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riers, such as oxides and carbons-basedmaterials, based ondifferent sizes, structures, and shapes of supportedAu
nanocatalysts for nitroaromatics reduction are described. The catalytic performance of Au combining with other
metal nanoparticles by alloy or doping, likemulti-metal nanoparticles system, is further discussed. Finally, a short
discussion is introduced to compare the catalysis with other metallic nanocatalysts.
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1. Introduction

Metal nanoparticle (NP) catalysts play a dominating role in produc-
tion of chemicals, polymers, and fuels (Lim, 2016; Mitsudome et al.,
2015; Lai et al., 2018). They are the keys to the environmental protec-
tion, like clean-up of effluent gases and degradation of pollutant sub-
stance (Wang et al., 2014; Zhao et al., 2016a). Gold (Au), one kind of
noble metals, is historically considered as a catalytic inert element
until Hutchings and Haruta observed that Au catalysts were highly effi-
cient in chlorination of acetylene and carbon monoxide oxidation at
1980s (Haruta et al., 1989; Hutchings, 1985).When subdivided to nano-
scale, Au-based catalysts provide incredible reactivity for catalysis,
which is hard to be replaced by other metals, especially for the reduc-
tion process like oxygen and carbon dioxide reduction, water reduction
for hydrogen production, and reduction of nitroaromatics because of its
unique properties of localized surface plasmon resonance (LSPR), large
surface-to-volume ratio, and electron transfer (Chung et al., 2018;
Hutchings and Haruta, 2005; B. Li et al., 2018; Qin et al., 2018; Wang
et al., 2018a). Au nanocatalysts also have been demonstrated to be at-
tractive in industry and environmental protection due to their green
and efficient redox properties (Scurrell, 2017). They are widely used
and the topic of Au nanostructured catalysts has been augmented expo-
nentially in the last 20 years.

Gold nanoparticles (AuNPs) with small size show excellent catalytic
performance for many chemical reactions, especially for the reduction
of nitroaromatics in water (Hirakawa et al., 2016; Moghaddam et al.,
2017). Some nitroaromatics, such as nitrophenol compounds, organic
dyes, etc., are important intermediates in industrial and agricultural
processes (Chen et al., 2015; Cheng et al., 2016b; Cheng et al., 2017;
Gong et al., 2009; Hamidouche et al., 2015). However, environment
has been suffered from pollution at significant levels because of the
high toxicity of these compounds (Cheng et al., 2016a; Huang et al.,
2017a; Tang et al., 2014; Xue et al., 2018). The use of nitroaromatics is
difficult to forbid, hence, these chemicals are inevitably discharged
into the environment (Cheng et al., 2016c; Huang et al., 2016;
Rafatullah et al., 2010; Yang et al., 2010). Therefore, remove and de-
grade these compounds to less toxic chemicals are very important. In
this case, AuNPs exhibit good catalytic activity for reduction of
nitroaromatics to its corresponding amines, because they have the ad-
vantages of large surface-to-volume ratio and unique electronic proper-
ties (Downing et al., 1997; Kuroda et al., 2009). They stabilize the 6S2

electron pairs by combining the size and relativistic effect, thus deter-
mining the catalytic property for nitroaromatics reduction because of
the high energy and reactivity of 5d electrons (Narayanan and
Sakthivel, 2011; Pyykko, 1988). Compared with other metal catalysts,
AuNPs have two distinct advantages: 1) the catalytic activity is highly
and directly related to the particle size that must be nanoscale but not
microscale. Besides, the catalytic activity is increased with the decrease
of particle size. Thus, the catalytic activity of Au can be well controlled
by adjusting the size; 2) the high catalytic performance can be obtained
under mild conditions even on low temperature. This is benefit for the
reduction under ambient temperature and energy saving.

Unfortunately, free AuNPs cannot be recycled and are easy to aggre-
gate due to the high surface energy, which significantly decreases the
catalytic efficiency and obviously slows the reaction kinetics
(Pocklanova et al., 2016; Qin et al., 2017). The surface active sites and in-
terfacial free energy are reduced due to the aggregation, henceweaken-
ing the catalytic activity (Varma, 2016). In order to solve this problem,
great efforts are being devoted to immobilize AuNPs on carriers, such
as oxides (Lee et al., 2008; Song andHensen, 2013), carbon-basedmate-
rials (Tan et al., 2015; Yang et al., 2013), etc., for obtaining effectively
stable and highly dispersed Au nanocatalysts, offering more surface ac-
tive sites, and enhancing the interfacial free energy. Moreover, some
strategies tend to investigate the size and structure of AuNPs by using
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different reducing agent and stabilizer, alloying other metal NPs, and
decorating some ligands to form smaller and bimetallic or multi-
metallic catalysts (Conte et al., 2009; Fountoulaki et al., 2014; Huang
et al., 2017b; Sau et al., 2001). Due to the size effect, synergistic effect,
interfacial effect and shape effect between the supports and Au, easily
separated, well cycled, and highly efficient Au nanocatalysts can be ob-
tained. Thus, Au nanocatalysts provide promising potential in catalytic
reaction.

Some wonderful reviews have been published about nitroaromatics
reduction on the basis of Au and other metal NPs (Mitsudome and
Kaneda, 2013; Pan et al., 2013). For example, Kadam et al. reviewed
the different methods for nitroaromatics reduction based on the source
of hydrogen (Kadam and Tilve, 2015). Aditya et al. reported a compre-
hensive paper, which mainly focused on the reaction process, mecha-
nism, and catalytic performance of different kinds of catalysts (Aditya
et al., 2015). However, none of them have reviewed the nitroaromatics
reduction by Au nanocatalysts only. Zaho et al. synthetically reviewed
the nitrophenol reduction by Au- and other transition metal nanoparti-
cles and discussed the difference between them in detail (Zhao et al.,
2015). But the synthetic methods for Au nanocatalysts were not men-
tioned. Furthermore, the investigation of Au nanocatalysts for
nitroaromatics reduction has been developed in the past four years, es-
pecially for the reduction under light irradiation. Hence, in this review,
some typical synthetic approaches for Au nanocatalysts including the
traditional and novel methods have been reviewed and discussed to
guide the fabrication of highly efficient Au nanocatalysts. The unique
catalytic activity of them in reduction of nitroaromatics has been
discussed. The kinetic model and route of this reaction are represented
to reveal the potential mechanism under different conditions, including
the reaction medium and light effect. This review further emphasizes
some typical and recent examples of Au nanocatalysts that have
achieved high activity and compares the catalytic performance of
them. A short discussion is introduced to compare the catalysis with
other metallic nanocatalysts. Through this review, the readers will un-
derstand the role of Au nanocatalysts in catalytic reaction profoundly.
We hope that readers can be inspired by this review and gain more
highly efficient Au nanocatalysts, pushing further development of Au
catalysts application.

2. Synthetic strategies for Au nanocatalysts

The preparation of colloidal AuNPs has been well described in many
researches (Dykman and Khlebtsov, 2012; Qin et al., 2017; Zhang et al.,
2014a). AuNPs fabricated through Brust-Schiffrin method are primarily
used for catalysis because it provides smaller size of AuNPs. The proce-
dure has been well described in our previous works (Fang et al., 2017;
Guo et al., 2016; Lai et al., 2015; Lai et al., 2017; Zeng et al., 2017). In
this section, we mainly retrospect some typical synthetic strategies for
supported Au nanocatalysts, which are widely applied in the reduction
of nitroaromatics. They can be usually divided into five parts: the
deposition-precipitation (DP), co-deposition (CP), impregnation
(IMP), colloid deposition (CDP), and newly developed methods.

