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A B S T R A C T

Microalgae Coelastrella sp. could remove nutrients from anaerobically digested swine wastewater (ADSW) ef-
fectively, while its responses to the stress of Cu(II) were not well understood. In this paper, nutrients removal and
growth of Coelastrella sp. were investigated at the presence of Cu(II) in ADSW. Results showed ammonium
nitrogen concentration in ADSW decreased with culturing duration, while increased with an increased Cu(II)
concentration. Total phosphorous concentration decreased with time, while did not drop in 4 days at Cu(II)
concentration ≥1.0 mg/L. Microalgal growth was inhibited at all the Cu(II) concentrations, and ceased in about
6–8 days at Cu(II) concentration ≥1.0mg/L. With an increased Cu(II) concentration, the contents of chlorophyll
a and proteins decreased, those of malondialdehyde and superoxide dismutase, and ratios of octadecanoic acid
(C18:0), hexadecanoic acid (C16:0) and octadecenoic acid (C18:1) to fatty acids in Coelastrella sp. increased,
while octadecatrienoic acid (C18:3) gradually disappeared.

1. Introduction

Anaerobically digested swine wastewater (ADSW) is characterized
by high levels of ammonium nitrogen (NH3-N), chemical oxygen de-
mand (COD) and total phosphorus (TP) (Luo et al., 2016). If the nu-
trients in ADSW were not managed properly, it could lead to severe
environmental pollution including eutrophication of water bodies, soil
pollution and air pollution (de et al., 2010).

Processes for treatment of nutrient and resource recovery from
swine wastewater were investigated by a lot of researchers, including
those on either biomass recovery (Cheng and Stomp, 2009; Colombo
et al., 2017) or bioenergy recovery (Abubackar et al., 2012; Bajracharya
et al., 2016; Fernández-Naveira et al., 2016; Pandey et al., 2016), and
those on nutrient removal from and recycling of ADSW. These processes
could also be grouped into physical adsorption (Huang et al., 2014; Guo
et al., 2013), phytoremediation including wetland plants (Klomjek
et al., 2016) and lemna (Gaur et al., 2017; Zhou et al., 2017; Cheng and
Stomp, 2009), nutrient recycling (Peng et al., 2014), and microorgan-
isms culture systems including using photosynthetic bacteria (Wen

et al., 2016; Wang et al., 2000) and microalgae (Luo et al., 2016).
Colombo et al. (2017) cultured Spirulina in cathodic compartments of
photo-microbial fuel cells for wastewater treatment, and microalgae
were considered to be appropriate for energy recovery as biodiesel due
to high biomass productivity and ease to be cultured in liquid media
(Ge and Champagne, 2015).

Microalgae culture systems showed potentials for cost-effective re-
moval of nutrients from ADSW. Microalgae group could adapt to var-
ious water environment (Abou-Shanab et al., 2013), and many micro-
algae could store the triacylglycerol and starch which could produce
biodiesel and ethanol. Meanwhile, microalgae-based systems could save
energy for collecting organic matters and nutrients from swine waste-
water (González et al., 2008; Abou-Shanab et al., 2013). So, microalgae
culture systems were paid close attention for the treatment of agri-
cultural wastewater (Ji et al., 2013; Luo et al., 2016).

Ji et al. (2013) cultivated three species (Chlorella, Scenedesmus and
Ourococcus multisporus) in wastewater, which reached specific growth
rate of 1.37, 1.14 and 1.00 day−1, respectively. The removal efficiency
of nitrogen and phosphorus exceeded 99% within 4 days in each
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medium, and Chlorella achieved a highest lipid productivity of around
0.164 g-lipid g-cell−1day−1, and 44% oleic acid was produced in the
culture microalgae. Xu et al. (2015) cultivated Scenedesmus obliquus in
piggery anaerobic digestate liquid, and the average removal efficiency
of COD, TP and total nitrogen were 61.58%–75.29%, 70.09%–88.79%
and 58.39%–74.63%, respectively, within 7 days. Chlorella vulgaris JSC-
6 was cultured in swine wastewater, the removal efficiency of COD and
NH3-N reached to 60%–76% and 40%–91%, respectively, in 12 days,
and the highest biomass of microalgae was 3.96 g/L, of which 58% was
carbohydrate content (Wang et al., 2015). Luo et al. (2016) isolated
microalgae strain Coelastrella sp. QY01 which removed 90% of NH3-N
and TP in anaerobically and aerobically treated swine wastewater,
meanwhile as much as 22% lipids were reported in the cultured mi-
croalgae.

