eV referred to W 4f5/2 (Fig. 3e) [27]. XPS of O 1 s could be
deconvoluted into three peaks, indicating the complicated constituents
of O element (Fig. 3f). Peaks at 529.88 eV and 530.91 eV were re-
spectively assigned to the lattice oxygen of W-O bond ([WO4]2−) and
Bi-O bond ([Bi2O2]2+) [44]. Another peak at 532.75 eV represented the
surface absorbed oxygen species [42]. In the light of the above evi-
dences, ABW-20 was successfully obtained.

SEM technique was carried out to explore the morphology struc-
tures and particle sizes of single BWO, single AgBr and ABW-20 com-
posite. As Fig. 4a revealed, single BWO displayed an about 4 µm-dia-
meter flower-like spherical superstructure assembled by numerous
nanoplates with smooth single crystal structure, thus forming inter-
space of varying sizes which increased the specific surface area in
contact with pollutants. The amorphous BWO nanoparticles firstly self-
aggregated then the two-dimensional nanoplate-like structure gener-
ated through “Ostwald ripening”. Finally, these nanoplates self-orga-
nized to flower-like BWO spherical superstructures [23]. The SEM
image of AgBr (Fig. 4b) showed a series of spherical particles with
diameters of 500 nm–1 µm. Compared to single AgBr, AgBr spherical
particles loaded on the BWO flower-like sphere were transparently
smaller (Fig. 4c). It was evident that AgBr nanoparticles examining
about 5 nm were evenly loaded on the surface of porous spherical BWO,
which made the surface of the composite rougher than single BWO.
Therefore, depositing AgBr particles onto porous spherical BWO not
only didn’t change the structure of BWO but also reduced the grain size

of AgBr particles and further increased their dispersity. Typical TEM
images also proved that AgBr nanoparticles were intimately anchored
on the surface of BWO (Fig. 4g and h). HRTEM image of the fresh ABW-
20 (Fig. 4i) affirmed the tight link between AgBr and BWO. The lattice
d-spacings of BWO at 0.272 nm and 0.316 nm referred to (0 2 0) and
(1 1 3) lattice planes, respectively [42]. Similarly, the lattice distance at
0.288 nm and 0.204 nm were attributed to (2 0 0) and (2 2 0) lattice
planes of AgBr [41]. Accordingly, these results provided unimpugnable
evidence that ABW heterostructure was achieved. Furthermore, energy
dispersive X-ray spectroscopy (EDS) elemental mapping technique also
validated the co-existence of Ag, Br, Bi, W and O elements (Fig. 5).

N2 adsorption–desorption isotherm and the homologous Barrett-
Joyner-Halenda (BJH) pore size distribution were employed to in-
vestigate the specific surface area and the pore characteristic of BWO
and ABW-20 composite (Fig. 6). Table S1 disclosed the specific surface
area, pore size and pore volume of BWO and ABW-20. The two samples
manifested a type IV isotherm and a type H3 hysteresis loop, accom-
panied by the pore size distribution revealed the mesoporous structure
[33]. The specific surface area of single BWO and ABW-20 were re-
spectively 4.588m2·g−1 and 8.286m2·g−1, increased nearly by half.
The smooth surface of BWO became rougher after loading AgBr, which
indicated more available active sites for pollutants’ removal. However,
the pore size of ABW-20 was lower than BWO, which could be ascribed
to the filling of AgBr nanoparticles into BWO pores. Appropriate spe-
cific surface area and pore structure contributed to the high photo-
catalytic performance.

3.2. Photocatalytic performance analysis

The photocatalytic activity of the synthesized catalysts was firstly
assessed through the degradation of TC under visible light illumination.
Adsorption equilibrium for TC with catalysts was investigated in Fig.
S1. Results showed that the adsorption for TC molecules increased ra-
pidly in the first 10min and then slowed down and the ad-
sorption–desorption equilibrium was obtained in 30min. The con-
centration of TC basically did not fluctuate in the blank experiment

Fig. 3. XPS spectra of ABW-20 composite: (a) survey scan, (b) Ag 3d, (c) Br 3d, (d) Bi 4f, (e) W 4f, and (f) O 1 s.
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Fig. 4. SEM images of BWO (a and d), AgBr (b and e) and ABW-20 composite (c and f); TEM (g and h) and HRTEM (i) images of fresh ABW-20 composite.

