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a r t i c l e i n f o

Article history:
Received 2 April 2015
Received in revised form
26 June 2015
Accepted 30 June 2015
Available online 6 July 2015

Keywords:
Land use regression
Temporal resolution
Meteorological factors
NO2

PM10
* Corresponding author. College of Environment
Hunan University, Changsha 410082, PR China.
** Corresponding author. College of Environment
Hunan University, Changsha 410082, PR China.

E-mail addresses: lxdfox@163.com (X. Li), zgming

http://dx.doi.org/10.1016/j.atmosenv.2015.06.056
1352-2310/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Land use regression (LUR) models are widely used in epidemiological studies to assess exposure to air
pollution. However, most of the existing LUR studies focus on estimating annual or monthly average
concentration of air pollutants, with high spatial but low temporal resolution. In this paper, we combined
LUR models with meteorological conditions to estimate daily nitrogen dioxide (NO2) and particulate
matter (PM10) concentrations in the urban area of Changsha, China. Seventy-four sites for NO2 and thirty-
six sites for PM10 were selected to build LUR models. The LUR models explained 51% and 62% of spatial
variability for NO2 and PM10. The most important spatial explanatory variables included major roads,
residential land and public facilities land, indicating that the spatial distributions of NO2 and PM10 are
closely related to traffic conditions and human activities. Meteorological factors were introduced to
model the temporal variability of NO2 and PM10 by using meteorological factors regression (MFR) and
back propagation neural network (BPNN) modeling techniques. Important temporal explanatory vari-
ables included temperature, wind speed, cloud cover and percentage of haze. Pearson's r values between
predicted and measured concentrations were much higher in BPNN models than in MFR models. The
results demonstrate that the BPNN models showed a better performance than the MFR models in
modeling temporal variation of NO2 and PM10. The approach of modeling spatial and temporal variation
of air pollutants using LUR models coupled with meteorological conditions has potential usefulness for
exposure assessment, especially for medium or short term exposure, in health studies.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Many studies have reported that exposure to air pollutants such
as NO2 and PM10 may cause acute or chronic health problems (HEI,
2010; Gonzales et al., 2012; Sally Liu et al., 2012). Accurate mea-
sures of personal exposures are of great importance for
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epidemiological studies on the health effects of air pollution. In
recent years, many efforts to improve quantitative methods of
assessing personal exposure have contributed to new approaches
for exposure assessment in air pollution studies. These approaches
including geostatistical interpolation (Jerrett et al., 2005; Janssen
et al., 2008), dispersion models (Gauderman et al., 2005; Liu
et al.,, 2007; Cyrys et al., 2005), and land use regression (LUR)
models (Aguilera et al., 2008; Dons et al., 2013; Hoek et al., 2011).
Interpolation of monitored concentrations does not adequately
show true spatial variability because routine monitoring networks
are usually not dense enough to reflect localized variation in
pollutant concentrations. Dispersion models are extremely
dependent on accurate and spatially resolved input data, especially
for emissions. In recent studies, LURmodels have been proven to be
a valid and cost-effective approach for assessing exposure to air
pollutants in epidemiological studies (Gulliver et al., 2013; Lee
et al., 2014; Wu et al., 2011). Generally, LUR models utilize tar-
geted pollutants concentrations measured at a limited number of
sites (usually 20e100 sites)and land use characteristics derived
from a geographic information system (GIS) to predict pollutants
concentrations at unmeasured locations (Henderson et al., 2007;
Saraswat et al., 2013). LUR models were first applied to an air
pollution epidemiology study in Europe (Briggs et al., 1997). Since
then, due to the increasing ability of GIS to provide land use data,
this robust type of model is increasingly used in Asia and North
America (Kashima et al., 2009; Mukerjee et al., 2009).

