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HIGHLIGHTS

e BDMMs were expediently obtained from alkali & acid treatment of original bentonite.

o Surface areas and average pore sizes of BDMMs were improved nearly by 74 and 2 times.
e The thermal stability of BDMMs-Lac was highly improved compared to free laccase.

e In the presence of HBT, BDMMs-Lac could remove 60% of TC within 180 min.
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Bentonite is a natural and environmentally clay mineral, and bentonite-derived mesoporous materials
(BDMMs) were obtained conveniently from the alkali and acid treatment of bentonite. In the present
study, BDMMs were explored for immobilization of laccase obtained from Trametes versicolor. As a result,
bentonite-derived mesoporous materials-Laccase (BDMMs-Lac) was developed for the removal of
tetracycline (TC). The enzyme immobilization process was carried out through physical adsorption

contact (ion exchange adsorption, hydrogen bond adsorption, and Van der waals adsorption) between
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the BDMM s and laccase. The process of immobilization remarkably increased its operating temperature.
The BDMMs-Lac exhibited over 60% removal efficiency for TC within 3h in the presence of 1-
hydroxybenzotriazole (HBT). In conclusion, BDMMs-Lac showed more promising potential than free
laccase for practical continuous applications.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Laccase (EC 1.10.3.2) is an oxidoreductase that belongs to the
multicopper oxidase protein family (Huang et al., 2017a,b; Madhavi
and Lele, 2009; Zhang et al., 2014). Laccase has the ability to
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catalyze some substrates to water (Spina et al., 2015; Huang et al,,
2016a,b). In the presence of small molecular weight mediators,
laccase has more extensive substrate range and thus exhibits wider
applicability in polluted water (Cheng et al., 2016a,b; Chen et al.,
2016; Rodriguez and Toca, 2006). The use of laccases also offers a
method that is free from secondary pollution during actual
wastewater treatment (Lai et al., 2016; Liu et al., 2013; Monje et al.,
2010). However, the low stability and high production costs of
laccase limit its applicability (Ashe et al., 2016; Li et al., 2018).
Immobilization can overcome the limits of laccase application
by enhancing the enzyme properties (Mohamad et al., 2015; Cheng
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et al., 2016a,b). The immobilization methods of laccase have been
explored for years (Deng et al., 2013; Guzik et al., 2014; Zhou et al.,
2018a,b). Immobilization can increase the stability of enzymes and
thus improve the operability of laccase in practice (Lai et al., 2019;
Sheldon and van Pelt, 2013). Multifarious carriers have been stud-
ied for the successful immobilization of laccase (Zhou et al., 2013;
Liu et al., 2012). Clays are low-cost, eco-friendly, recyclable, have
low mass transfer, and demonstrate microbial corrosion resistance
capacity (An et al., 2015; Li et al., 2015; Liang et al., 2017; Wu et al.,
2017). Through activation or etching, they can attain highly specific
surface areas and numerous functional groups (Gong et al., 2009;
Osuna et al., 2018; Shu et al., 2016; Zeng et al., 2017).

Bentonite, which has layered structure with cations such as Na™
or Ca®*, shows promising and highly suitable application for the
loading of an extensive range of biomolecules (Liang et al., 2017;
Ghiaci et al,, 2009; Ma et al., 2018). After etching, bentonite
exhibited highly improved characteristics, including those relation
to cation exchange capacity and surface area (Liang et al., 2017;
Bajpai and Sachdeva, 2002; Shu et al, 2014). Furthermore,
bentonite, as a natural mineral, is eco-friendly, inexpensive, and
accessible (Long et al., 2011; Issaabadi et al., 2017). The application
of bentonite for enzyme immobilization has been studied by
several research groups (Salem and Salem, 2017; Andjelkovi et al.,
2015). Conversely, the utilization of mesoporous and high surface
area bentonite for the immobilization of laccase and other different
biocatalysts remains to be explored (Xu et al., 2012a,b; Andjelkovi
et al., 2015; Zhou et al., 2018a,b).