Cupric salts were one of most frequently used additive in many
animal feeds (Xiong et al., 2010; Wu et al., 2017). Absorption of Cu(II)
by farm animals was low, and most Cu(II) in feeds was excreted (Li
et al., 2007). Usually, only about 10%–20% of Cu(II) added in feeds was
absorbed by pigs (Li et al., 2007), so a high Cu(II) concentration in
swine wastewater could be resulted in. As a vital biological trace ele-
ment, copper (as Cu(II)) at high concentrations could be toxic to most
microorganisms (Nakajima et al., 1979). Cu(II) in swine wastewater
could inhibit microalgal growth and consequently reduce the removal
efficiency of NH3-N and TP in ADSW. Therefore, Cu(II) discharge from
livestock farming including in swine wastewater has been paid close
attention (Xiong et al., 2010).

The responses of microalgae Coelastrella to stress of cupric ions
could be expressed by nutrient removal and biomass growth at various
conditions as well as some important biochemical indicators. Contents
of proteins, chlorophyll a (chl a), malondialdehyde (MDA), superoxide
dismutase (SOD) and fatty acid methyl esters (FAME) were considered
to be such indicators (Kagalou et al., 2002; Sabatini et al., 2009;
Somerville et al., 1995). Content of chl a was applied to estimate total
biomass and photosynthetic rate frequently, and also was used to assess
short-term inorganic chemical toxicity to microalgae (Perez et al.,
2006). SOD could remove reactive oxygen species (ROS) which was
produced during visible and ultraviolet illumination in microalgae
(Janknegt et al., 2007). Due to its special physiological activity, SOD is
responsible for biological removal of free radicals in microalgae cells.
When microalgae grew under Cu(II) stress, ROS played a primary role
in Cu(II) toxicity to microalgae (Stefanie et al., 2008). ROS damaged
cells not only through the biological membrane of polyunsaturated fatty
acid peroxide, but also through the production of the decomposition of
hydrogen peroxide, and ROS could attack polyunsaturated fatty acids of
biofilms and generate lip peroxide, thereby produced MDA
(Bandyopadhyay et al., 1999). Therefore, the content of MDA in Coe-
lastrella sp. could reflect the degree of lipid peroxidation in the cell and
indirectly reflect the degree of cell damage, and composition of FAME
in microalgae were used to indicate the biodiesel quality. Un-
fortunately, little information on the performances of microalgae for
nutrient removal and biomass growth as well as mechanisms and the
mechanisms as indicated by the biochemical indicators at the presence
of cupric ions in treatment of ADSW are available.

This work is expected to help fill this gap in which the effects of
various Cu(II) concentrations on the growth of Coelastrella sp. and the
removal efficiency of NH3-N and TP will be examined. The contents of
MDA and SOD, proteins, chl a, and FAME in Coelastrella sp. at various
Cu(II) concentrations will also be studied to better understand the
mechanisms.

2. Materials and methods

2.1. Anaerobically digested swine wastewater

Anaerobically digested swine wastewater (ADSW) was obtained
from a local pig farm in Hunan, China (28°09′23″N, 112°53′34″E).

ADSW was centrifugalized for 5min at 10,000 rpm, and then the su-
pernatant of ADSW was stored at 4 °C. The concentrations of NH3-N, TP
and Cu(II) in the ADSW were 1317 ± 10, 20.2 ± 0.5 and
7.3 ± 0.5mg/L, respectively.

Autoclaved supernatant of ADSW was diluted with H2O (distilled
water) to 10%, and batch experiments were performed in 1 L conical
flasks containing 800mL of autoclaved supernatant of 10% ADSW.

2.2. Microalgae strains

Microalgae Coelastrella sp. were collected from a pond near a pig
farm (26°36′95″ N, 112°05′08″ E) in Hunan, China on September 2014,
and were isolated and cultured according to the methods described by
Luo et al. (2016). Microalgae cells were grown in sterile distilled water
with BG-11 medium (Luo et al., 2016). Coelastrella sp. strains were
inoculated in 1 L conical flasks containing 800mL of sterilized basal
medium which were kept in an illuminating incubator at 25 ± 1 °C and
a light intensity of 80 ± 10 μmol m−2 s−1 of fluorescent lights, and the
daily light/dark cycle (L: D) was 14:10 h. The flasks were agitated three
times each day, and all the operations were carried out under sterile
condition. 0.05mol/L Tris(hydroxymethyl)aminomethane (Tris-HCl)
was used to wash microalgae cells and the pH of Tris-HCl was adjusted
by phosphate buffer saline (PBS) at 7.4.