Quantification of the spatial and temporal variation of air pol-
lutants could provide more accurate exposure assessment for
epidemiological and other air pollution studies (Blanchard et al.,
2014). In recent years, although the temporal resolution for LUR
models has improved, most LURmodel studies still focus on annual
or seasonal average concentrations, with high spatial but low
temporal resolution. Generally, annual or seasonal LUR models are
enough to assess long term individual exposure in chronic epide-
miological studies. However, for medium or short term exposure in
acute epidemiological studies, annual or seasonal LUR models are
insufficient to capture all of the variation. Recently, some studies
have made efforts to improve temporal resolution of LUR model.
The simplest method is to recalibrate existing LUR models with a
continuous background monitoring station (Gan et al., 2011;
Nethery et al., 2008). Another approach is to build several unique
models in different time periods (Dons et al., 2013; Chen et al.,
2012).

Urban areas possess complex spatial configurations, and these
configurations are produced by cumulative change in land use
(Wrenn and Sam, 2014). Usually, the land use predictor variables
show a large spatial difference in a fixed period of time; in contrast,
weather conditions vary from day to day, showing major change
over time. Therefore, the land use and meteorological variables
could be seen as spatial and temporal variables, respectively. The
aim of this study is to build integrated dailymodels tomodel spatial
and temporal variability of NO2 and PM10 in the period from April
2013 to April 2014 by using spatial and temporal variables. We
assume that the daily average concentrations can be divided into
two parts: a part dependent on land use variables and a part
influenced by dynamic meteorological factors. Due to the small
change in land use between 2010 and April 2014, which could be
observed from google earth satellite images, the first part can be
estimated by annual LUR models developed in 2010. The second
part is predicted using two approaches: meteorological factors
regression (MFR) modeling and back propagation neural network
(BPNN) modeling. The combined LUR þ MFR model and
LUR þ BPNN models were the first attempts at using annual LUR
models combined with meteorological conditions to estimate daily
variability of NO2 and PM10.
2. Materials and methods

2.1. NO2 and PM10 measurements

In order to better capture the spatial variation of pollutants
concentrations, seventy-four sites for NO2 and thirty-six sites for
PM10 were selected based on the location-allocation model
described by Kanarouglou et al. (2005). These sites were spread
over the study area and represented a range of mild to severe
pollution. The distribution of monitoring sites is shown in Fig. 1.
Measurements on each site were conducted in four 14-day sam-
pling periods in January, April, July and October 2010, covering each
season of the year. Not all measurements were done simulta-
neously in each season due to lack of a sufficient number of
monitoring instruments. To fully capture the effect of pollutants on
individuals, each sampler was deployed at a normal breathing
height. NO2 were determined by ethylene diamine dihydrochloride
spectrophotometric method and PM10 were determined by gravi-
metric method, these determinations were conducted in Environ-
mental protection monitoring center of Hunan University. For each
site, results from the four measurements were averaged to estimate
the annual mean concentrations. Measurements were excluded if
the samplers were destroyed or the results from samplers showed
obvious inaccuracies. For continuous routine monitoring, NO2 were
collected using chemiluminescence method (EC9841 and TE-42i,
Thermo Electron Corp, US). PM10 were measured by Tapered
Element Oscillating Microbalance (TEOM, RP1400 and 1405,
Thermo Electron Corp, US). QA/QC procedures were followed ac-
cording to Automated Methods for Ambient Air Quality Monitoring
issued by the Ministry of Environmental Protection of China. The
monitoring stations were deployed according to division of func-
tion area. There were nine valid routine air monitoring stations in
the Changsha urban area, of which five stations were located near
major roads and other stations were located in culture, residential
and commercial regions. The sampling heights range from 2 to
15 m. The daily average concentrations were collected to model the
temporal variability of NO2 and PM10.

