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HIGHLIGHTS

e We examined how different groundwater heavy metals responded to human activity modes.
o We assessed the influences of climate change on groundwater heavy metal.
o Impacts of human and climate on heavy metal “spread” in groundwater are biased.
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Groundwater quality deterioration has attracted world-wide concerns due to its importance for human
water supply. Although more and more studies have shown that human activities and climate are
changing the groundwater status, an investigation on how different groundwater heavy metals respond
to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity)
in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in
groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human
activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual
mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP)
only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of
human activity modes and climate on heavy metal “spread” in groundwater are biased.
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the source of drinking water for over 50% of the world's population.
Thus, the increase of heavy metal contents in groundwater would

1. Introduction

Groundwater quality has been a focus of research because
hazardous substances such as heavy metals presented in ground-
water can enter the food chain and ultimately harm aquatic or-
ganisms and human beings (Jarup, 2003; Nouri et al., 2008; Zeng
et al., 2013). For hydrosphere, about 13—30% of the total volume
of freshwater is groundwater (Dragoni and Sukhija, 2008), which is

Abbreviations: AMT, annual mean temperature; AP, annual precipitation; AIC,
akaike information criterion; Cd, cadmium; Cu, copper; Mn, manganese; Pb, lead;
Zn, zinc; Fe, iron.
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pose potential threats to human health and survival (Hofmann
et al,, 2015; Zhang et al., 2015). Also, groundwater is being influ-
enced by climate change (Klgve et al., 2014). There are few studies
focused on the variations of heavy metal levels in groundwater
under climate change, although it was previously suggested that
groundwater quality was related to climate change (Alley, 2001).
Dragoni and Sukhija (2008) pointed out that we should not over-
look the effect of climate change on groundwater quality.
Groundwater management and protection requires sufficient in-
formation on the response of groundwater to human activities and
climate change.

It has been a major challenge in groundwater studies in
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revealing variation of groundwater quality in response to human
activities and climate change due to human-activity diversity and
environmental complexity. Fortunately, an effective approach,
named mixed-effect model, has been proposed to account for data
dependence, data stratification and relatedness (Korte et al., 2012;
Whitehorn et al., 2012; Zhou and Stephens, 2012). It has gained its
popularity through a wide range of applications, such as genome-
wide association (Korte et al., 2012), biodiversity (Patino et al.,
2013), pharmacogenomics and cancer (Im et al., 2012), health (De
Onis et al., 2012), and ecology (Whitehorn et al., 2012). The
mixed-effect model not only considers the fixed effect, but also
includes random effect. In this study, human activity modes,
climate variables and soil properties were identified as fixed effects,
while sampled sites were deemed as random effects.

2. Materials and methods

We searched the Google Scholar and the Web of Science by
keywords of “groundwater heavy metal”, “groundwater quality”
and “ground water heavy metal” in March 2015, and found over
1000 matched records. We assembled six large datasets comprising
45 publications selected from over 1000 documents. The datasets
include Fe, Pb, Cu, Cd and Mn. We retained only groundwater heavy
metal data for which dominant human activities were known along
the groundwater. The groundwater with geographical location in-
formation (namely longitude and latitude) being unclear was not
considered. Groundwater with known geographical information
and heavy metal levels was also excluded if their climate data could
not be extracted from WorldClim (http://www.worldclim.org).
Regarding groundwater heavy metals, we recorded the concen-
trations of six main heavy metals (Fe, Zn, Cd, Cu, Pb and Mn). In
cases where dominant human activity was unknown, it was
excluded from the initial assembled data set, so that many data
became unavailable. Finally, a total of 349 data points from 26 sites
for Fe, 551 data points from 37 sites for Zn, 331 data points from 29
sites for Cd, 515 data points from 37 sites for Cu, 355 data points
from 35 sites for Pb, and 356 data points from 28 sites for Mn were
adopted. All units for heavy metal concentrations (levels) were
converted to pg L~

We used long-term climate data (1950—2000) to represent the
climate conditions of a site, namely mean annual temperature
(AMT) and annual precipitation (AP). AMT and AP were extracted
from WorldClim (http://www.worldclim.org/). Data on subsoil pH
and subsoil bulk density were extracted from Regridded Harmo-
nized World Soil Database v1.2 (FAO-2012; Wieder et al., 2014).In a
few of cases, subsoil pH and subsoil bulk density of some sites were
unknown. We used data from soils adjacent to these sites.