2.3. Culturing methods

Coelastrella sp. used in this study was inoculated to the 10% ADSW
medium, maintaining a biomass concentration at around OD680 0.10.
Then CuSO4 was added to the diluted ADSW at various concentrations
of Cu(II) including 0.0, 0.10, 0.50, 1.0, 2.0 and 3.0 mg/L, the light and
temperature condition were same as above and microalgae were cul-
tured for 16 days. Microalgae could adsorb Cu(II) in aqueous solutions
(Zeraatkar et al., 2016), so Cu(II) concentration was measured every 6 h
during culture experiments to maintaining a stable cupric concentra-
tion.

2.4. Analytical methods

2.4.1. Nutrients and cupric
The Standard Methods for Water and Wastewater Monitoring and

Analysis (SEPAC, 2002) was applied to measure the concentration of
NH3-N (GB 7479-87) and TP (GB 11893-89). And cupric concentration
in aqueous solutions was measured using atomic absorption spectro-
scopy (AAS, PEAA700, America).

2.4.2. Microalgae biomass
On consideration of a linear relationship between dry cell weight

and OD680 (APHA, 1998), Coelastrella sp. dry weight was measured and
calculated by using Eq. (1):

= × =
−DW(g L ) 0.3357 OD , R 0.99621

680
2 (1)

The specific growth rate μ in the exponential phase of algal growth
was calculated by Eq. (2) (Luo et al., 2016):

= − ÷ −N N t tμ (ln ln ) ( )1 0 1 0 (2)

Where N1 and N0 are the dry cell weight at time t1 and t0, respectively.
Biomass productivity (P) was calculated using Eq. (3) (Issarapayup

et al., 2009):

= − ÷ −
− − W W t tP(mg L day ) ( ) ( )1 1

1 0 1 0 (3)

Where W1 and W0 are dry biomass (mg/L) at time t1 and t0, respec-
tively.

2.4.3. Chlorophyll a concentration
Chlorophyll a concentration was measured by spectrophotometer

(Wang et al., 2010), and calculated using the method described by Li
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et al. (2016). Microalgae samples of 25mL were centrifuged for 25min
at 4000 rpm, liquid supernatant were poured out, and then distilled
water was added before centrifuged again at the same speed for 10min.
The microalgae residues were then extracted in dark with 5mL of 95%
ethanol at 4 °C for 24 h. After the extraction, samples were centrifuged
for 5min at 2500 rpm, and the absorbance of the liquid supernatants
were measured at 665 and 649 nm, respectively. Blank solution was
prepared by 95% ethanol. Chlorophyll a concentration was calculated
using Eq. (4):

− = × − × ÷aChl (mg/L) (OD665 13.95 OD649 6.88) 5 (4)

2.4.4. FAME
Fatty acid composition was analyzed according to the methods de-

scribed by Abou-shanab et al. (2013) and Luo et al. (2016). The pro-
cedures included preparation of fatty acid methyl esters (FAME) and
Gas Chromatography and Mass Spectrometry (GC–MS) analysis. Dried
samples of 0.10 g were poured into screw-top glass tubes and mixed
with 10mL of solution composed of chloroform, methanol and con-
centrated sulfuric acid whose volume ratio was 5:4.25:0.75. Tubes
sealed tightly with caps to avoid leakage were put into 90 °C water for 1
h before cooled to room temperature. Then 2.5 mL of distilled water
was added into the tubes and shook for 30 s. After liquid stratification,
the lower phase was transferred to a 5mL glass bottle and dried with
anhydrous Na2SO4. After taken out solids of Na2SO4, the liquid phase of
samples in the bottles were analyzed by GC–MS (QP2010, Shimadzu).
The composition of the samples was identified using the NIST Mass
Spectral Database and quantified by the area normalization method.