Fig. 5. SEM-EDS elemental mapping images of ABW-20 composite.
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excluding the self-degradation of TC (Fig. 7a). The removal efficiency of
TC by BWO and AgBr under 60min of visible light irradiation was
60.4% and 67.6%, respectively. Obviously, ABW composites exhibited
superior photocatalytic performance compared to single BWO and
AgBr. The enhanced photocatalytic performance of ABW composites
could be assigned to the formation of heterojunction which advanced
the insulation of photo-generated charges. With the amount of AgBr
increasing to 20%, the highest degradation activity (87.5%) for TC was
obtained. However, when AgBr exceeded 20%, the degradation effi-
ciency declined. It was probably due to that excessive AgBr nano-
particles produced light shielding effect, which was unfavorable for the
composites to absorb light [41]. The kinetics of TC photocatalytic de-
gradation was investigated by the pseudo-first-order and pseudo-
second-order models [45]:

− =ln C C k t( / )t 0 1 (1)

− =C C k t1/ 1/t 0 2 (2)

where k1 (min−1) and k2 (L·mg−1·min−1) were respectively the ap-
parent rate constants of pseudo-first-order and pseudo-second-order
kinetics. C0 and Ct were pollutant concentrations at reaction time 0 and
t min. The linear fitting of the two kinetics models were displayed in
Fig. 7b and c and the corresponding apparent rate constants were listed
in Table 1. The pseudo-second-order kinetic model conformed better to
the photocatalytic degradation of TC based on the correlation coeffi-
cients (R2). It was noteworthy that ABW-20 exhibited the largest ap-
parent rate constant for TC, which was 5.02 times higher than BWO and
3.42 times higher than AgBr, indicating that there existed an optimal
mass ratio of AgBr.

3.2.1. The effect of initial TC concentration
TC concentration was a vital factor to the photodegradation effi-

ciency and the practical application of the synthesized photocatalysts.
With the concentration of TC increased from 20mol L−1 to 60mol L−1,
the degradation efficiency descended from 87.5% to 53.7% (Fig. 8a).
The decline in photocatalytic performance with the increase of TC
concentration could be explained by the following two reasons. Firstly,
high concentration of TC increased the difficulty of light penetration,
making it difficult for photons to reach and act on the catalyst, which
evidently diminished the photocatalytic efficiency [46]; Secondly, the
increase of TC concentration would inevitably lead to the increase of
intermediate products, which brought about a competitive effect be-
tween TC molecules and the intermediates [47]. Therefore, it is ne-
cessary that high-concentrated sewage should be diluted before treat-
ment in practical application.

Fig. 6. N2 adsorption–desorption isotherm (a) and the corresponding pore size distribution (b) of BWO and ABW-20 composite.

Fig. 7. (a) TC photocatalytic degradation curves; (b) pseudo-first-order kinetics curves and (c) pseudo-second-order kinetics curves of TC degradation.

Table 1
Apparent rate constants of photocatalytic TC degradation from pseudo-first-
order and pseudo-second-order models.

Samples Pseudo-first-order kinetic Pseudo-second-order kinetic

k1 (min−1) R2 k2 (L·mg−1·min−1) R2

BWO 1.19×10−2 0.93348 9.88× 10−4 0.98185
AgBr 1.54×10−2 0.89530 1.45× 10−3 0.96763
ABW-5 2.28×10−2 0.88855 3.09× 10−3 0.98140
ABW-10 2.56×10−2 0.87312 3.89× 10−3 0.98961
ABW-20 2.82×10−2 0.87521 4.96× 10−3 0.97891
ABW-40 2.75×10−2 0.86889 4.60× 10−3 0.98484
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3.2.2. The effect of coexistence ions
There existed multiple anions such as Cl−, SO4

2−, HCO3
– in prac-

tical polluted water, which would interfere with the degradation of
pollutants by photocatalysts. Hence, the effect of these ions on TC de-
gradation should be investigated. As displayed in Fig. 8b (NaCl, Na2SO4

and NaHCO3 as three model inorganic salts), the corresponding pho-
todegradation efficiency sequence was NaCl > Na2SO4 > NaHCO3.
The slightest inhibitory effect was detected in the presence of NaCl,
which might originate from the competitive adsorption effect between
Cl− and TC molecules, causing fewer active sites available [33]. The
degradation of TC was strikingly hampered in the presence of Na2SO4

and NaHCO3. SO4
2− and HCO3

– were effective radical scavengers for %
OH. Besides, HCO3

– can also trap h+ radicals. Therefore, the number of
radicals participating in the photodegradation process was reduced,
causing unsatisfied photocatalytic performance [46].