2.1. Deposition-precipitation

DP is one of the earliest strategies for preparation of supported Au
nanocatalysts, which was recognized by Haruta and co-workers, who
reduced AuNPs on titanium dioxide (TiO2) firstly (Tsubota et al.,
1991). The operation procedure consists in allowing Au salt become
Au(OH)3 by adding alkali, the precipitant, into the Au salt solution to ad-
just the pH with the range of 6 to 10. After aging for a while, the afore-
mentioned Au solution is adsorbed by the support and the mixture is
incubated with properly selected concentration, temperature, stir, and
time. Subsequently, the suspension is treated by a series procedure of
filtration, washing and drying. The last and most important procedure
is the reduction of AuNPs from Au3+. Some studies kept it under a
flow of H2, and others made it be calcined in a flow of O2 or air (Song
et al., 2015; Ulrich et al., 2017; Wang et al., 2015a). The calcined Au
nanocatalyst provides better performance but some deactivation has
been observed due to the increasing particle size when sintering.

The key procedure of this method is the strict control of pH. It can be
adjusted by precipitant, which usually uses Na2CO3, urea, NaOH, etc.
(Torres et al., 2016). DP requires deposition occurs in alkaline condition,
so it is applicable in supports which have a point zero charge at a high
pH (≥6), e.g. TiO2, ceria (CeO2), zirconia (ZrO2), ferric oxide (Fe2O3), alu-
minum oxide (Al2O3), and magnesium dihydroxide (Prati and Martra,
1999; Xu et al., 2012b). Other supports, e.g. carbon, silica dioxide
(SiO2), and tungsten trioxide, cannot obtain well dispersed and small
size of AuNPs by using this method (Chen et al., 2006). Before reduction
step, AuNPs are partially deposited on the supports. Hence, the loading
of Aumay be incomplete, butmuch higher than CPmethod (mentioned
as follows) (Khoudiakov et al., 2005). Besides, the most attractive merit
of DP is that AuNPs can deposit on supports with any kind of shapes, in-
cluding powder, honeycomb, bead, or thin film (Torres et al., 2016).
AuNPs are mostly deposited on the surface of supports, which contrib-
utes to the catalytic performance of Au nanocatalysts.

2.2. Co-deposition

Similarwith DP, CP uses an aqueous solution of Au salt. The Au salt is
mixed with a corresponding metal salt precursor and stirred under a
certain temperature. The precipitant is added to obtain hydroxide or
carbonate coprecipitate. After that, the slurry is filtered, washed, and
dried. Finally, the precursor is calcined for AuNPs reduction as DP
method (Waters et al., 1994). The difference of CP and DP is themixture
of reaction. In this regard, CP also can be called the one-step synthetic
method. The Au particles are regularly dispersed and in nanoscale but
the particle size may be increased during calcine as the DP method
and the size is difficult to control sometimes. This procedure requires
the precursor compound of support to become hydroxide or carbonate,
which can be depositedwith Au(OH)3 at the step of deposition (Solsona
et al., 2009).

2.3. Impregnation

IMP is the simplification of DP and CP. It is unnecessary to adjust the
pH, namely, there is no need to add alkali salts as the precipitant
(Solsona et al., 2006). When the Au source salts injected into the dried
support, after technical filtration, washing and drying in appropriate
temperature, the resulting catalysts are further calcined in a flow of O2

or H2 (Grisel et al., 2001). IMP is much simpler and usually used to pre-
pare Au nanocatalysts which need certain mechanical strength rather
than high content of active component. As a result, it has been widely
used in industry. However, the low content of active component is not
conducive to catalytic reaction. It is reported that this is commonly re-
lated to the size and size distribution. But there are evidences demon-
strate that the low activity of MIP is due to the lack of some kind of
interaction between AuNPs and support (Lin and Vannice, 1991; Lin
et al., 1993). Additionally, the pH of Au salts solution is always very
low, so this method is not so suitable for some supports which can be
dissolved in a strong acidic solution, e.g. Al2O3 and magnesium oxide
(MgO).

2.4. Colloid deposition

CDP method, also called the immobilization method, is theoretical
different with these traditional methods mentioned above. Generally,
AuNPs are reduced first by appropriate methods, e.g. Turkevich-Frens
and Brust-Schiffrin method, to obtain colloids rather than load on the
support through sintering and reduction. Thus, the size can bewell con-
trolled by this method. Subsequently, the prepared AuNPs are injected
into the support or the support is dipped into the AuNPs solution for
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incubation a few days until AuNPs are completely adsorbed by support.
Resulting catalyst is finally prepared by filtering, washing, and drying.
The key procedure lies in the adsorption of AuNPs by support. In this
case, the support should have large surface area with strong adsorption
ability and can be washed so clean that it would not induce aggregation
of AuNPs. With this respect, the adsorption of AuNPs into gel has been
well developed. A typical example is the silica gel. Tai et al. (2001) pre-
pared an Au cluster/SiO2 nanocomposite catalyst by spontaneous wet-
gel formation. Results demonstrated that the colloids were penetrated
into the gel and were adsorbed only on the surface of the gel due to
the reaction between gel and polar solution. The anchoring of AuNPs
wasbecause the surrounding thiolmolecules of AuNPs had a permanent
dipole moment, which induced the dipole interaction. In addition, the
particle sizes and size distribution were not changed. On the basis of
this mechanism, thermally stable and highly loaded AuNPs/TiO2-
coated SiO2 aerogels are prepared with the controlled size and loading
amount of Au (Tai et al., 2004; Tai and Tajiri, 2008).

Other supports, e.g. metal-oxide particles (Nutt et al., 2006; Zheng
and Stucky, 2006), activated carbon (AC) (Biella et al., 2002), mesopo-
rous carbon (MC) (Ma et al., 2013), oxidized mesoporous carbon
(OMC), carbon nanotubes (CNTs), and graphite (GR) (Qi et al., 2015)
have been well developed for supported Au nanocatalysts synthesis
using both weak and strong interactions. In particular, the adsorption
way of MC or OMC-supported Au nanocatalysts is that AuNPs with
small size are incorporated into the larger size of mesopore channels
thus preventing the aggregation of AuNPs. In addition, the stabilizer
plays an important role in the size and catalytic performance (Shi
et al., 2008; Zhong et al., 2013). Robert group has developed a series of
experiments about the n-hexanethiolate-stabilized AuNPs catalysts
supported by metal oxide. Results showed the size of AuNPs increased
during subsequent thermolysis (Almukhlifi and Burns, 2015a). The
length of n-hexanethiolate and Au content had influences on the cata-
lytic performance of Au nanocatalysts (Almukhlifi and Burns, 2015b,
2016a). Furthermore, the presence of small amount of sulfate enhanced
the catalytic activity owing to an Au-enhanced Mars-van Krevelen
mechanism (Almukhlifi and Burns, 2016b).