2.4.5. Protein content, MDA and SOD
Microalgae cells in 500mL of cultured suspension were harvested

by centrifuging at 4000 rpm for 10min and washing with 5mL of Tris-
HCl. The harvested cells were put on ice, and broken using ultra-
sonication (XO-1000D, China) at 200W for 8min (3 s on and 8 s off).
The broken cells were centrifuged at 4000 rpm and 4 °C for 10min, and
the supernatants were stored at 4 °C before biochemical analysis.
Content of proteins, malondialdehyde (MDA) and superoxide dismutase
(SOD) were measured by using assay kits purchased from Nanjing
Jiancheng Bioengineering Institute, China.

3. Results and discussion

3.1. Nutrient removal

Luo et al. (2016) have cultured Coelastrella sp. for nutrient remove
in ADSW, that study concerned with nutrient removal by microalgae in
different concentrations of ADSW, while the influence of Cu(II) on
nutrient remove was not taken into account. In this study, microalgae
were cultured in ADSW media to examine the effect of different initial
concentrations of copper on nutrient removal. The dynamic variations
of NH3-N and TP concentration at different initial Cu(II) concentrations
for 16 days are described in Fig. 1.

Before the ammonia was totally used up in ADSW, the nitrate would
not be consumed (Luo et al., 2016). In this study, nitrogen removal
analysis was by measuring the amount of ammonium. It can be seen
from Fig. 1(a) that NH3-N concentration decreased with culturing time
for all the concentrations of Cu(II), and NH3-N removal efficiency de-
creased with an increased concentration of Cu(II) except for 2.0mg/L of
Cu(II). In the control test without Cu(II) addition, about 80.0% of NH3-
N was removed on day 16. When the concentration of Cu(II) was in-
creased to 0.10, 0.50, 1.0, 2.0 and 3.0mg/L, the removal efficiency
decreased to 61.6%, 58.8%, 45.1%, 50.7% and 38.6%, respectively.

Fig. 1(b) showed that TP concentrations decreased for all the con-
centrations of Cu(II) on day 4, and subsequently slight increases of TP
concentration were observed when Cu(II) concentration was higher
than 1.0 mg/L. On day 16, the removal of TP were 79.0%, 70.5%,

84.9%, 18.2%, 28.2% and 12.6% at different concentrations of Cu(II) of
0.0, 0.10, 0.50, 1.0, 2.0 and 3.0mg/L Cu(II), respectively. TP removal
efficiency was maximized at 84.9% under 0.50mg/L of Cu(II). But the
maximized removal efficiency of NH3-N and TP in the control group
were lower than that previously reported (Luo et al., 2016), the main
reason was that the microelements in ADSW were different.

Abou-Shanab et al. (2013) examined six microalgae species in-
cluding Ourococcus multisporus, Chlamydomonas, Scenedesmus, Nitzschia,
Chlorella and Micractinium in the coupling of nutrient removal and
biodiesel production, and the highest removal efficiencies of nitrogen
(initial concentration: 53mg/L) and phosphorus (initial concentration:
7.1 mg/L) were 62% and 28% by Chlamydomonas. Xu et al. (2015)
cultivated Scenedesmus obliquus for nutrient removal in piggery
anaerobic digestate liquid, the removal efficiencies of TN and TP were
58.39–74.63% and 70.09–88.79%, respectively. However, all of the
studies were concerned about nutrient removal by microalgae which
grew in swine wastewater without cupric ions. Coelastrella sp. could
adapt cupric ions and high concentration of nitrogen and it was good at
NH3-N and TP removal.

3.2. Microalgal growth

Biomass production of Coelastrella sp. cultured in ADSW media at
the various concentrations of Cu(II) was presented in Fig. 2. Within the
first 4 days, biomass increased for all the Cu(II) concentrations, which
indicates that inhibition from cupric ions was not obvious for micro-
algal growth during this period. Then, algae biomass gradually stopped
increasing and eventually decreased when Cu(II) concentration was no

Fig. 1. Dynamic changes of contents of NH3-N and TP at various concentrations of Cu(II)
during culturing of Coelastrella sp.□: control;■: 0.10 mg/L;△: 0.50mg/L;▲: 1.0 mg/L;
▽: 2.0 mg/L; ▾: 3.0 mg/L.
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less than 1.0 mg/L. This result was similar as those by Bilgrami et al.
(1997) in which copper highly inhibited the phytoplankton species at a
copper concentration higher than 0.1mg/L.