3.2.3. The effect of reaction pH
TC molecules were alert to pH owing to the protonation-deproto-

nation change. Therefore, the pH of TC solution was influential in the
adsorption and photocatalytic capability. The initial pH of TC solution
was adjusted by 1M of HNO3 or NaOH. TC which comprised carbonyl
groups and tricarbonyl amide could form three species under different
pH conditions [48]. When pH was under 3.3, TC molecules presented as
cationic species (TCH3+); When pH was 3.3–7.7, TC molecules ap-
peared as zwitter ionic species (TCH2

0); When pH was above 7.7, TC
molecules emerged as anionic species (TCH−/TC2

−). The Zeta poten-
tials of ABW-20 composite as a function of pH value was exhibited in
Fig. S3. It was worth noticing that ABW-20 composite was positively
charged when pH was under 6, and negatively charged when pH was

over 6. When the initial pH of TC solution was at 2, 8 and 10, there
were still considerable quantity of TC molecules absorbed onto the
surface of ABW-20 composite despite the electrostatic repulsion be-
tween TC and ABW-20 (Fig. 8c). The TC adsorption was mildly en-
hanced under pH values of 4 and 6. It can be rationally concluded that
it was not electrostatic interaction but surface complexation that played
a decisive role in the adsorption capability of TC molecules [49]. In
addition, the photocatalytic removal efficiencies hardly fluctuated re-
gardless of the pH values, which signified that the pH value of TC so-
lution didn’t affect the photodegradation performance.

3.2.4. The effect of light sources
Solar light produced radiation of different energy, exerting an in-

fluence on the photocatalytic performance for pollutants removal.
Fig. 8d displayed TC concentration change in the presence of ABW-20
when there is optical filter in front of the Xe lamp or in the dark con-
dition. There was no striking decline of TC concentration in the dark
except for the adsorption loss. In comparison to the procedure with the
optical filter (λ > 420 nm), better degradation performance of ABW-
20 for TC was achieved under full spectrum illumination
(λ > 365 nm). It could be explained that shorter wavelength brought
about the greater photon energy, accordingly resulting in the enhanced
photocatalytic performance [47].

3.3. Optical absorption and charge transfer characteristics

Optical absorption properties of BWO, AgBr and ABW-20 were in-
spected with UV–vis DRS. As illustrated in Fig. 9a, ABW-20 manifested
an enhanced visible light absorption and a red shift in absorption band

Fig. 8. The effects of (a) initial concentration, (b) coexistence ions, (c) reaction pH and (d) light sources for the photocatalytic degradation of TC in the presence of
ABW-20.
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compared with BWO and AgBr, whose absorption edges were at around
443 nm and 455 nm, respectively. The bandgap energy (Eg) of photo-
catalyst was depicted by the Kubelka–Munk function [50]:

= −αhγ A hγ E( )g
n
2 (3)

where Eg, α, A, h, γ represented energy gap, absorption coefficient, a
constant, Planck’s constant and light frequency, respectively. BWO and
AgBr were all indirect transitions so 4 was selected as n value [51,52].
Detecting from the inset picture of Fig. 9a, the bandgaps of BWO and
AgBr were about 2.8 eV and 2.73 eV, respectively.

Furthermore, the CB value (ECB) and VB value (EVB) of the semi-
conductor could be calculated by the equations below [21]:

= − −E X E E0.5CB
e

g (4)

= +E E EVB CB g (5)

where X referred to the electronegativity of crystalline semiconductors,
Ee was the energy of free electrons on the hydrogen scale (~4.50 eV vs
NHE), Eg represented the energy gap of semiconductors. Therefore, the
ECB values of BWO and AgBr were respectively 0.49 and−0.06 eV, and
the corresponding EVB values of BWO and AgBr were 3.29 and 2.67 eV.