2.5. Newly developed methods

The aforementioned methods for Au nanocatalysts preparation are
traditional and mainly applied in some simple supports and the size
and size distributionmay be difficult to control. In this case, for the con-
trolling of size and size distribution and some relatively complicated
supports and structure like polyhedral anatase, Au@oxide yolk@shell
nanospheres, some novel methods including polyols reduction (Yang
et al., 2013), photo- and electro-deposited method (Nguyen et al.,
2016; Wei et al., 2017b), etc., have been well developed. The photo-
deposited method is usually proposed by putting the mixture of sup-
ports and Au salt under the UV/vis irradiation and using methanol as
the sacrificial agent (Maicu et al., 2011). Other photo-depositedmethod
like pulsed laser ablation was also developed (Wei et al., 2017a; Xu
et al., 2014). Thismethod is suitable for the preparation of photocatalyst,
in which the supports have good photocatalytic activity and AuNPs are
easy to deactivate in air when using other methods. Pulse electrodepo-
sition method is another newly developed method, in which the size
and dispersion of AuNPs can be easily achieved via changing the electro-
chemical parameters. The prepared Au nanocatalyst by this method ex-
hibits excellent plasmon-induced photoelectrocatalytic activity (Wu
et al., 2015a). Au nanocatalysts synthesized by photo- and electro-
deposition only need one-step and do not need the use of surfactant
or additive. The catalytic activity of them is improved by making use
of the plasmonic effect of AuNPs, which is conducive to the application
of Au nanocatalysts in photoelectrocatalysis. But the introduction of
light energy or electricity is necessary.

Au@oxide yolk@shell nanospheres provide good catalytic perfor-
mance because of their low density, high specific surface area, stability,
and selectivity. They can propose promising application on selective ca-
talysis by controlling the pore size of the shell accurately. However, this
kind of Aunanocatalyst is usually prepared by using etching or template
method, which are suitable for single oxide shell. Interestingly, the
group of Zhang (J. Li et al., 2018) recently has proposed a new strategy
for preparation of Au@multi-oxide yolk@shell nanospheres system by
integrating redox self-assembly and redox etching process. This simple
strategy provides new avenue for facile and clean synthesis of complex
noble metal@multi-oxide yolk@shell nanospheres. Although these
newly developedmethods illustrated here aremainly for photocatalysis
or other catalytic processes, they are still instructive for the preparation
of highly efficient Au nanocatalyst and guidance of nitroaromatics re-
duction reaction.

3. Mechanism of catalytic reaction

3.1. Kinetic model

The traditional Langmuir–Hinshelwood (LH) model is usually used
in the kinetic analysis of nitroaromatics reduction by Au nanocatalysts.
Namely, all of the reactants are absorbed on the surface of AuNPs to
react. Kinetic data can be obtained by monitoring the concentrations
of nitroaromatics via UV–vis spectroscopy. The subsequent data calcula-
tion yields the apparent reaction rate, kapp, one of the most important
parameters to assess the catalytic property of Au nanocatalysts. The
analysis of kinetic data has been well described by Wunder et al.
(2010), who used the reduction of 4-nitrophenol (4-NP) as a model re-
action to test the catalytic activity of Au/platinum (Pt) NPs (Fig. 1). They
proposed a series of studies by immobilizing AuNPs on the spherical
polyelectrolyte brushes and demonstrated that kapp was not only con-
cerned with the total surface of all AuNPs (S), but also the rate-
determining step, as well as the adsorption constants of 4-NP and boro-
hydride (k4-NP and kBH4). Moreover, as kapp is strictly proportional to S
(Panigrahi et al., 2007; Saha et al., 2009), the relations are well depicted
as the following equations (Wunder et al., 2011):

dc4−NP

dt
¼ −kapp∙c4−NP ¼ −k1∙S∙c4−NP ð1Þ

kapp ¼ k∙S∙Kn
4−NP∙c

n−1
4−NP∙KBH4 ∙cBH4

1þ K4−NP∙c4−NPð Þn þ KBH4 ∙cBH4

� �2 ð2Þ

where S is the total surface of all AuNPs, n is the Langmuir–Freundlich
exponent and when using the classical Langmuir isotherm, the value
of n is 1 (Gu et al., 2014). Another important parameter, which implies
the catalytic activity, is the normalized rate constant (knor). It is associ-
ated with the amount of Au nanocatalyst and kapp, i.e.,

knor ¼ kapp=m: ð3Þ

With this respect, almost all of the researches demonstrate that Au
dependent catalysis of nitroaromatics reduction is well accorded with
the pseudo-first-order kinetics; that is, the logarithm of absorption in-
tensity of 4-NP (At) has a good linear correlation with reaction time
(t), then kapp can be determined from the plot of Ln (At) vs t (Que
et al., 2015; Ramirez et al., 2017).

Ln At=A0ð Þ ¼ −kt ð4Þ

Interestingly, there are several evidences proved that the reduction
of nitroaromatics by Au nanocatalysts may fit the zero-order kinetic
model; i.e. the At rather than Ln (At) varies linearly with t (Gupta
et al., 2014; Saha et al., 2009). They believe that this is due to the differ-
ent rate-determining steps. Gupta et al. (2014) presented the six se-
quential electron transfer had critical role on this rate-limiting step.
However, they did not provide any experimental data to support the



Fig. 1. Langmuir–Hinshelwoodmodel for reduction of 4-NP byAu/Pt NPs catalysis. Adaptedwith permission fromref. (Wunder et al., 2010) Copyright 2010 theAmerican Chemical Society.
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speculation.While some studies considered thatwith the excess of both
Au nanocatalysts and sodium borohydride (NaBH4), the reaction rate
was the pseudo-first-order (Lee et al., 2008; Pozun et al., 2013). In any
case, theremay be someother factors result in the different kinetic reac-
tion, such as temperature, supports, concentration of reactants, etc. This
should be further investigated. One relatively clear thing is that the
group of Ballauff has demonstrated that the second step, i.e. the reduc-
tion of the 4-hydroxylaminophenol is the rate-determining step (Gu
et al., 2014). The reduction of the 4-hydroxylaminophenol is involved
in the route of reduction reaction, so it will be discussed in Section 3.2.

3.2. Route of reaction and possible mechanism

The reductants type and effect on this reaction has been well intro-
duced by Kadam and Tilve (2015). Hence, in this part we just discuss
the reaction triggered by H2 and borohydride. In order to understand
the mechanism better, researchers begin paying their attention to the
investigation of route of reaction since Haber proposed that there
were two probable routes for reduction of nitroaromatics by Au
nanocatalysts, which used H2 as the reductant to attack the nitro
group to form corresponding amino group (Fountoulaki et al., 2014;
Layek et al., 2012). One is the generally accepted direct route and
another is the condensation route. In the direct route, the nitroso com-
pounds are reduced firstly, and then the corresponding hydroxylamine
is fast consecutively produced. Finally, the corresponding aniline deriv-
atives are generated in the rate determining step (Fig. 2). The whole
process is very fast and relatively simple. While in the condensation
route, the azoxy compounds are synthesized after combining one mol-
ecule of nitroso compound and hydroxylamine respectively. The corre-
sponding aniline derivatives can be obtained after a series of steps to azo
and hydrazo (Fig. 2). Obviously, the condensation route is much more
Fig. 2. Mechanism illustration for direct and condensation rout
tedious. As the reaction of nitroaromatics reduction by Au nanocatalysts
is always fast, some researchers are skeptical about this conclusion.
Thus, confirmatory experiment has been proposed based on supported
Au nanocatalysts. Corma et al. (2007) elaborated on the reduction of
nitroaromatics by Au/TiO2 catalyst and perfectly proved this reduction
process followed the direct route. However, in these processes, the re-
duction of nitroaromaticswas proposed byH2 as the reductant, the pro-
cess using NaBH4 is different.