From Fig. 2, it can also be seen that microalgae mass decreased with
an increased concentration of Cu(II) on day 16. And the specific growth
rate and biomass productivity for the microalgae decreased corre-
spondingly. These results suggest that Cu(II) decreased Coelastrella sp.
production, which led to decreased removal efficiency for NH3-N and
TP.

Figs. 1 and 2 showed that there was a high correlation between the
microalgal growth rate and removal efficiency of NH3-N and TP. A
higher growth rate of the microalgae led to higher removal efficiencies
of NH3-N and TP.

3.3. Physiological and biochemical properties

3.3.1. Chlorophyll a and protein contents
The effect of Cu(II) on the contents of chl a (Chlorophyll a) and

proteins in the microalgae on day 16 were evaluated (Fig. 3). Fig. 3(a)
shows that chl a concentration in Coelastrella sp decreased considerably
at 0.50mg/L of Cu(II), and dropped sharply at 1.0mg/L of Cu(II). It
was fond that concentration of chl a was decrease with an increased
concentration of Cu(II), and when Cu(II) concentration was higher than
certain level, chl a concentration decreased sharply. This is close to the
study that was reported by Kagalou et al. (2002), who reported the
effect of different concentrations of Cu(II) on chl a in microalgae, and
the concentration of chl a decreased rapidly in the first 2 days when
cultured in 1mg/L Cu(II).

Cupric ion’s damage to chl a was a complex process. Cu(II) affected
both light and dark reactions of photosynthesis (Krupa et al., 1995), and
disturbed the synthesis of the D1 protein which assembles chl a mole-
cules in microalgae cells (Patsikka et al., 1998). In addition, Cu(II)
substituted for magnesium ion (Mg2+) and consequently directly af-
fected chlorophyll photosynthesis, and inhibited enzymes and various
sites of photosystem II (PSII), enhanced photoinhibition and oxidative
stress, thus disturbed the uptake of essential microelements (Kupper
et al., 2002). Therefore when excessive Cu(II) existed in the ADSW, the
Cu(II) affected synthesis of chlorophyll a and disturbed the uptake of
nitrogen and phosphorus in Coelastrella sp. cells, thereby decreased the
TP and NH3-N removal ability.

From Fig. 3 (b) it can be seen that content of proteins in microalgae
Coelastrella sp. was highly sensitive to Cu(II) concentration. At Cu(II)
concentration of 0.0, 0.10, 0.50, 1.0, 2.0 and 3.0 mg/L, the ratios of
proteins in Coelastrella sp. cells to dry cell mass (protein: dry cell mass)
were 0.702, 0.297, 0.259, 0.297, 0.214 and 0.194, respectively. Copper

could accumulate in microalgae, and induce toxicity and oxidative
damage by producing reactive oxygen species (ROS) such as O2, H2O2

and OH (Iseri et al., 2011). ROS could react rapidly with proteins,
which led to irreversible peroxidation damage to proteins and oxidative
stress and consequent cell death via apoptosis or necrosis (Vera-Estrella
et al., 1994; Palanikumar et al., 2013).

3.3.2. Physiological stress
MDA and SOD contents were measured to evaluate the physiological

stress of Cu(II) concentration on the microalgae (Fig. 4). As showed in
Fig. 4, the MDA content of the microalgae cultured with 0.0 mg/L Cu(II)
was the lowest, correspondingly up to 0.705 ± 0.021 nmol/mgprot.
While Coelastrella sp. was cultured in 0.10mg/L, MDA concentration
increased dramatically to 2.0 ± 0.1 nmol/mgprot. MDA concentration
was 3.3 ± 0.1, 5.3 ± 0.1, 6.5 ± 0.4 and 5.7 ± 0.4 nmol/mgprot at
corresponding Cu(II) concentration of 0.50, 1.0, 2.0 and 3.0mg/L,
Sabatini et al. (2009) found the same results working with microalgae.
Lipid peroxidation could indirectly reflect the influence of ROS gener-
ated by oxidative stress, the increased of MDA content could result from
cell damage (Bandyopadhyay et al., 1999). These results suggest that
cupric ions induced peroxidation of Coelastrella sp. cells, so high con-
tents of MDA in Coelastrella sp. were produced at high Cu(II) con-
centrations.