Antibiotic pollution has become of increasing environmental
concern (Manaia et al., 2016). Antibiotics are widely utilized to treat
diseases caused by various bacterial or pathogenic microbes,
however, their Misuse and over accumulation threaten the envi-
ronment (Liu et al., 2016; Polesel et al., 2016). Tetracycline (TC) is
one of the most widely used antibiotics (Nasseh et al., 2018;
Gothwal and Shashidhar, 2015). The poor degradation of TC from
traditional municipal wastewater treatment plants has led to a
latent negative impact on aquatic organisms, thus necessitating the
exploration of treatment technologies (Halling-Sgrensen, 2002;
Huang et al., 2017a,b; Tan et al., 2015). Among the numerous
treatment methods, the biodegradation of TC by laccase or immo-
bilized laccase is effective (Islas-Espinoza et al., 2018; Xu et al,,
2012a,b).

Although modified bentonite materials have been frequently
applied to immobilize enzymes, the use of mesoporous and high
surface area bentonite for laccase immobilization has not been
explored (Andjelkovi et al., 2015; Ghiaci et al., 2009; Liu et al.,
2012). Bentonite can be modified to be mesoporous and to

possess a high surface area (Toor et al., 2015; Onal and Sarikaya,
2007). NaOH-HCI etching modification is an alkali/acid activation

composite modification process (Onal and Sarikaya, 2007). This
method has been utilized for the etching of clay materials such as
Halloysite, Kaolinite, from wich mesoporous materials have suc-
cessfully obtained (Li et al., 2015; Zhou et al., 2014). However, the
use of alkali/acid activation composite modification for bentonite
has not been explored. Thus, in this study, bentonite-derived
mesoporous materials (BDMMs) were constructed by NaOH-HCI
etching. The BDMMs were utilized for laccase immobilization to
obtain bentonite-derived mesoporous materials-Laccase (BDMMs-
Lac), and the characteristics of BDMMs and the treatment capacity
of BDMMs-Lac were explored. BDMMs-Lac was applied for TC
antibiotic removal in the presence of the redox mediator 1-
hydroxybenzotriazole (HBT). This study is aimed at establishing
new eco-friendly, low-cost, and re-usable carriers for immobilizing
laccase and for exploring the treatment capacity and removal
ability of immobilized laccase for emerging antibiotic pollutants.

2. Material and methods
2.1. Materials

Laccase (>0.5 U mg~!) from Trametes versicolor, HBT, TC, and 2,
2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Bentonite was
provided by Sinopharm Chemical Reagent Co. Ltd. (Shanghai,
China). All of the other chemicals were of analytical grade.

2.2. Etching of the bentonite

Pristine bentonite was added to NaOH (6 M) and stirred. The
bentonite was then washed five times with ultrapure water, dried
at 383K for 12 h, and then added to HCI (5 M) at 353 K with con-
stant stirring for 6 h. The above material was then washed and
dried to obtain BDMMs.

2.3. Laccase activity assays

Laccase activity was tested using ABTS as a substrate (Zhang
et al.,, 2014). Briefly, the assay compound consisted of 0.1 M cit-
rate buffer (pH=>5), 1 mM ABTS and free laccase or BDMMS-Lac
samples. The activity of BDMMS-Lac and free laccase was detected
at an absorbance of 420 nm (UV-2250, Shimadzu Corp., Japan). One
unit of laccase activity was defined as the amount of BDMMS-Lac or
free laccase required to oxidize 1 uM of substrate per minute.

2.4. Laccase immobilization

The BDMMs was suspended in citrate phosphate buffer (0.1 M,
pH = 3—8) containing laccase (0.5—4 mg/mL). The mixtures were
then incubated. Later, the sample was centrifuged and the bottom
solid was collected and washed several times with citrate buffer
(01 M, pH=5). The final solid BDMMs-Lac was obtained after
freeze drying at 173 K for 12 h. Fig. 1 depicts the typical process for
the stepwise etching of pristine bentonite, and the adsorption
loading of laccase.