Table 1 summarizes statistics of NO2 and PM10 measurements in
2010 and from April 2013 to April 2014. Annual mean concentra-
tions were 41.7 mg/m3 for NO2 and 78.9 mg/m3 for PM10 in 2010.
Annual average concentrations of NO2 and PM10 in the period from
April 2013 to April 2014 were collected from nine continuous
monitoring stations. Annual mean concentrations were 44.5 mg/m3

for NO2 and 103.2 mg/m3 for PM10. Measurements showed that
pollutant concentrations exhibited significant daily variability with
a high standard deviation for both NO2 and PM10.
2.2. Land use variables and buffers

Spatial predictor variables were generated and stored in GIS.
Seven categories of potential variables were generated to charac-
terize the traffic conditions and land use types. Traffic-related
variables included two categories: expressway (RD1) and major
roads (RD2). We used road length to reflect traffic condition due to
the unavailability of accurate traffic intensity data for majority of
roads. Because land use in the Changsha urban area exhibits com-
plex spatial configurations, we used five major categories: resi-
dential land (RES), industrial land (IND), public facilities land (PUB),
green space (GRE) and water area (WAT). The Public facilities land
includes total area of commercial, recreation, governmental and
education lands. Data on road network and land use were provided
by the Changsha Municipal Planning Bureau. Circular buffers were
created for 0.3, 0.6, 0.9 and 1.2 km radii using ArcGIS. The sketch
map of buffers is shown in Fig. 1.



Fig. 1. The distribution of monitoring sites and buffers.

Table 1
Descriptive statistics of NO2 and PM10 measurements.

Pollutants Measurements (spatial)a Measurements (temporal)b

Nc Mean Range SDe Nd Mean Range SD

NO2(mg/m3) 74 41.7 25.5e59.6 8.4 365 44.5 21.7e98.1 16.9
PM10(mg/m3) 36 78.9 57.3e89.6 9.8 365 103.2 28.6e273.9 31.7

a Measurements were averaged over 4-week monitoring periods for each of the
74 sites for NO2 and the 36 sites for PM10.

b Measurements were averaged among nine monitoring stations for each day of
the annual period.

c Number of monitoring sites.
d Number of monitoring periods.
e Standard deviation.
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2.3. Meteorological variables

Changsha, the capital city of Hunan province, China, is located in
a typical subtropical monsoon climate zone. There are four seasons
in the Changsha region, typically with a shorter spring and autumn
and a longer summer and winter. In this study, nine meteorological
variables were generated to characterize the weather conditions,
including temperature, relative humidity, air pressure, wind speed,
cloud cover, percentage of haze, percentage of mist, percentage of
rain and percentage of sun. There is a regular meteorological
monitoring station in Changsha urban area, located in north lati-
tude 28.2� and east longitude 113.08�. We collected the daily
average values of meteorological data, for some missing values, we
used the average of adjacent two days to replace them. The
description of data is reported in Table 2. The meteorological data
were provided by the Changsha Municipal Meteorological Bureau.

2.4. LUR models

Annual average concentrations of NO2 and PM10 and values of
spatial predictor variables were used to develop land use regression
models. Both NO2 and PM10 monitoring sites were randomly
divided into two groups: a training data set and a test data set. The
training data set of 75% of monitoring sites was used to develop the
model. The remaining data of 25% of sites was used for model
evaluation. Procedures of model development have been described
previously (Li et al.,, 2015). Briefly, absolute correlations of each
variablewithmeasured pollutants were calculated and the highest-
ranking variable in each sub-category was identified. The variables
in each sub-category that were correlated (r � 0.6) with the top-
ranked variable were removed from further analyses, and the
remaining variables were entered into a stepwise linear regression.
In addition, to ensure interpretability of parameters in the final
model, an a priori criterion was adopted that variables should have
intuitive coefficients (i.e., road length should have positive regres-
sion coefficients and green space should have negative co-
efficients). Those variables contradicting the criterion would be
removed from the final model. The final equations resulting from
the regression are of the form: Ya ¼ b0 þ b1X1 þ b2X2 þ … þ biXi.
(Ya: pollutant concentrations, b0: constant intercept, b1 … i: asso-
ciated coefficients, X1 … i: potential variables). Annual LUR models
were evaluated by comparing predicted NO2 and PM10 concentra-
tions with measured concentrations at the retained 25% of moni-
toring sites. Next, we used the Spatial Analyst feature in ArcGIS to
render the regression equations as prediction maps that estimated
spatial distributions of NO2 and PM10.
2.5. MFR models

Meteorological factors regression (MFR)models were developed
based on meteorological factors, daily NO2 and PM10 concentra-
tions in the period fromApril 2013 to April 2014 and annual average
concentrations in 2010. Meteorological factors were entered into
the models as the independent variables, and the differences be-
tween the daily average concentrations in April 2013 to April 2014
and the annual average concentrations of NO2 and PM10 in 2010
were the dependent variable. Both the independent and dependent
variables were divided into two parts. The first 20 days of data for
each month were used for model development; the remaining part
was used for model evaluation. The models were constructed using



Table 2
The description of meteorological data.