Based on the LHmodel, Layek et al. (2012) proposed a probable sur-
face reduction mechanism making use of Nano Active™ Magnesium
Oxide Plus (NAP)-Mg–Au(0) catalyst for reduction of nitroaromatics
by NaBH4 (Fig. 3). To verify the reaction pathway, possible intermedi-
ateswere separately subjected to the reduction process. Results showed
that the direct route including nitrobenzene → nitrosobenzene →
phenylhydroxylamine → aniline was the most possible route. In addi-
tion, the authors introduced that the possible reduction mechanism
laid the foundation for the six electron transfer process. AuNPs reacted
with borohydride ions to form an Au-H complex firstly. Then, the tar-
gets adsorbed on the surface of AuNPs and a hydrogen transfer oc-
curred. Finally, the nitro group was reduced to amino group. In 2014,
Gupta et al. (2014) proposed a six-electron transfer process between
NaBH4 and nitrophenol compounds, but how did the electron transfer
was not reported. Recently, a paper based on the magnetic Ni-Au/
graphene nanocomposites introduced that the transition metal
composited had the ability to catalyze hydrolysis of NaBH4 (Li et al.,
2017). The NaBH4 reacted with H2O to form activated hydrogen (H2)
and then the metal‑hydrogen species formed on the surface of catalyst.
Finally, these active metal‑hydrogen species attacked 4-NP to reduce it.
In conclusion, nomatter reducing by H2 or NaBH4, the critical step is the
attack of –NO2 by hydrogen. AuNPs play important role to transfer and
promote the attack. Recently, Wang et al. (2017a) concluded the same
e of nitroaromatics reduction by Au nanocatalysts and H2.

Image of Fig. 1
Image of Fig. 2


Fig. 3.Reactionmechanism for reduction of nitroarene by (NAP)-Mg–Au(0) catalyst. Adaptedwith permission from ref. (Layek et al., 2012) Copyright 2012 the Royal Society of Chemistry.

98 L. Qin et al. / Science of the Total Environment 652 (2019) 93–116
route as Layek et al. for reduction of nitroarenes by SiO2-supported
Au nanocatalyst. However, different results were proposed by
Fountoulaki et al. (2014), in which the nitrosoarene intermediates
were skipped following the routes of nitroarene→ aryl hydroxylamine
→ aniline. In addition, Noschese et al. (2016) found that both the direct
and condensation routes were possible on the basis of a nanoporous
polymer matrix supported Au nanocatalyst, but the condensation
route was preferred when the Au active sites were more accessible.

Interestingly, when expose to the light, the catalytic mechanism
changes. As described by Koklioti et al. (2017), the presence of
photoillumination yields an electron-hole pair, and therefore increases
the density of active sites on the surface of Au clusters, resulting in en-
hanced catalytic performance for 4-NP reduction. There are three possi-
ble ways can cooperate to the reduction of 4-NP: i) common hydride
transfer from Au\\H bond both in the absence and presence of light;
ii) specific hydride transfer by photoinduced Au\\Hbond; iii) active hy-
drogen generated via photoreduction of water (Fig. 4). In addition, the
photogenerated electrons may also play an important role in the en-
hancement of catalytic performance. As introduced by a recent paper
(Fu et al., 2017), under the exposure of visible light, electrons in the va-
lence band of support were excited to the conduction band (CB),
resulting in rapid electron transfer from CB of support to AuNPs. This
makes AuNPs store abundant electron. With the continuously increas-
ing of electron density, the Fermi level of them becomes more negative
potential, thereby further improving the catalytic activity.

As we all known, the reduction of nitroaromatics by Au based-
nanocatalysts are almost proposed in aqueousmediumat ambient tem-
peratures because most of them use NaBH4 as the resource of H2. How-
ever, the reaction proposed by other metal nanocatalysts such as nickel
(Ni) based-nanocatalysts has been proceeded in other medium. For ex-
ample, Xia et al. (2016) introduced a carbon black supported nano-Ni
catalyst for reduction of 4-NP and compared the catalytic performance
of it under different medium. The results showed that the catalyst ex-
hibited higher activity in methanol than that in aqueous solution be-
cause the methanol-NaBH4 reaction system generated much more
amount of H2 than thewater-NaBH4 system. Inspired by this, we also in-
vestigated the effect of reactionmedium by usingmethanol and ethanol
as the medium and found that the generation of H2 was very less in
these medium. We speculate this is because NaBH4 is less soluble in
methanol and ethanol. In addition, the nitrophenol reduction in most
cases is proceeded by nitrophenolate ion which is mainly prompted in
aqueous medium. This also maybe the reason that most researchers

Image of Fig. 3


Fig. 4.Mechanism illustration for reduction of 4-NP under the illumination of light. Adaptedwith permission from ref. (Koklioti et al., 2017) Copyright 2012 the Royal Society of Chemistry.
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have chosen the reaction in aqueousmedium. Thus, the illustrated stud-
ies for reduction by Au nanocatalysts in this review are almost proposed
using NaBH4 as the reductant.

4. Reduction of nitroaromatics with free AuNPs: size-dependent
effect

Free AuNPs for reduction of nitroaromatics have been investigated
for many years. The study of catalysis by free AuNPs mainly focuses on
the influence of size and synthetic method. Generally, the catalytic ac-
tivity is enhanced for smaller size of AuNPs. But the catalytic activity is
also related to the surface area and mass of particles. For example, Sau
et al. (2001) investigated the effect of particle size with the range of
10–46 nm under the same surface area and found that the catalytic
rate of eosin reduction did not increase proportionately with the in-
crease of size. It decreased first in the size range of 10–15 nm and
then increased with the size over 15 nm. Thus, we discussed the cata-
lytic activity of free AuNPs by the synthetic methods and stated the
size effect systematically.

4.1. Extract of biomass stabilized free AuNPs

Bioreduction of metal ions in organism, such as plants, fungi, and
bacteria is regarded as an eco-friendly, low cost, and highly efficient
way and is important for biomedical application. Plants reduced
AuNPs are mostly used in sensors, while Sharma et al. (2007) firstly re-
ported plant-mediated AuNPs for directly reducing 4-NP. Unlike other
biological methods, the synthesis of AuNPs by the stem extract of
Breynia rhamnoides is very fast and the size of that can be tuned
(Gangula et al., 2011). Recent researches for bioreduction of AuNPs
used in catalysis primarily lie in the extract or some parts of them, in-
cluding dextrose (Badwaik et al., 2011), mycelia (Narayanan and
Sakthivel, 2011), protein (Guria et al., 2016; Shi et al., 2015), and
membrane-bound peptides (Srivastava et al., 2013) etc. Most of the re-
sults proved that the catalytic rates increased with the size decrease
(Badwaik et al., 2011; Zhu et al., 2016). It is noteworthy that the size
and shape controlled synthesis of AuNPs is always achieved a seed me-
diated grown approach by using some chemical agents. But a research
reported by Das et al. (2012) has introduced a simple one-pot green
method for biosynthesis of AuNPs and obtains super high catalytic
rate for 4-NP reduction with the range of 8.6 × 104–2.6 × 106 min−1

by controlling the size and shape. The catalytic rate it achieved is
muchhigher than the othermethods (Table 1). Particularly, the increas-
ing catalytic rate can be induced by the decrease of the particle size
which could be obtained by adjusting the HAuCl4–extract ratio. Except
the size and biomass, the concentration of AuNPs plays an important
role in catalytic performance. As illustrated by Qu et al. (Shen et al.,
2017b), the reaction rate constantwas linearly related to the concentra-
tion of AuNPs, which resulted in an increase rate from 0.59 min−1 to
1.51 min−1 with the increasing AuNPs concentration of 1.46 × 10−6 to
17.47 × 10−6 mmol.