2.5. Stability assessment
2.5.1. Thermal stability

For temperature stability, free laccase and immobilized laccase
were added to centrifuge tubes containing citrate buffer (pH = 5)

_ 6MNaOH

| 373K. 6 hours
g | sMmHCl
353K. 6 hours
Bentonite BOMME
"§ “ Laccase
$5 5 5 & :
N ¥ Fa & ,i] lon exchange adsorption ==
: i Hydrogen bond adsorption
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BDMMs-Lac,
Physisorption

immaobilization

Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption
immobilization on BDMMs.
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and were maintained at 303 K—353 K for 120 min. They reacted
with the ABTS and were centrifuged and then measured at 420 nm
(UV-2250, SHimadzu Corp.).

2.5.2. Reusability of immobilized laccase

The BDMMs-Lac was dispersed in citrate-phosphate buffer (pH
5) containing 1 mM ABTS and then incubated at 303 K. The sample
was centrifuged (6570xg) and the concentration of the trans-
formed ABTS was measured. The BDMMs-Lac was washed with
citrate-phosphate buffer. The above procedure was repeated for 10
cycles.

2.6. Immobilized laccase system for the removal of TC

The effect of parameters such as BDMMs-Lac dosage (0.5—4 mg/
mL) and reaction time (10—180 min) were studied. The reaction
mixture containing BDMMs-Lac and 10 mg/L of TC solution was
placed at 303K for 120 min. TC was tested at the absorbance of
360 nm (UV-2250, Shimadzu Corp.). All of the experiments were
examined in triplicate. To determine the possible removal of TC due
to adsorption onto the BDMMs, heated-devitalized BDMMs-Lac
was used to remove the TC.

3. Results and discussion
3.1. Structural characterization

The morphologies of the bentonite, BDMMs, and BDMMs-Lac
samples are presented on Scanning Electron Microscopy (SEM)
images (Fig. 2). Fig. 2 (a) illustrates the unbroken structure of the
crude bentonite, which consisted of homogeneous particles. Fig. 2
(b) indicates the etching appearance of BDMMs whereby the in-
tegrated particles were visually damaged and the interlamellar
spacing was enlarged. Relevant Energy dispersive spectroscopic
(EDS) analysis confirmed that no obvious elemental change
occurred after etching (Fig. 2 (b)). Fig. 2 (¢) and Fig. 2 (d) showed no
alteration in the structure of BDMMs-Lac before or after degrada-
tion in comparison with BDMM:s.

The N, adsorption-desorption curves of the samples are pre-
sented in Fig. 3A. The values of BDMMs were highly elevated in
contrast to that of original bentonite. The plot style also changed
from III style (H3 hysteresis loop) to V style (H4 hysteresis loop)
(Zhang et al., 2016; Yu and Zhang, 2010). The hysteresis loop
showed that both bentonite and BDMMs consisted of slit holes,
which were formed by the accumulation of flaky particles or
layered structures (Yang et al., 2010; Chen et al., 2017). The BET
results indicated that the pristine bentonite had a surface area
equal to 3.30 m?/g, a pore size equal to 2.73 nm and a pore volume
equal to 22.46 mm>/g. Meanwhile, the surface area of BDMMs was
244.62 m?/g, the pore size was 5.53 nm, and the pore volume was
338.8 mm°>/g. The specific surface areas were higher than that
detected in previous researches (Bajpai and Sachdeva, 2002; Ghiaci
et al.,, 2009).

Fig. 3B shows the FTIR spectra of bentonite, BDMMs, BDMMs-
Lac, and BDMMs-Lac after degradation. The broad adsorption band
around 3438 cm ™! among all of the samples could be attributed to
the stretching vibration of O-H caused by water molecules that are
present in the hydrogen bonded interlayer (Jiang et al., 2018; Ztrk
et al., 2008). The adsorption band at 1637 cm™! in all of the sam-
ples indicates the stretching vibration of crystal water molecules in
the lattice (Ztrk et al., 2008). The band at 1429 cm™! was presumed
to represent the symmetric stretching vibration absorption peak of
—COOH (Wen et al.,, 2019; Chen et al., 2017; Tang et al., 2014). The
absorption bands around 1027 and 696 cm™! of spectrum a, b, c and
d were caused by the bending vibration of Si-O-Si and Si-O,
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Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, ¢) BDMMs-Lac, and d)
BDMMs-Lac after TC degradation.