Meteorological variables Units Range Mean Standard
deviation (SD)

Temperature �C 0.1e36.3 19.5 9.4
Relative humidity % 20.6e90.4 64.3 16.0
Air pressure hpa 995.5e1033.6 1015.4 9.3
Wind speed m/s 1e4 1.9 0.8
Cloud cover % 0e100 58.4 37.8
Percentage of hazea % 0e100 10.0 22.3
Percentage of mist % 0e62.5 5.1 11.3
Percentage of rain % 0e100 16.3 29.3
Percentage of sun % 0e100 68.4 34.8

a The ratio of haze monitored in all day.
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SPSS software. First, absolute correlations of each independent
variable with the dependent variable were calculated. Then, those
variables more correlated with dependent variable were retained
for further linear regression analysis.

2.6. BPNN models

Back propagation neural network (BPNN) techniques have been
widely applied to various types of problems, especially for assess-
ment and prediction. The standard architecture of a BPNN consists
of an input layer, at least one hidden layer, and an output layer. The
learning algorithm of BPNN applies the fundamental principle of
the gradient steepest descent method to minimize the error func-
tion (Chen et al., 2010; Xu et al., 2010; Kuo et al., 2013). Philip (1989)
suggested that the process of training the BPNN principally in-
cludes the following steps: (1) Select the training data set and input
the data set to the network; (2) Calculate the output of the network
and evaluate the error between the desired output and network
output; (3) Adjust the weights within the network based on the
gradient steepest descent method that minimizes the error; (4)
Repeat steps 1e3 until the error is reduced to a predefined minimal
value. Meteorological factors were fed to the neural networks as
inputs. The differences of the daily average NO2 and PM10 con-
centrations in the period between April 2013 and April 2014 and
the annual average NO2 and PM10 concentrations in 2010 were
entered as output. Before entering into the network, the data were
normalized across [0, 1] according to the following equation:

Ri ¼ ðXi � XminÞ=ðXmax � XminÞ (1)

where Xmin and Xmax are the minimum andmaximumvalues of the
data parameter Xi

In this study, a single hidden layer was used in the BP neural
network. The number of hidden nodes was determined by exper-
iment. Datawas collected and generated for each day of a year, such
that there were 365 samples. Like the MFR model, the first 20 days
of data in each month were used for training the BPNN and the
remaining samples in each month were retained for testing the
accuracy of the trained network. In the neural network program,
learning rate and momentum rate were set at 0.5 and 0.7, respec-
tively. The error goal was set at 0.001. The program was run using
MATLAB's neural network toolbox.

3. Results

3.1. LUR models

Land use regression models are reported in Table 3. The final
NO2 and PM10 models explained 51% and 62% of the spatial vari-
ability in measured concentrations. Five to six variables were
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entered into the final LUR models, of which the major road, resi-
dential land and public facilities land variables explained 46% and
52% of the spatial variability, accounting for the majority of varia-
tion for both NO2 and PM10. To evaluate the performance of the
regression models, R2 for validation and RMSE (Root Mean Square
Error) were calculated. For the NO2 model, R2 for validation and
RMSE were 0.61 and 7.10, respectively. For the PM10 model, R2 for
validation and RMSE were 0.58 and 9.00, respectively. Final equa-
tions were applied to 20 random validating sites for NO2 and 10
sites for PM10. Predicted data were plotted against measured data
for validation (Fig. 2). The figure shows predicted concentrations
were well correlated with measured concentrations for both NO2
and PM10. Fig. 3 shows regression maps predicting annual con-
centrations of NO2 and PM10. The results demonstrate that both
NO2 and PM10 concentrations show a discernible spatial distribu-
tion. High concentration areas weremainly distributed in the urban
center and east region, and low concentration areas were mainly
distributed in the north and west regions of Changsha urban area.