Cu-Zn SOD which could remove oxygen free radicals and hydrogen
peroxide, and SOD level in organisms could be an indicator of aging and
death (Cao et al., 2009). From Fig. 4 it can be seen that the lowest SOD

Fig. 2. Dynamic changes of Coelastrella sp. concentration at various concentrations of Cu
(II) in ADSW. □: control; ■: 0.10 mg/L; △: 0.50 mg/L; ▲: 1.0 mg/L; ▽: 2.0 mg/L; ▾:
3.0 mg/L.

Fig. 3. Contents of chlorophyll a and proteins in Coelastrella sp. under various con-
centrations of Cu(II) on day 16.
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content of protein was 10.52 ± 0.54 U/mgprot for the control test, and
the highest SOD content was 29.2 ± 1.2 U/mgprot at 0.5 mg/L Cu(II).
The SOD content at 0.10, 1.0, 2.0 and 3.0 mg/L of Cu(II) was
24.9 ± 0.9, 20.3 ± 1.8, 23.4 ± 0.9, 25.8 ± 1.5 U/mgprot, respec-
tively. Therefore, SOD content increased with an increased Cu(II)
concentration ranging either from 0.0 to 0.5 mg/L or from 1.0 to
3.0 mg/L, while decreased when Cu(II) concentration was higher than
1.0 mg/L of Cu(II).

SOD content increased when Coelastrella sp. was exposed to the
ADSW with Cu(II), because the SOD must adapted the levels of MDA in
microalgae cells. As showed in Fig. 4 SOD content increased from
0.10mg/L Cu(II) was twice as the control, and MDA content was similar
with the result. However, with the increase of MDA content in high Cu
(II) concentration, these responses in cells were not enough to prevent
the damaged by ROS, the cells were damaged even dead, and then the
production of enzymes decreased. Therefore Cu(II) inhibited SOD pro-
duced at Cu(II) concentration no less than 0.50mg/L. These results
agreed with Sabatini et al. (2009).

3.3.3. FAME composition
FAME compositions in the microalgae which were applied to assess

the potential value of microalgae as biodiesel and the fatty acid com-
ponents of C16 and C18 were favorable for biodiesel production (Miao
et al., 2009). FAME was measured at the various concentrations of Cu

(II) after the microalgae were cultured in ADSW for 16 days (see Fig. 5).
Fig. 5 showed the main fatty acids in Coelastrella sp. were hexadecanoic
acid (C16:0), octadecatrienoic acid (C18:3) and octadecadienoic acid
(18:2) when the Cu(II) concentration in ADSW was no higher than
1.0 mg/L. When the Coelastrella sp. was cultured in 2.0 and 3.0mg/L of
Cu(II), the octadecatrienoic acid (C18:3) disappeared, and hex-
adecanoic acid (C16:0) increased to 43.3%–57.8%, and octadecenoic
acid (C18:1) increased to 34.4%–41.2%. With the increase of con-
centration of Cu(II) in ADSW media, octadecanoic acid (C18:0) in the
microalgae was also increase. Cu(II) could increased the saturation of
C18 and C16. This was close to the instauration of fatty acids that was
reported by Yang et al. (2015). When there insisted high compositions
of saturated fatty acids (SFA) in microalgae cells, the kinematic visc-
osity, pour point and melting point of biodiesel might increase (Luo
et al., 2016). The increased ratios of saturated fatty acids could decrease
the resistance to cold for microalgae cells. The high content of SFA
could decrease the stability of chloroplasts and mitochondria at the cold
condition, therefore affect the photosynthesis and growth of microalgae
(Somerville et al., 1995). All the results indicated that when the mi-
croalgae was used to participate treatment of swine wastewater or
heavy-metal-polluted wastewater for collect biodiesel, it was better to
control the Cu(II) concentration for preventing the saturation of fatty
acids.

4. Conclusions

Cu(II) could inhibit NH3-N and TP removal by Coelastrella sp. cul-
tured in ADSW, and reduce the microalgal growth. The inhibition of Cu
(II) to the microalgal photosynthesis was resulted from lipid perox-
idation, protein denaturation and fatty acid saturation. A higher Cu(II)
concentration led to a lower nutrient removal. When Cu(II) was higher
than 1.0mg/L, microalgae mass stopped increasing, meanwhile NH3-N
and TP removal dropped and stabilized, respectively. At 0.5 mg/L of Cu
(II), TP removal efficiency maximized 84.9%, NH3-N removal efficiency
was 58.8%, and the biomass productivity and the tolerance to Cu(II)
poison were optimal.
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