PL spectra was applied to explore the separation and recombination
of photo-generated carriers of semiconductors [27]. Lower fluorescence
intensity signified the lower recombination efficiency and the higher
separation capacity of the photo-generated electron-hole pairs, which
demonstrated the excellent photocatalytic performance. Fig. 9b dis-
played the PL spectra of BWO, AgBr and ABW-20 composite at an ex-
citation wavelength of 325 nm. Apparently, compared with BWO and
AgBr, ABW-20 composite presented a distinctly depressed PL intensity,
implying that heterojunction between BWO and AgBr was favorable to

suppress the recombination of photo-generated carriers and promote
the separation of the electron-hole pairs.

Photo-generated electrons of the semiconductors could be moti-
vated by visible light and transferred from the VB to CB to generate
photocurrent. Herein, photocurrent tests were carried out to evaluate
the migration and separation capability of the photo-generated carriers.
Intuitively, all of the samples produced certain photocurrent responses.
The photocurrent density remained at a low level under dark, but it
swiftly increased when the light on and then dropped to the initial level
under dark. BWO and AgBr showed a cliff-type decline while ABW-20
presented a sloped fall. As Fig. 9c illustrated, the transient photocurrent
density of BWO, AgBr and ABW-20 composite were respectively 0.06,
0.13 and 0.56 μA cm−2. ABW-20 expressed a ridiculously intensive
photocurrent density, which was respectively 9.33 and 4.31 times
higher than BWO and AgBr. The introduction of AgBr produced Ag NPs
under visible light illumination, which functioned as the electron
mediator to promote charge transfer during the photocatalytic process,
resulting in the boosted photocurrent density. Consequently, the het-
erojunction between BWO and AgBr accelerated the migration of
charge carriers and favored the degradation of organic pollutants.

The charge transfer capability was measured by electrochemical
impedance spectroscopy (EIS) Nyquist. The smaller the arc radius was,
the smaller the charge transfer resistance was, thus leading to a more
efficient separation of carriers [31]. ABW-20 composite obviously re-
flected the smallest arc radius, indicating the highest charge separation
efficiency (Fig. 9d). The results above were in good consistency with the
photocatalytic degradation performance.

Fig. 9. (a) UV–vis DRS spectra (inset: the related bandgap); (b) PL spectra; (c) transient photocurrent response; (d) EIS Nyquist plots of BWO, AgBr and ABW-20.
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3.4. 3D EEMs analysis and TOC measurement of TC

3D EMMs were utilized to investigate the degradation behavior and
mineralization degree of TC during the photocatalytic process (Fig. 10).
Fluorescence characteristic was closely related to the structure and
functional groups in molecules [53]. The available literature proved
that TC molecular produced characteristic fluorescence signals during
the degradation process [43,54]. It was obvious that the fluorescence
spectra basically remained unchanged before illumination, which im-
plied that adsorption did not alter TC molecular structure. Peaks at Ex/
Em of 300–340/410–475 nm and Ex/Em of 325–370/475–555 nm re-
presenting humic acid-like organics began to appear and the fluores-
cence intensity strengthened over time (from 10min to 60min) [55].
When the reaction time extended to 120min, the two characteristic
peaks vanished, demonstrating that the humic acid-like organics gen-
erated in the photodegradation process further mineralized to inter-
mediates with lower molecular weight.

TC mineralization with BWO and ABW-20 were also detected by
TOC measurement. The TOC removal efficiency was calculated with
following formula:

= −TOCremovalefficiency TOC TOC TOC(%) ( )/t0 0 (6)

where TOC0 referred to the initial TOC, TOCt represented different TOC
at selected time. TOC removal efficiency of BWO was always lower than
that of ABW-20 as perceived in Fig. 11. The mineralization efficiency
ascended with the prolonging time, implying that the mineralization
process advanced constantly. After 90min degradation, about 39.4%
TC was mineralized by ABW-20, which was much lower than the de-
gradation efficiency. It could be rationally concluded to the inter-
mediate products that could retard the mineralization [56].