2.1. Kruskall-Wallis tests

The difference between heavy metal concentrations (levels) in
groundwater affected by mining, waste disposal, sewage effluent,
agriculture and complex activity was identified through Kruskall-

M. Chen et al. /| Chemosphere 152 (2016) 439—445

Wallis tests.

2.2. Mixed-effect models

Mixed-effect model refers to the model consisting of the
mixture of random effects and fixed effects (Baayen et al., 2008;
Winter 2013; Bates et al., 2014). It is useful for the data that is
unbalanced and repeatedly measured. Random effect is the prob-
abilistic part of a mixed-effect model related to individual experi-
mental units obtained randomly from a population, while fixed
effect is the fixed part of a mixed-effect model.

To reveal how human activity modes and climate influence
groundwater heavy metal concentrations (levels), we have adopted
a mixed-effect model to address both the fixed and mixed effects
(Bates, 2010; Korte et al., 2012; Bates et al., 2014):
y=XB+Zb+e (1)
where y is a n x 1 vector of response variables, B referstoap x 1
vector of fixed-effect parameters, X and Z represent two model
matrices, b is the random-effect vector and e is a n x 1 vector of
error terms that is not explained by the model.

In this study, human activity modes, climate variables and soil
properties were identified as fixed effects, while sampled sites were
identified as random effects. It should be noted that the predictors
(including AMT, AP, subsoil pH and subsoil bulk density) were kept
as control variables, and human activity modes were kept as test
variable when examining the impact of human activity modes on
groundwater heavy metals in mixed-effect models. Analogously,
human activity modes and non-test variables were considered as
control variables if the test variable was a climate variable.

Akaike information criterion (AIC) is calculated according to the
following formula (Akaike, 1974):
AIC =2k — 2 In(L) (2)
where L is the likelihood function and k is the number of estimated
parameters. A model with a smaller AIC value means a better fit.

Conditional R? that gives the variance explained by both fixed
effect and random effect was calculated following the previous
works (Nakagawa and Schielzeth, 2013; Johnson, 2014).

3. Results and discussion

3.1. Impact of human activity modes on heavy metal levels in
groundwater

Here, we showed that human activity modes significantly
influenced Cu (x*(4) = 16.48, p < 0.01) and Mn (x%(4) = 9.92,
p < 0.05) levels in groundwater (Table 1). AIC results also indirectly
supported this conclusion (Fig. 2), showing that the full models
with human activity modes as predictor had smaller AIC than the
reduced model without human activity modes (749.66 vs. 758.14
for Cu and 824.77 vs. 826.68 for Mn). A consistent finding for these

Table 1
Mixed-effect models for heavy metals in groundwater.
Model

Fixed effects Random Zn cd Fe Cu Pb Mn
Test variable Control variables Variable %2 Df p w2 Df p w2 Df p %2 Df p v> Df p v2 Df p
HAM? AMT, AP, pH, bulk density Site 416 4 >0.05 7.04 4 >005 806 4 >005 1648 4 <001 574 4 >005 992 4 <0.05
AMT HAM?, AP, pH, bulk density Site 343 1 >005 231 1 >005 253 1 >005 1957 1 <0.01 991 1 <001 073 1 >0.05
AP HAM?, AMT, pH, bulk density Site 156 1 >005 062 1 >005 633 1 <005 544 1 <005 113 1 >005 626 1 <0.05

Note: ? refers to human activity modes; AMT and AP denote annual mean temperature and annual precipitation, respectively; Df denotes degrees of freedom.
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Fig. 1. Groundwater site distribution in this study and human activity modes (A, agriculture; B, complex activity; C, waste disposal; D, sewage effluent; E, mining) occurring along
the groundwater. “*”, p < 0.05; “***”, <0.001.
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Fig. 2. Akaike information criterion (AIC) for the mixed-effect models of Zn, Cd, Fe, Cu, Pb and Mn that include human activity modes (mining, waste disposal, agriculture, sewage

effluent and complex activity) as fixed effects and site as random effect.