4.2. Gel and other ligands stabilized free AuNPs

Hydrogels, with tunable structure, are excellent carrier for easy ag-
gregated nanoparticles, especially AuNPs (Kong et al., 2016). The ob-
tained AuNPs-hydrogel nanocomposites have unique property of both
metal NPs and hydrogels, which are appealing in terms of green cataly-
sis (Wang et al., 2017c). For example, Zinchenko et al. (2014) prepared
well dispersed and spherical AuNPs with small size of 2–3 nm by
injecting the Au precursor into a DNA hydrogel, which allowed for the
reduction of HAuCl4. The DNA hybrid hydrogel containing AuNPs pro-
vided highly catalytic activity in the reduction of 4-NP to 4-
aminophenol (4-AP) with kapp of 0.09min−1. Some biocompatible mol-
ecules such as chitosan can be prepared as hydrogel. However, AuNPs
are difficult to reduce by this system. Hence, an in-situ photoreduction
method for producing AuNPs in chitosan-AuIII hydrogel system was re-
ported (Wu et al., 2015b). In particular, this strategy had good catalytic
performance for reduction of 4-NP to 4-AP with following a pseudo-
first-order kinetics.

Cetyltrimethylammonium bromide (CTAB), a well-known surfac-
tant, can be used as a stabilizer for AuNPs synthesis (Li et al., 2014).

Image of Fig. 4


Table 1
Comparison of some typical strategies for reduction of 4-NP using free AuNPs.

Type of composition Composition Particle
size
(nm)

kapp (min−1) Concentration of
catalyst
(mM)

knor (min−1

mM−1)
Ref.

Bacteria stabilized
AuNPs

Breynia rhamnoides 25 0.552 – – (Gangula et al., 2011)
Escherichia
coli bacterium

10 0.210 – – (Badwaik et al., 2011)

Escherichia coli K12 50 0.014 0.0042 3.33 (Srivastava et al., 2013)
Shewanella haliotis b10 0.654 0.005 130.8 (Zhu et al., 2016)

Fungi Cylindrocladium floridanum 25 0.027 0.0051 5.29 (Narayanan and Sakthivel,
2011)

Rhizopus oryzae protein
extract

5–65 2.60 × 106–4.99 ×
105

0.0101 2.57 × 108–4.94 ×
107

(Das et al., 2012)

Pycnoporus sanguineus 6.07 0.066 0.019 mg 3.47 mg−1 (Shi et al., 2015)
Fusarium sp. MMT1 strain. 30.6 0.102 – – (Guria et al., 2016)
Trichosporon montevideense 12 1.5 0.0015 1000 (Shen et al., 2016)
Aspergillus sp. WL 4.4 9.8–25.2 0.58 16.9–43.45 (Shen et al., 2017b)

28.4 10.6 3 3.53 (Qu et al., 2017)
Gel DNA hydrogel 2–3 1.5 100 mg 0.015 mg−1 (Zinchenko et al., 2014)

Hydrogels – 2.6 0.005 520 (Wu et al., 2015b)
Others CTAB 13 6 0.25 24 (Fenger et al., 2012)

Olibanum gum 3±4 5.8 – – (Guadie Assefa et al., 2017)
Dimethyl sulfoxide 15–40 5.4 – – (Bhosale et al., 2017)
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CTAB stabilized AuNPs were successfully fabricated for reduction of 4-
NP and demonstrated an intermediate size (13 nm) of AuNPs exhibited
highest reaction rate, which was 60 times higher than the biggest one
(56 nm) (Fenger et al., 2012). Generally, smaller AuNPs propose higher
catalytic performance, while the intermediate size of AuNPs is more ac-
tive than the seeds AuNPs (Nigra et al., 2013). This might be due to the
convergence of increasing surface area of AuNPs versus the size of mol-
ecule and charge transfer during the reduction process. Besides, seeds
AuNPswere too small to efficiently absorb 4-NP. The adsorption process
of nitroaromatics was accompanied by a significant charge-transfer
from the surface of AuNPs to the N-atom of nitroaromatics. Thus,
the charge-transfer played very important role in reduction of
nitroaromatics by Au nanocatalysts. The mechanism of this process
needs to be further investigated in the future. In conclusion, reducing
AuNPs by biomass is fast and green. The size of them can be controllably
varied (Gangula et al., 2011).

5. Reduction of nitroaromatics with supported AuNPs: structure-
dependent effect

Easy aggregation of free AuNPs results inmuch loss of catalytic activ-
ity, so researchers tend to anchor them on the carrier to retain the cat-
alytic activity and recyclability of AuNPs. The supports, including
polymer, oxide, carbon, as well as the combination of them, have been
well developed to anchor AuNPs with good dispersion, large loading
amount, and narrow size distribution. In this part, we discuss some crit-
ical and new studies developed recently, concerning different carrier
supported Au nanocatalysts (Table 2-5).

5.1. Polymer

The research on polymer supported AuNPs mainly follows three di-
rections: i) different shapes which provide different active sites; ii) dif-
ferent kinds of polymers which offer different ligands or functional
group; iii) different synthetic routes of supported Au nanocatalysts
which achieve several sizes of AuNPs. Different shapes of polymer, e.g.
dendrimer, brushes, beads, micelles, nanotubes, flowers, and stars are
used for synthesis of supported Au nanocatalysts (Table 2). In the
early years, most of these structures preferred tomake AuNPs encapsu-
late into the polymer networks, rarely on outside, which restricted the
contact between nitroaromatics and AuNPs in some degree (Wang
et al., 2007). Interestingly, Haruta and co-workers (Kuroda et al.,
2009) developed a deposition reductionmethod that directly deposited
AuNPs on the surface of poly(methyl methacrylate) (PMMA) beads
with 6.9 nm average size of AuNPs. This reported Au nanocatalysts pro-
vided a highest rate constant of 0.432–0.474 min−1 among ever re-
ported Au/polymers catalysts. In addition, this report proposed the
importance of moderate interaction between polymer supports and
AuNPs,which indicates the structure-dependent effect. Hence,many re-
search groups have concentrated their attention on deposition sites of
AuNPs and structure of polymers. For example, Qiu et al. (2012) suc-
cessfully prepared an efficient electrocatalyst, polypyrrole nanotube
(PPyNTs)-supported AuNPs, for catalytic reduction of 4-NP. Hu et al.
(2017) carried out a hyperstar polymer–Au25(SR)18 nanocomposite
for 4-NP reduction using hyperbranched copolymers as macroinitiators
to polymerize the polymer. This obtained hyperstar-Au25(SR)18 catalyst
showed great stability and convenient recovery and could be reused
without losing any catalytic efficiency.