3.5. Possible degradation pathway of TC

LC-MS was applied to identify the degradation intermediates of TC

with ABW-20 composite in detail. MS spectra of TC and possible in-
termediates at different reaction time were presented in Fig. S4. m/z of
445.2 was deemed to TC peak, whose intensity gradually weakened
with the proceeding of the degradation, indicating the destruction of
TC. Peaks of intermediates began to appear at 30min irradiation time
(Fig. S4b). Intensity of some intermediates with m/z of 284, 431, 461
and 475.3 attenuated, demonstrating that these intermediates were
further degraded. Moreover, when the illumination time extended to
90min, some new intermediates such as m/z of 342, 359.2, 398.1 and
416 emerged and intermediate with m/z of 405.2 vanished (Fig. S4c),
which depicted the further degradation process of TC. Fig. 12 raised
three proposed photocatalytic degradation pathways of TC with ABW-

Fig. 10. 3D EEMs results of TC photodegradation: samples obtained (a) from the original solution; (b) after 30min dark reaction; and (c-f) with visible light
irradiation time of 10min, 30min, 60min and 120min, respectively.

Fig. 11. The total organic carbon (TOC) removal efficiencies of BWO and ABW-
20.
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20. Pathway 1: hydroxylation process (m/s 461, m/s 475) [33].
Pathway 2: deamidation reaction (m/s 405) and loss of dimethylamino
group (m/s 359) [57]. Pathway 3: TC molecule was destroyed through
a series of loss of N-methyl group (m/s 431), amino group (m/s 416)
and H2O molecule (m/s 398), aldehyde group (m/s 342) and opening of
benzene rings (m/s 284) [58]. Ultimately, these cyclic intermediates
could transform to short-chain carboxylic acids [59,60].

Besides, the toxicity of reaction solution during treatment was also
evaluated with traditional bacterial growth (gram-negative strain E.
coli). Generally speaking, the higher degree of mineralization favored
the reduction of toxicity to bacteria [61]. As displayed in Fig. S5, the
inhibition rate of original TC solution (0min) was about 30.4% and the
inhibition rate of reaction solution raised with the prolonging of the
irradiation time, which indicated that the intermediate products of TC
photocatalysis would trigger the toxicity enhancement towards bac-
teria. The similar phenomenon had been observed by the former

researches [62,63]. It was probably due to that TC molecules degraded
to some other products that were more deleterious than the parent
molecules instead of the complete mineralization. The result coincided
with the TOC measurement, demonstrating that the treated TC solution
should be processed properly in practical application.

3.6. Photostability and recyclability of ABW-20 composite

Practical applications required advantageous recyclability of pho-
tocatalytic materials for the aim of cutting cost and refraining from
secondary pollution. TC degradation experiment was carried out for
four times in a row. As disclosed in Fig. 13, degradation efficiency of TC
didn’t descend distinctly after four cycles under the identical condition
(only 5.8% loss). Retaining a high performance signified the excellent
photostability of ABW-20 composite.

Additionally, the cycled ABW-20 composite was characterized by

Fig. 12. Proposed photocatalytic degradation pathways of TC with ABW-20.
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XRD, XPS and HRTEM for more composition and structural information
to further certify the photostability of ABW-20 composite. Fig. 13b
displayed the XRD patterns of the used ABW-20 composite, which was
almost the same as the fresh one. However, there existed a special weak
peak at 38.38°, representing the (1 1 1) crystal plane (JCPDS card NO.
65–2871) of Ag NPs [43], which was clearly observed in the amplified
partial XRD patterns (Fig. S6). Comparing the Ag XPS spectra of the
fresh composite with the used one (Fig. 13c), a mild shifting was found
in the XPS peaks, which could be ascribed to the emergence of ele-
mental Ag. Besides, XPS peak of the used ABW-20 composite were di-
vided into four peaks (Fig. 13d). Peaks with binding energy of 367.9
and 374 eV were for Ag+ 3d5/2 and Ag+ 3d3/2 and energy of 368.3 and
374.3 eV were for Ag0 3d5/2 and Ag0 3d3/2, respectively [43]. The re-
lative amount of metallic Ag to Ag+ in the used ABW-20 composite was
determined to be 20.14% [64], which also verified the existence of Ag.
Moreover, Fig. S7 supplied the TEM and HRTEM images of the used
ABW-20 composite. The d-spacing reckoned to be 0.236 nm was lattice
plane of metallic Ag (1 1 1) [43]. Based on all the proofs above, ABW-20
composite maintained high stability after use and the heterojunction
between BWO and AgBr took effect constantly. In addition, Ag NPs
served as electron mediator to advance the shift and separation of
photo-generated carriers, which could be validated in next chapter.
Accordingly, the excellent stability of ABW-20 composite made it pos-
sible to be applied in the environmental remediation.