two heavy metals was that their mean concentrations were the
highest in agriculture-affected groundwater (mean concentrations:
45.63095 pg L~! for Cu and 97.3953 pg L' for Mn). The previous
studies have shown that the concentrations of groundwater heavy
metal could be elevated due to agricultural activities (Ramesh and
Elango, 2012; Agca et al., 2014; Wongsasuluk et al., 2014). Different
from Cu and Mn levels, Fe (x%(4) = 8.06, p > 0.05), Pb (x*(4) = 5.74,
p > 0.05), Cd (x%(4) = 7.04, p > 0.05) and Zn (x*(4) = 4.16, p > 0.05)
levels were not significantly disturbed by human activity modes.
AIC's comparison between models with human activity modes as a
predictor and those without human activity modes for these four
heavy metals demonstrated that models without human activity
modes generally fitted better than those with human activity
modes except for the models for Fe where AIC of model without
human activity modes was slightly higher than that of model with
human activity modes (752.42 vs. 752.36).

Distinctive effects of human activity modes on different heavy
metals in groundwater reflected bias of human activity modes to-
wards significant influences on Cu and Mn levels rather than Zn, Cd,
Pb and Fe ones. Such a bias might be derived from the fact that the
present human activity modes significantly interfered with the
transfer of Cu and Mn between groundwater and its surrounding
environment, but this interference was not significant for Zn, Fe, Pb
and Cd. There were significant differences in Zn (p < 0.05), Cd

(p < 0.001), Fe (p < 0.001), Cu (p < 0.001), Pb (p < 0.001) and Mn
(p < 0.001) concentrations between all analyzed human activity
modes based on Kruskall-Wallis tests (Fig. 1), respectively, sug-
gesting that mining, waste disposal, agriculture, sewage effluent
and complex activity had different effects on groundwater heavy
metal levels. Mining has a profound effect on local groundwater
quality, making the surrounding groundwater being more enriched
in heavy metals (El Khalil et al., 2008). Wastewater containing
heavy metal and harmful chemicals from many industries
discharge may seep into the groundwater (Rattan et al., 2005). With
excess heavy metals, the groundwater would directly threaten
human health through oral intake or dermal exposure.

Heavy metal contamination of groundwater is one of the most
urgent issues today (Schwarzenbach et al., 2006), mainly resulting
from anthropogenic activities (Rattan et al., 2005; Leung and Jiao,
2006; El Khalil et al., 2008; Bakis and Tuncan, 2011; Agca et al,,
2014; Wongsasuluk et al., 2014; Hofmann et al., 2015). Many
studies have investigated the variations of heavy metals in
groundwater in response to each of these human activities, but few
have accounted for the overall effect of these activities. Here, using
six standardized data sets from multiple countries and areas (Fig. 1
and Figs. S1-S6), we examined how different groundwater heavy
metals responded to human activity modes under climate change.
Our assembled datasets comprised 349 data points for Fe, 551 data
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points for Zn, 356 data points for Mn, 355 data points for Pb, 331
data points for Cd, 515 data points for Cu, respectively. Human
activities are highly complex. Human activity modes that signifi-
cantly affect groundwater quality mainly include agriculture,
sewage effluent, mining, waste disposal (including landfill and solid
waste disposal), and other industrial and urban activities. Although
sewage effluent, mining and waste disposal were associated with
the development of industry and urbanization, they were identified
as single activity due to their strong effects on groundwater quality
(El Khalil et al., 2008; Bakis and Tuncan, 2011). Groundwater is
often disturbed by several human activities simultaneously. Among
these activities, there is often a dominant activity that acts as a key
factor influencing groundwater quality. To determine their varying
effect on groundwater quality, we used the dominant activity to
represent human activities occurring along the surroundings of
groundwater. However, in some cases, dominant activity was
difficult to identify. For example, the ongoing urbanization was
often accompanied by the development of industry. In addition,
urbanization and industrialization themselves were composed of
many sub-activities. In this regard, we termed the dominant ac-
tivity as complex activity. That is, complex activity = urbanization
or industrialization or (urbanization + industrialization) or
(urbanization + industrialization + other). It should be noted that,
agricultural activity was not considered as complex activity in this
study because agricultural activity was relatively simple as
compared to urbanization and industrialization.