respectively (Huang et al., 2016a,b; Ztrk et al., 2008). However,
the band at 3627 cm™~' was interpreted as the stretching vibration
of O-H due to the existence of interlayered adsorption water mol-
ecules that disappeared after etching (Huang et al., 2015). The same
phenomenon was also observed in the peaks of 2352, 829, and
462 cm™!. The presence of narrow bands at 2352cm~! might
correspond to the impurities mixed in the bentonite. The other
bands in the range of 500—800 cm~! were the lattice vibration of
M — 0, M-0-M, and O-M-0 (Andjelkovi et al., 2015). Their changes
among the different curves may be attributed to the ion exchange
and regent reaction during the etching process (Li et al., 2015).
The X-ray diffraction (XRD) patterns of the bentonite and
BDMMs are displayed in Fig. 3C. The characteristic reflection of
bentonite at 5.8° belonged to montmorillonite (Chen et al., 2017). It
was disappeared after etching. The reductions in BDMMs may be
due to the activation of etching regents. The basal space reflections
presented a sharp peak at 20 =26.64° in the XRD spectrum of the
bentonite and BDMMs samples and indicated a (101) basal spacing
of 1.54 nm (JCPDS Card No. 46—1045) (Toor et al., 2015). The char-
acteristic XRD peaks for quartz (20=26.64°, 42.45°, 68.32°),
marked by their indices (101), (200), (301), were almost identical
between the bentonite and BDMMs. No obvious shifts in the
characteristic peaks of the bentonite and BDMMs were observed,
demonstrating that there was no expansion in interlamellar
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Fig. 3. A) BET nitrogen adsorption/desorption plots of the bentonite and BDMMs. B)
FT-IR spectra of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation. C)
XRD curves of the bentonite and BDMMs.

spacing. Thus, the same XRD patterns of the bentonite and BDMMs
confirmed that they possessed the same crystal structure and
interplanar spacing.

3.2. Optimum conditions of laccase immobilization

Immobilization using bentonite as a support material is influ-
enced by many factors (Liu et al., 2012). As shown in Fig. 4A, when
the initial laccase concentration increased from 0.5 to 4 mg/mL, the
loaded laccase on the bentonite also increased. However, the ac-
tivity of the immobilized laccase only increased until 2 mg/mL.
When the laccase concentration exceeded 2 mg/mL, a decrease in
the activity recovery of BDMMs-Lac was observed. Some similar
observations have been made in previous studies (Kadam et al.,
2017). This phenomenon could be attributed to the overloading of
laccase on supports, as the overloading of laccase on the surface of
the supports would result in the congestion or crowding of the
laccase molecules (Liu et al., 2012). Diffusion-controlled limitations
appeared when the laccase loading was high. The agglomeration or
crowding of laccase also resulted in the conformational change of
the laccase molecules, and a suitable laccase concentration was
found to be important for maintaining laccase activity. Thus the
optimum laccase concentration was set as 2 mg/mL for the subse-
quent analyses.

As depicted in Fig. 4B, the activity and the relative activity of
BDMMs-Lac changed with the increase in immobilization time
from 15 to 180 min. The relative activity of BDMMs-Lac increased
remarkably until 30 min, following which the relative activity
remained the same from 30 to 120 min. The activity of BDMMs-Lac
almost reached 800 U/g, following which the activity and relative
activity began to decline. The activity of the immobilized enzymes
depends on the nature of the enzyme protein (Liu et al., 2012). As
time progressed, the possible amounts of inactivated laccase
increased during immobilization, and the laccase flexibility
declined. With the increase in physical adsorption immobilization
time, the adsorption site on BDMMs was eliminated. The relevant
steric hindrance and diffusion limitations might have also resulted
in the decrease in laccase activity (Liu et al., 2012).