Some polymers, such as poly(amidoamine), poly(propyleneimine),
poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA), and poly
(glycidylmethacrylate), etc., arewell reported for reducing and stabiliz-
ing AuNPs. Most interests concern the catalytic performance of different
polymers supported AuNPs, but speculation is starting concerning the
reactions between AuNPs and the ligands of polymer. For instance,
Zeng et al. (2013) developed a polydopamine (PDA)-encapsulatedmag-
netic microspheres supported Au nanocatalyst for catalytic reduction of
nitrobenzene on the basis of interaction between PDA and AuNPs. The
strong combination of AuNPs and\\NH2 of PDAmade AuNPs bewell re-
duced and dispersed. It is reported that some ligands such as\\SH,
\\NH2,\\OH, etc., have an effect on the properties of AuNPs surface,
thus affecting the available free active sites (Ansar and Kitchens, 2016;
Menuel et al., 2016). In addition, the catalytic performance is signifi-
cantly related to the loading amount of AuNPs. Chen group demon-
strated a raspberry-like polymer composite sub-microsphere with
tunable AuNPs coverage for 4-NP reduction (Liu et al., 2013). The results
indicated this model reaction followed the pseudo-first-order reaction
kinetics, but the study of kinetics was probably oversimplified. There-
fore, they further developed this mechanism and investigated the ef-
fects of many factors (Fig. 5) (Li and Chen, 2013).

Deposition of AuNPs on polymer is important for synthesizing well
dispersed Au nanocatalysts. There are two routes for depositing AuNPs
on polymer, the direct one and indirect one. The two routes are all
based on the formation of polymer supported core-shell structure or
brushes. The direct one deposits AuNPs on polymer carrier using
NaBH4 or other weak reducing agent. The ligands or functional groups
of polymer molecules play very important role in the formation of



Table 2
Different shapes of typical polymer-supported Au nanocatalysts.

Shape Schematic Preparation procedure Particle
size
(nm)

Ref.

Dendrimer i. Graft dendrimer on the surface of silica;
ii. Reduce AuNPs on dendrimer-modified silica by NaBH4;
iii. Self-assemble with polyelectrolytes and remove silica cores.

2.3 ± 0.8 (Wu et al., 2006)

Brush i. Functionalize SiO2 NPs with APTES to provide amino groups;
ii. Graft PDMAEMA onto them with SIPGP;
iii. Reduce AuNPs onto the PDMAEMA brushes.

3.0 (Chen et al., 2014a)

Bead i. Prepare AuNPs of different size using Frens method;
ii. Immobilize prepared AuNPs into the resin beads.

20 (Panigrahi et al., 2007)

Micelle i. Synthesize block copolymer by ATRP;
ii. Prepare core-corona micelles and micelle supported-AuNPs by NaBH4 reduction.

2–4 (Wang et al., 2007)

Nanotube i. Synthesize PPyNTs by a self-degraded template method and ILS/PPyNTs;
ii. Reduce AuNPs on the ILS/PPyNTs and by NaBH4 to form Au/ILS/PPyNTs hybrids and Au/PPyNTs

hybrids.

5.7 (Qiu et al., 2012)

Flower i. Prepare BP;
ii. Synthesize hybrid BP–AuNPs by deposition reduction approach;

5.5 ± 1.7 (Matsushima et al.,
2012)

Star i. Synthesize MAOELP and microemulsion copolymerize inimer BIEM with it;
ii. Prepare hyperstar polymer by polymerization;
iii. Form HS-Au25(SR)18 nanocomposites via ligand exchange.

– (Hu et al., 2017)

APTES: 3-aminopropyltriethoxysilane; PDMAEMA: Poly(2-(dimethylamino) ethyl methacrylate); SIPGP: self-initiated photografting and photopolymerization; ATRP: atom transfer rad-
ical polymerization; PS-PBIEM: polystyrene-polymerizing 2-(2-bromoisobutyryloxy) ethylmethacrylate; PPyNTs: polypyrrole nanotubes; ILS: ionic liquids; BP: boronate microparticles;
MAOELP: 2-methacryloyloxyethyl lipoate.
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well-dispersed AuNPs by electrostatic conjunction of the negatively
charged AuCl4− or positively charged Au(en)23+. Thus the Au precursor
salts should be chosen selectively. For example, Chen et al. (2014a) re-
ported a smart hybrid system that AuNPs were absorbed by SiO2@
PDMAEMA carrier and reduced by NaBH4. Recently, polystyrene/
polyaniline/Au (PS/PANI/Au) composites were fabricated based on the
electrostatic attraction between positively charged Au(en)23+ and
sulfonated PS particles (Sun et al., 2017). The sulfonated PS particles
Table 3
Details of different parameters and reaction conditions of oxides-based Au nanocatalysts for 4-

Catalyst
type

Particle size
(nm)

Amount of Au
(μmol)

Amount of NaBH4

(mmol)
Am
(μm

Au@SiO2 104–43 1.6 1.2 340
Au@hma-ZrO2 6.3 25 12,000 6.8

AuNPs/SNTs 3–5 1 0.15 3.6

Au/SBA-15 2.5 0.133 g/L 0.4 30
AuAS 3.9 0.8 g/L 0.04 0.1
Au@meso-SiO2 2.5 0.05 mL 0.0125 wt

%
0.025 0.0

Au/TiO2 – 1.5 g/L 0.036 0.6
Dumbbell-like
Au-Fe3O4

5 2 mg 0.016 0.4

flower-like Au-Fe3O4 10
Fe3O4@SiO2–Au
MNCsb

5 0.5 mg 0.2 0.2

a hm, hollow mesoporous.
b MNCs, magnetic nanocomposites.
can absorb more Au(en)23+, hence enhancing the amount of loaded
AuNPs and exhibiting excellent catalytic performance with kapp of
3.5196 min−1. Another way of depositing AuNPs on the carrier is
AuNPs are prepared firstly by Frens or Brust methods, the definite
sizes of AuNPs are absorbed by some ligands such as\\SH and\\NH2

subsequently (Liu et al., 2013). This route provides tunable loading
amount of AuNPs by changing the pH of solution and concentration of
polymer and AuNPs. In addition, the catalytic performance can be
NP reduction.

ount of 4-NP
ol)

kapp (10−3

s−1)
Reaction time
(min)

Recycle Ref.

0 14–3.9 60 – (Lee et al., 2008)
5.17 12 4 (Huang et al.,

2009)
10.64 4.7 – (Zhang et al.,

2011b)
17.42 4 5 (Miah et al., 2017)
2.92 24 5 (Xing et al., 2017)

625 1.33 20 5 (Chen et al.,
2014b)

2.83 20 – (Li et al., 2015)
10.5 5 6 (Lin and Doong,

2011)
6.33 6.67

5 14.2 4 9 (Zheng et al., 2013)

Unlabelled image


Table 4
Comparison of different carbon-supported Au nanocatalysts for reduction of nitroaromatics.

Catalyst Nitroaromatics Structure Particle size (nm) kapp (min−1) knor (s−1 g−1) Ref.