3.2. Impact of climate on heavy metal levels in groundwater

No significant influence was found for AMT on Zn (x%(1) = 3.43,
p>0.05),Cd (x¥(1) = 2.31, p > 0.05), Fe (x*(1) = 2.53, p > 0.05) and
Mn (x%(1) = 0.73, p > 0.05) levels in human-disturbed groundwater.
Cu (x¥(1) = 19.57, p < 0.01) and Pb (3%(1) = 9.91, p < 0.01), by
contrast, were significantly affected by AMT in groundwater
(Table 1). Hence, AMT showed a significant bias toward Cu and Pb
levels but against Zn, Cd, Fe and Mn levels. AIC analyses for Cu and
Pb showed that the models with AMT as predictor generated
smaller AIC values than those without AMT (Fig. 2), suggesting that
the models with AMT fitted better than those without AMT. AP's
effects on groundwater heavy metals were wider than AMT,
because more heavy metal types were influenced by AP in
groundwater, including Fe (x*(1) = 6.33, p < 0.05), Cu (x%(1) = 5.44,
p <0.05) and Mn (x%(1) = 6.26, p < 0.05). There were no significant
influences for AP on Zn (x*(1) = 1.56, p > 0.05), Cd (x*(1) = 0.62,
p > 0.05) and Pb (x%(1) = 1.13, p > 0.05). AP factor's effect on these
heavy metal levels was estimated using AIC. The analyses for Fe, Cu
and Mn showed that models with AP as a predictor produced
smaller AIC values than those without AP, while the analyses for Zn,
Cd and Pb indicated an opposite observation, suggesting that AP's
biased impacts on heavy metal levels were valid for groundwater.
Water quality deteriorations caused by climate change have more
profound effects on human and ecosystem than groundwater
recharge fluctuation, and thus should receive more attentions.

Climate is changing and will continue to change in the future
(Dragoni and Sukhija, 2008). Anthropogenic activities such as the
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release of CO, are accelerating global warming and affecting the
hydrological cycle (Maxwell and Kollet, 2008). Several studies were
made in groundwater at a regional scale, such as Ontario (Jyrkama
and Sykes, 2007) and Belgium (Brouyere et al., 2004) or at a global
scale (Doll, 2009). Clearly, these studies are restricted to the influ-
ence of climate change on groundwater recharge and levels (Santos
et al., 2014). It remains largely unclear how the climate change
influences the heavy metal levels in groundwater. In this study, we
assessed the influences of climate change on groundwater heavy
metal concentrations (levels) using the mixed-effect models. Our
results showed that bias was also presented for climate's effects on
groundwater heavy metal levels, which was consistent with human
activity modes. Klgve et al. (2014) had reviewed the influence of
climate on groundwater quality. Climate change could cause the
variations in groundwater recharge and levels, and further resulted
in groundwater quality changes. For example, increased ground-
water recharge might lead to increased risks of leaching of pollut-
ants to groundwater system (Taylor et al., 2013; Klgve et al., 2014).

It should be noted that soil properties (including subsoil pH and
subsoil bulk density) were always included in our model whatever
the test variables were, because groundwater was close to the soils
whose properties were potential factors affecting groundwater
quality. Other soil properties were omitted in our model due to
shortage of data. For example, data on soil heavy metal contents
that may affect groundwater heavy metal levels was unavailable.
Such a problem makes it difficult to include all factors related to
groundwater in our model. Data unavailability also restricted the
assembly of larger-scale datasets. Due to the inherent limitation,
our model might not be a perfect version, but was statistically
reliable. Our mixed-effect models including human activity modes,
AMT, AP, subsoil pH, subsoil bulk density and site explained 70.77%
of the variability in Zn concentrations (log-scale), 83.14% in Cd
concentrations (log-scale), 66.74% in Fe concentrations (log-scale),
65.96% in Cu concentrations (log-scale), 84.05% in Pb concentra-
tions (log-scale) and 41.60% in Mn concentrations (log-scale)
(Fig. 3) based on conditional R? (Nakagawa and Schielzeth, 2013;
Johnson, 2014). Our results revealed the real presence of bias for
the effects of human activity modes and climate on groundwater
heavy metal “spread”. Although human activity modes and climate
only significantly affect a part of heavy metals in groundwater, it
does not mean that we no longer need to keep a cautious eye on
those heavy metals that were not significantly influenced.
Furthermore, finding the linkage between groundwater quality and
human activities as well as climate change is vital to the sustainable
use of groundwater. Thus, the present work is also helpful in
groundwater health risk assessment, pollution prevention and re-
sources management.
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