The effect of solution pH on the activity of free and BDMMs-Lac
was explored at different pH values ranging from 3.0 to 8.0 (Fig. 4C).
The free and immobilized laccase typically demonstrated maximal
activity at pH 4.0 and pH 5.0. The variation in optimum pH was also
previously surveyed in immobilized laccase on magnetic bimodal
mesoporous carbon (Liu et al.,, 2012). It may be attributed to the
electrostatic interaction affected by the support microenvironment
around the laccase. Different pH values resulted in different mi-
croenvironments. The isoionic point influenced the net charge of
the laccase and carrier such that the laccase activity could be hin-
dered or invoked (Chen et al., 2015; Liu et al., 2012; Zhang et al,,
2015). BDMMs-Lac showed better adaptability when the pH value
was above 5. As the pH increased to 6, the free laccase and BDMMs-
Lac maintained 37% and 48% of their relative activity, respectively.
To a certain extent, this result indicated that immobilization could
retain laccase activity.

3.3. Properties of BDMMs-Lac

Operational stability is important for determining processing
costs (Liu et al., 2012). The results presented in Fig. 5A showed that
BDMMs-Lac lost 37% and 64% of its original activity after three and
five cycles, respectively. The physical adsorption immobilization
exhibited weak binding forces between enzyme and carrier. Thus,
the activity loss may have resulted from the laccase leaching during
the washing stages (Skoronski et al., 2017).

The thermostability of free laccase and BDMMs-Lac was
explored over a temperature range of 303 K—353 K. As indicted in
Fig. 5B, BDMMs-Lac was more stable than the free laccase, and both
free laccase and BDMMs-Lac presented their highest stability at
313 K. Furthermore, between 323 K and 353 K, the immobilized
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laccase maintained 96% of its initial activity, while free laccase
could only retain 0.54% of its initial activity when the temperature
exceeded 343 K. The results were attributed to the high thermo-
stability of BDMMs-Lac towards denaturation. Immobilization
increased laccase rigidity and decreased laccase conformational
flexibility (Andjelkovi et al., 2015). The highly improved thermal
stability of BDMMs-Lac benefits its application in high-temperature
industrial processes (Menezes-Blackburn et al., 2011).

3.4. Removal of TC

The effect of reaction time on removal of TC is displayed in
Fig. 6A. The removal of TC could be attributed to the combined
effects of degradation by BDMMs-Lac and the adsorption by the
BDMMs support. As shown in Fig. 6A, approximately 60% of the TC
was removed in 120 min by BDMMs-Lac. The more important
contribution of the laccase catalytic process could thus be
confirmed, as the adsorption only contributed approximately 20%
of the removal. However, the result also revealed the benefit of
employing BDMMs as immobilization support in the removal
process. The accumulation of the catabolite might inhibit the
removal process, which was reported in a previous study (Yang
et al., 2017).

The relationship between immobilized laccase dosage and TC
removal is presented in Fig. 6B. The removal efficiency of TC
gradually increased with increased in immobilized laccase dosage
from 0.4 to 4 mg/mL. When the dosage was 4 mg/mL, the removal
efficiency reached 52%. When the dosage was 2mg/mL, the
removal amount reached 1.85 mg/g. The removal efficiency began
to decrease when the BDMMs-Lac dosage was higher than 4 mg/
mL, and this phenomenon was attributed to excessive dosage,
leading to contact site reduction between TC and mediator HBT, as
well as contributing to the consumption of laccase activity (Sun
et al., 2017).
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4. Conclusions

The surface area, average pore size, and pore volume of BDMMs
obtained from this study were all increased (3.3 — 244.62 m?/g,
2.73 — 5.53nm, 22.46 — 338.8 mm?>/g). The stability of BDMMs-
Lac was improved compared to free laccase, particularly thermal
stability. The biodegradation rate of BDMMs-Lac for TC reached
nearly 60%. This study showed that BDMMs could be conveniently
and efficiently obtained and has potential applicability in further
practical biomacromolecule immobilization. Furthermore, as the
obtained BDMM-Lac is an economical and eco-friendly biocatalyst,
it has wide applicability for the elimination of micropollutants from
wastewater.
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