USP Au/C 4-NP Encapsulated 33 0.600 1500 (Guo and Suslick, 2012)
Au/GR hydrogel 4-NP Gel 14.6 0.190 31.7 (Li et al., 2012)

MB – 0.237 39.5
CNFs@Au 4-NP Core-shell nanofiber – 0.325 54.2 (Zhang et al., 2013)
GO@NH2-Au NCs 4-NP Nanosheets 14.0 ± 1.0 2.136 2967 (Ju et al., 2014)
Fe@Au-GO 4-NP Core-shell 10–12 0.121 – (Gupta et al., 2014)

2-NP 0.120 –
Au/AC m-Dinitrobenzene Nanowhisker 4 2.100 – (Cárdenas-Lizana et al., 2015)
Au/MC-O 4-NP Tube 10 0.465 0.1 (Guo et al., 2016)
Au/mSiO2@RGO 4-NP Two-dimensional nanohybrid 3–5 0.900 37.5 (Maji and Jana, 2017)

MB 0.726 30.25
Au/g-C3N4 4-NP – 2.6 0.479 7.99 (Fu et al., 2017)
Polydopamine-g-C3N4/Au 4-NP – 25 3.084 10.28 (Qin et al., 2019)
Fe3O4@Carbon 4-NP Core-shell 15.9 5.34 89 (Gong et al., 2018)
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adjusted by usingdifferent size of AuNPs,which opens a new sight in re-
duction of nitroaromatics by Au nanocatalysts.

5.2. Oxides for lots of materials

5.2.1. SiO2

SiO2, a kind of very stable porousmaterial, has beendemonstrated as
an ideal nonmetallic oxide support for encapsulation of metal NPs due
to the confinement effect, offered by their unique properties ofmesopo-
rous channels structure, good thermal, and chemical stability (Xie et al.,
2015; Zhao et al., 2016b). The way of encapsulated AuNPs in SiO2 for
nitroaromatics reduction can be divided into three channels: i) AuNPs
are confined by SiO2 to form yolk-shell or core-shell structure Au
nanocatalyst, where SiO2 is a microsphere; ii) AuNPs are deposited on
the inside or outside the surface of SiO2 nanotubes (SNTs); iii) AuNPs
are embedded on the surface of SiO2 microsphere (Fig. 6).

SiO2 is always formed by a sol–gel process using tetraethyl
orthosilicate (TEOS) as silica source. This procedure can be used in syn-
thesizing Au@SiO2 yolk-shell or core-shell structure. With this respect,
Lee et al. (2008) introduced a nanoreactor framework for 4-NP reduc-
tion using Au@SiO2 yolk-shell catalyst. The prefabricated-AuNPs were
firstly coated by the shell thickness of SiO2 through TEOS undergoing
hydrolysis. Then the Au cores were selectively etched by different con-
centration of KCN, which provided different sizes of AuNPs. Thus the
rate constants varied as the size of Au core changes. This designed
framework was easily separated and dispersed and served as an effi-
cient platform for nitroaromatics reduction. Different with this strategy,
Huang et al. (2009) reported a similar strategy confining AuNPs in SiO2
Table 5
Details of different parameters of Au-based multi-metal NPs for nitroaromatics reduction.

Catalyst Molar ratio Structure Recycles Nitro

Ni@Au/SiO2 5:1 Core-shell dandelion – 4-NP
2-Ni

PtAu alloy/CeO2 1:1 Volcano – 4-NP
Au-Ag/SiO2 6:1 Nanorods – Nitro
PCP@Au-Ag 1:1 Core-shell 6 4-NP
Au–Pd/GO 4.53:1 Flower 6 4-NP
PdAu/Fe3O4 1:1 Rod 8 4-NP
Pt–Au/PDA@RGO 3:1 Dendrimer 6 4-NP
Fe3O4@TiO2@Ag-Au 1:1 Core-shell 8 4-NP
Ni-Au/RGO – 6 4-NP
Au-Cu/RGO 3:1 – – 4-NP
Pd/Au@g-C3N4-N 1:1 – – 4-NP
Au@Pd@RuNPs – Porous 6 4-NP

Cong
Reac
Reac
shell, but the etched onewas SiO2 rather than Au core. In this case, each
sphere only contained one AuNP. AuNP presented anywhere inside the
hollow zirconia sphere, which allowed 4-NP access the active sites of
AuNPs easily, thus further enhancing the catalytic performance. Similar
with this design, a new core–shell Au@resorcinol–formaldehyde nano-
sphere based on multiple Au cores have been reported by Chen et al.
(2014b) This catalyst exhibited uniform pore size (2.5 nm) of SiO2 hol-
low nanospheres and good catalytic performance for 4-NP reduction
with a reaction rate constant 0.08 min−1. The conversion percentage
retained 94% after five cycles.

SNTs, providing a high surface area to volume ratio, are deemed as
potentially good candidates for Au nanocatalyst supports. The deposited
AuNPs onto the inside surface of SNTs are usually dispersed within the
mesopore channels (Zhang et al., 2011b). Therefore, the pore diameter
of SNTs should be big enough to accommodate encapsulated AuNPs
and transit the reactant molecules. In addition, the loading amount of
AuNPs has a great impact on the catalytic performance. A paper re-
ported recently demonstrated that higher of the catalyst loading, the re-
action timewas faster (Miah et al., 2017). In this case, The kapp increased
from 0.2187 to 2.587 min−1 with the increase of Au loading from 0.033
to 0.167 g/ L (Miah et al., 2017). Except for loading amount, other factors
such as interaction between Au and supports, sites where AuNPs lo-
cated, as well as reduction method are needed to further investigate
(Xing et al., 2017). As shown in Fig. 7, two different synthetic methods
of SiO2-confined Au nanocatalyst are proposed using calcine and
grind, respectively. The calcined AuCS catalyst has much bigger size of
AuNPs than the ground one (AuAS), thus results in lower catalytic per-
formance for 4-NP and methylene blue (MB) reduction. Additionally,
aromatics kapp (min−1) knor (s−1 g−1) Ref.

0.498 307 (Le et al., 2014)
troaniline 0.282 174

6.522 2.174 (Zhang et al., 2014b)
benzene 0.405 – (Jayabal and Ramaraj, 2014)

0.1722 144 (Fu et al., 2018)
– – (He et al., 2014)
0.328 4.84 (Tuo et al., 2015)
0.575 1700 (Ye et al., 2016)
0.115 3406.44 (Shen et al., 2017a)
0.662 36.77 (Li et al., 2017)
5.760 960 (Rout et al., 2017)
0.791 52.72 (Fang et al., 2017)
1.452 – (Sahoo et al., 2015)

o red 1.494
tive red 0.804
tive black 5.694



Fig. 5.Mechanism for reduction of 4-NP raspberry-like polymer supported Au nanocatalyst. Adapted with permission from ref. (Li and Chen, 2013) Copyright 2013 the Royal Society of
Chemistry.

Fig. 6. Illustration of SiO2 supported AuNPs for nitroaromatics reduction. (A) Core-shell structure of encapsulating one ormany AuNP; (B) AuNPs are deposited on the inside or outside the
surface of SiO2 nanotubes; (C) AuNPs are half-embedded or combined on the surface of SiO2 microsphere.
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Fig. 7. Synthetic process of (A) calcine reduced AuCS and (B) grind formed AuAS catalysts. Adapted with permission from ref. (Xing et al., 2017) Copyright 2017 Elsevier.