3.7. Mechanisms of enhanced photocatalytic performance

Radicals trapping experiments should be implemented because ac-
tive radicals produced in the process of photocatalysis played an

important role in TC degradation process. Fig. 14a and b displayed the
inhibitory effect of different scavengers for ABW-20 composite. The TC
removal rate was slightly suppressed by adding Na2C2O4 quencher,
indicating that h+ played a tiny part in the degradation process. When
isopropanol was added, TC degradation efficiency decreased from
87.5% to 72.9%, demonstrating that %OH played a more essential role.
Comparatively, %O2

– exerted the biggest influence on TC degradation
with the efficiency dropped by more than half (from 87.5% to 41.5%)
adding 1.4-benzoquinone. Therefore, %OH, h+ and %O2

– produced ef-
fect on TC degradation in varying degrees. Additionally, radicals trap-
ping experiments were also carried out with BWO, and the results (Fig.
S8a and b) showed that %OH and %O2

– strikingly affected the TC de-
gradation, while h+ did not work evidently.

The ESR techniques were performed to further identify the gen-
eration of %O2− and %OH in ABW-20 composite under visible light. As
perceived in Fig. 14c, four notable signals which were ascribed to
DMPO-O2– were detected under 5min visible light irradiation with
ABW-20 composite and the peak intensities boosted under 10min il-
lumination. While there was no signal in the dark. It could be concluded
that O2 was reduced to %O2

– under visible light irradiation. Similar
phenomenon also applied to DMPO-OH for ABW-20 composite, in-
dicating that %OH emerged. Both radicals trapping and ESR experi-
ments validated the major role of ABW-20 composite played in pho-
tocatalytic degradation. For BWO (Fig. S8c and d), DMPO-O2– and
DMPO-%OH signals were captured under visible light but no signal in
the dark, which was consistent with the radicals trapping results. No-
ticeably, signal intensity for single BWO under visible light was not so
high as ABW-20, demonstrating that ABW-20 exhibited a superior
photocatalytic performance.

Fig. 13. (a) Cycling test of TC photocatalytic degradation with ABW-20; (b) XRD patterns comparison of the fresh and used ABW-20; (c) Ag XPS spectrum comparison
of the fresh and used ABW-20; (d) Ag high resolution XPS spectrum of the used ABW-20.
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Based on the UV–vis DRS spectra and Eqs. (4) and (5), the ECB and
EVB of BWO were 0.49 and 3.29 eV, with the homologous ECB and EVB of
AgBr being −0.06 and 2.67 eV, respectively. Accordingly, a conven-
tional heterojunction model was raised in the light of the band position
of BWO and AgBr (Fig. 15a). The two semiconductors were excited to
produce photo-generated electrons (e−) and holes (h+) with electrons
transferring from CB of AgBr to the CB of BWO and holes migrating
from VB of BWO to the VB of AgBr under visible light irradiation.
However, electrons in the CB of BWO could not reduce O2 into %O2

–,
resulting from the more positive CB potential of BWO (0.49 eV vs. NHE)
than O2/%O2

– potential (−0.046 eV vs. NHE) [41]. Similarly, holes in
the VB of AgBr could not oxidize H2O into %OH because the VB po-
tential of AgBr (2.67 eV vs. NHE) was more negative than H2O/%OH
potential (H2O/%OH: 2.72 eV vs. NHE) [41]. In that case, %O2