3.2. MFR and BPNN models

The final MFR models explained 43% and 45% of the temporal
variability of NO2 and PM10 concentrations (Table 3). Temperature,
wind speed, cloud cover and percentage of haze were the impor-
tant meteorological variables in these models. The BPNN models
used one hidden layer and 25 hidden neurons. The structure of the
network is shown in Fig. 4.
Fig. 2. Predicted versus measured annual av

Fig. 3. Estimated annual NO2 and PM10
Both MFR and BPNN models were used to model the temporal
variability of NO2 and PM10. To evaluate the performance of MFR
and BPNN models, Pearson's r values were calculated between
predicted and measured daily average concentrations. In the MFR
models, Pearson's r values were 0.43 and 0.47 for NO2 and PM10,
respectively. The correlation coefficients were much higher in
BPNN models than in MFR models, with Pearson's r values of 0.82
and 0.92 for NO2 and PM10, respectively. In addition, predicted
concentrations versusmeasured concentrations fromvalidation are
reported in Fig. 5. The results demonstrate that in this scenario the
BPNNmodels were more powerful than the MFR models to explain
temporal variability in pollutant concentrations.

4. Discussion

We developed land use regression models in conjunction with
meteorological factors regression models and back propagation
neural network models for predicting daily average concentrations
of NO2 and PM10 in the urban area of Changsha, China. Annual LUR
models explained more than 50%e60% of the spatial variability in
pollutant concentrations. Compared with model performance in
previous studies, with R2 values ranging from 0.51 to 0.90 for NO2

and from 0.36 to 0.82 for fine particulate matter (Hoek et al., 2008),
our models explained the variability moderately well for both NO2
and PM10 concentrations. The difference in model performance
may be attributed to the difference in data quality and land use
types. In addition, the lack of small-scale traffic predictors is also
erage concentrations for NO2 and PM10.

concentrations from LUR models.
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very likely to lead to low R2 in the model. The spatial variations are
indicated by the range and standard deviation of mean concen-
trations, whichwere 25.5e59.6 mg/m3 (SD¼ 8.4 mg/m3) for NO2 and
57.3e89.6 mg/m3 (SD ¼ 9.8 mg/m3) for PM10 (Table 2). Temporal
variations were larger than spatial variations. The range of daily
concentrations were 21.7e98.1 mg/m3 (SD ¼ 16.9 mg/m3) for NO2
and 28.6e273.9 mg/m3 (SD ¼ 31.7 mg/m3) for PM10 (Table 2), indi-
cating the significance of temporal resolution for exposure assess-
ment in epidemiological studies.

Explanatory variables in different LUR models are usually not
constant due to city-specific conditions and data availability. Seven
land use categories of variables were considered in our model, of
which the major road, residential land and public facilities land
variables with different buffer sizes explained most of the vari-
ability in concentrations, indicating that NO2 and PM10 are closely
related to traffic conditions and human activities. Traffic-related
predictors were included in almost all LUR models, since vehicle
exhaust is a major emission source of NO2 and PM10. Some studies,
including this one, used road length to represent traffic conditions
(Beelen et al., 2013;Wang et al., 2013), and some other studies have
used vehicle intensity as input data (Ross et al., 2006; Hochadel
et al., 2006). Theoretically speaking, vehicle intensity may be bet-
ter proxy for vehicle exhaust, but complete and accurate traffic
intensity data usually are not easily available. Research has sug-
gested that models developed with vehicle density and road length
are equally able to explain variability in pollutant concentrations
(Henderson et al., 2007). Therefore, we considered road length to
be an appropriate variable choice in the absence of vehicle density.
Industrial land was not included in the NO2 model and only
explained a small amount of variability in PM10 concentrations. This
is due to the fact that there are few polluting industrial enterprises
in Changsha urban area. In some studies, parameters indicating
geographic positionwere also included such as distance to the coast
or a major road (Ross et al., 2006) and longitude and latitude
(Jerrett et al., 2007; Henderson et al., 2007), Additionally,
Fig. 4. The structure of the 9-
population density has proven to be an important variable in some
studies (Ross et al., 2007; Ryan et al., 2008). However, these vari-
ables were not considered in our models due to the unavailability
or high cost of obtaining the data. Despite data limitations
hampering our ability to investigate all potential predictors, our
regression results still showed a similar degree of explained vari-
ability in concentrations compared with other studies, which sug-
gests that a small number of conventional predictors selected
according to the specific conditions of a study area are sufficient to
build acceptable regression models.

Although many studies indicate that meteorology has a signif-
icant influence on the distribution of air pollutants (Arain et al.,
2007; Madsen et al., 2007; Wilton et al., 2010), meteorological
variables are still not included in most LUR models, possibly due to
a lack of an appropriate methodology. In contrast to land use var-
iables showing spatial contrast, meteorological variables show
change over time. Therefore, temporal variations in air pollutant
concentrations based on meteorological factors may not be stable
or easily predictable. This uncertainty may lead to misclassification
of exposure assessment in epidemiological studies. For example, if
pollutant concentrations are significantly higher or lower in some
periods than others, exposure estimates based on data sets in these
divergent periods will lead to large misclassification. In this study,
MFR and BPNNmodels were introduced to take weather conditions
into consideration to model the temporal variability of NO2 and
PM10. Both models explained temporal variability of pollutants
moderately well, indicating that a relationship exists between
meteorological conditions and changes in pollutant concentrations.
Based on our findings, BPNN models are more powerful than MFR
models to explain temporal variability in pollutant concentrations.
The results demonstrate that there is a nonlinear relationship be-
tween meteorological factors and concentrations of NO2 and PM10.

For epidemiological studies that examine acute or sub-chronic
outcomes, such as a given trimester of pregnancy, due to the
temporal variations of pollutant concentrations, the short or
25-2 BP neural network.



Fig. 5. Predicted versus measured daily and annual average concentrations for NO2 and PM10.
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medium term exposure estimates derived only from annual or
seasonal models may lead to large deviations (Wang et al., 2013).
Ongoing efforts to estimate quantitative personal exposures have
led to different approaches to improve the temporal resolution of
LUR models in predicting the variability of pollutants concentra-
tions. The most straightforward way is to calibrate concentrations
with observed measurements at a fixed continuous monitoring
station (Slama et al., 2007; M€olter et al., 2010). This approach is
effective and easy when the study area is located near a fixed
monitoring station. However, if the fixed monitoring station is
affected by localized pollutant emissions, the predicted concen-
trations in all other locations would be overestimated and inher-
ently lead to large misclassification of exposure assessment in
health studies. Another approach is to build several unique models
in different time periods (Gulliver et al., 2011). Each model has
different variables and coefficients; as a result, thismethod requires
large amounts of manpower and material resources for data
monitoring and collection. The large workload might undermine
the cost-effective advantage of using LUR models. In this study,
coupling land use variables with meteorological variables to model
spatial and temporal variability of NO2 and PM10 was evaluated and
showed promising results. By using and refining this method, we
can improve our understanding of transfer of pollutants and po-
tential causes of air quality degradation. More importantly, the
integrated model is able to predict air quality based on forecasted
weather condition and could also predict daily NO2 and PM10
concentrations in those areas with no monitoring site.

The biggest limitations of this study were the weaknesses
related to applying the model to a large study area. Our approach
presupposes identical temporal trends at every site, although it is
expected that meteorological effects will cause non-negligible
variation across a large area. Consequently, meteorological vari-
ables will show differential influence at each site.

5. Conclusions

In this study, land use regression models and models using
meteorological variables were developed and coupled to improve
temporal resolution. The integrated models show high spatial and
temporal resolution that can provide better exposure assessment in
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epidemiological studies. Temporally refined LUR models integrated
with meteorological variables have the potential to markedly
improve the exposure assessment in health studies.
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