– and %OH
were unable to produce in the degradation process and only h+ reacted
with TC, which contradicted the results of the radicals trapping tests
and ESR results. That is to say, the conventional charge transfer model
was impractical in ABW heterojunction. Consequently, the Z-scheme
heterojunction system with Ag NPs as the electron mediator was de-
picted in Fig. 15b. AgBr was reduced to Ag NPs attached to the surface
of ABW composites illuminated by visible light, converting AgBr/
Bi2WO6 to Ag@AgBr/Bi2WO6. The emergence of Ag NPs was already
certified by XRD, XPS and HRTEM based on the former analyses. Ac-
cording to the former literature, Ag NPs played two roles in Z-scheme
heterojunction system: electron mediator and photosensitizer. The role
Ag NPs played in the system was up to the two semiconductors’ re-
sponse to the incident light [29]. When one of or both of the two
semiconductors cannot be excited by the incident light, Ag NPs served

as the photosensitizer. When both the two semiconductors can absorb
the photons from incident light, Ag NPs mainly acted as the electron
mediator. In this research, Ag NPs served as electron mediator because
both AgBr and BWO could be excited by visible light. Electrons moved
from BWO (CB) to Ag NPs due to the higher CB potential of BWO than
the Fermi level of Ag NPs [65]. While holes in AgBr (VB) migrated to Ag
NPs as a result of the more positive VB potential of AgBr than the Fermi
level of Ag NPs. Electrons and holes flowing into Ag NPs recombined
swiftly, resulting in a quick charge transfer rate. Ag NPs fulfilled the
spatial insulation of the photo-generated pairs, which extremely con-
fined the undesirable recombination. The photo-generated electrons
retained in the more negative CB of AgBr and holes retained in the more
positive VB of BWO, resulting in the stronger redox ability. Electrons
accumulating in the CB of AgBr easily reacted with O2 to form %O2

– and
holes enriching in the VB of BWO also oxidized H2O into %OH promptly.
Herein, h+, %O2

– and %OH produced effect simultaneously in the de-
gradation process. In brief, Z-scheme heterojunction carriers transfor-
mation system with ABW composites conformed perfectly to the ex-
cellent the photocatalytic performance.

+ → +
− +Bi WO hγ e Bi WO h Bi WO( ) ( )CB VB2 6 2 6 2 6 (7)

+ → +
− +AgBr hγ e AgBr h AgBr( ) ( )CB VB (8)

+ → +
− −e Bi WO Ag Bi WO e Ag( ) ( )CB CB2 6 2 6 (9)

+ → +
+ +h AgBr Ag AgBr h Ag( ) ( )VB VB (10)

+ →
− +e Ag h Ag recombination( ) ( )CB VB (11)

+ → ∙ +
+ +h Bi WO H O OH Bi WO H( ) ( )VB 2 6 2 2 6 (12)

Fig. 14. Trapping experiments of decomposing TC by adding different scavengers with ABW-20 composite (a and b); ESR spectra by adding DMPO to capture %O2−

and %OH with ABW-20 composite (c and d).
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+ → ∙
− −e AgBr O O AgBr( ) ( )CB 2 2 (13)

∙ ∙ + →
− +OH Bi WO O AgBr h Bi WO TC products( )/ ( )/ ( )VB2 6 2 2 6 (14)

4. Conclusions

All in all, the original ABW heterojunctions were favorably prepared
via a multiple step: hydrothermal method was employed to synthesize
flower-like spherical Bi2WO6 and in-situ deposition–precipitation pro-
cedure next deposited AgBr onto Bi2WO6. The prepared ABW hetero-
junctions produced Ag NPs during the photocatalysis process, thus
converting AgBr/Bi2WO6 to Ag@AgBr/Bi2WO6. Consequently, a Z-
scheme charge transfer mechanism featuring Ag NPs electron mediator
was proposed, which realized 87.5% of photocatalytic efficiency for TC.
In addition, Exploration of 3D EEMs and TOC jointly verified the mi-
neralization of TC. LC-MS analysis further investigated the degradation
pathway of TC: hydroxylation process, deamidation reaction and the
loss of N-methyl group. Radicals trapping and ESR experiments vali-
dated the notable part h+, %O2

– and %OH played for TC removal in the
photocatalytic treatment. This strategy projected the unneglectable role
Ag NPs played in the photocatalytic process, opened up a new road to
efficient Z-Scheme heterojunction design and shed light on the pre-
liminary understanding of the degradation pathway for TC.
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