Fig. 8. Mechanism of (A) preparation process and (B) formation mechanism of raspberry-like Au/SiO2 nanocomposite particles. Adapted with permission from ref. (Cao et al., 2016)
Copyright 2016 Elsevier.
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the strong interaction between Au and support andwell dispersed Au in
AuAS are responsible for highly active in catalytic reduction. By limiting
AuNPs in the shell or tubes, the recyclability can be obviously enhanced.

Deposition AuNPs onto the outside of SNTs mainly uses the strong
interaction between AuNPs and some ligands, such as \\SH and
\\NH2 (Jan et al., 2011). For example, Lin et al. (2012) prepared an
amino groups-functionalized SNTs supported Au nanocatalyst for 4-NP
reduction. Amino groups were served as active sites to host more
AuNPs. Different with the deposition AuNPs onto inside or outside of
the SiO2 support, Cao et al. (2016) carried out raspberry-like Au/SiO2

nanocomposite particles, in which AuNPs were half-embedded in the
porous SiO2, toward reduction of 4-NP (Fig. 8). This structure not only
offered a goodmorphological stability, but displayed a good catalytic ac-
tivity and recycling performance, which remained 95% conversion of 4-
NP after five cycles. Most importantly, hydrazinium hydrate with two
amino groups was used to reduce HAuCl4 and the organic ligands
were removed through heating.

5.2.2. TiO2

Embedding AuNPs onmetal oxide supports is an efficientway to im-
mobilize AuNPs, which shows high activity and efficiency for
nitroaromatics reduction. Metal oxides-supported Au nanocatalysts
have gained increasing scientific interest because of the high activity
to a variety of chemical reactions as heterogeneous catalysts (Sinatra
et al., 2015; Zhou et al., 2018b). The nature of oxide supports plays an
important role in the catalytic properties of supported Au nanocatalyst.
It may limit the stabilization, activity, and catalytic efficiency because of
themetal-support interface (Boronat and Corma, 2010). Thus, the inter-
action between AuNPs and supports should be considered cautiously in
order to maximize the synergetic effects.

Although Au nanocatalysts have an efficient catalytic activity for
nitroaromatics reduction, most of them do not have the ability of
chemoselective reduction. It has been reported that TiO2 supported Au
nanocatalysts have unique behavior for chemoselective reduction of
nitroaromatics (Corma and Serna, 2006; Tamiolakis et al., 2013). This
is because the cooperative effect between Au and TiO2 makes many
very specific adsorption sites present at the boundary between Au and
TiO2 (Lai et al., 2016). During adsorption, H2 is dissociated on Au and
nitroaromatics are adsorbed selectively on the catalysts via nitro groups
only, thus allows highly selective reduction (Boronat et al., 2007). The
particle size of AuNPs plays a dominant role in determining the catalytic
activity for nitroaromatics reduction (Wain, 2013). However, different
syntheticmethods of supported Au nanocatalysts have a great influence
on the size of AuNPs. In order to obtain highly active TiO2-AuNPs cata-
lyst, Damato et al. (2013) introduced a two-step polyol approach to pre-
pare size-controlled TiO2-AuNPs catalyst through step-by-step
reduction. This strategy successfully reduced different size of AuNPs
about 12, 20, and 25 nm and obviously increased in catalytic activity.

Studies have reported that the substrate defects of TiO2 could stabi-
lize AuNPs (Chen and Goodman, 2006; Yang et al., 2008). Furthermore,
AuNPs prefer to nucleate at the surface defects, especially step edges
and oxygen vacancies. Significantly, under appropriate conditions, de-
fect sites on the surface of TiO2 can be produced (Barrett et al., 2016).
Hence, TiO2 is well developed for stabilizing AuNPs and improving the
catalytic activity. In this case, Wang et al. (2016) introduced an efficient
strategy for fabricating highly selective Au nanocatalyst in reduction of
nitroaromatics by positioning AuNPs on the edge/corner sites of TiO2

(Fig. 9). Results showed that AuNPs loaded on the edge/corner sites con-
siderably enhanced the catalytic activities. The catalytic activities were
much higher than the conventional Au-TiO2 catalysts. Although the se-
lectivity and activity are enhanced by TiO2 supported Au nanocatalyst,
the yields of desired anilines are still low and needed to improve. In
very recent, they further proposed that the conversion of nitroarenes
could be as high as 99.5% when using Sn decorate the Au/TiO2 catalyst
(Wang et al., 2018b). This research illustrated that the Sn–O–Ti linkage
promoted the formation of oxygen vacancies on TiO2, which resulted in
the high activity and selectivity for metal catalysts (Fig. 10). In addition,
AuNPs were necessary for the formation of anilines because the AuNPs/
support interface could only reduce nitrosobenzene from nitrobenzene.
This strategy theoretically reveals thepeculiarity of hydrogenation of ni-
trobenzene on the Sn–O–Ti interface and may open the door to highly
selective hydrogenation of biomass.

5.2.3. Other metal oxides
Othermetal oxides, such asMgO (Layek et al., 2012), Al2O3 (Shimizu

et al., 2009), and Fe3O4 (Ge et al., 2008), have beenwell used as supports
for stabilizing AuNPs to prevent aggregation.Most of themhave a role in
stabilizing free AuNPs and have a synergistic effect with AuNPs for pro-
viding more active sites (Chaplin et al., 2006; Han et al., 2017; Song
et al., 2015). Nevertheless, the recyclability of AuNPs from many
supports-containing systems is very difficult and also hinders the mon-
itoring process of catalytic reaction by UV–vis spectrophotometer be-
cause of the presence of suspended NPs in reaction solution (Lee et al.,
2010). As a consequence, pursuing for efficient separation technique
to improve the efficiency is very important. Interestingly, as a magnetic
metal oxide, Fe3O4 has the properties of high-surface-area and accessi-
bility, thereby possessing the advantages of beingmagnetically recover-
able and low-cost (Chang and Chen, 2006; Long et al., 2011; Xu et al.,
2012a; Yu et al., 2005). In this manner, Chang and Chen (2009) fabri-
cated a novel magnetically recoverable Au nanocatalyst for 4-NP reduc-
tion by adsorption-reduction of Au3+ ions on chitosan-coated Fe3O4.
Results showed that the catalyst was well separated and did not need
either solvent swelling before or catalyst filtration after the reaction.

Different heterostructures of AuNPs-Fe3O4 exhibit different catalytic
activity toward nitroaromatics reduction. For instance, the flower- and
dumbbell-like AuNPs-Fe3O4 heterostructures were prepared (Lin and
Doong, 2017). They both exhibited bifunctional properties with excel-
lent catalytic activity and high magnetization. However, the dumbbell-
like heterostructure suggested much more obvious catalytic perfor-
mance than the flower-like heterostructure with the pseudo-first-
order rate constants of 0.63–0.72 min−1. Substantially, the catalytic ac-
tivity can be further enhanced using AuNPs-Fe3O4 heterostructures. In-
deed, a paper reported by Chen et al. (Zheng et al., 2013) has well
demonstrated this. Generally, Fe3O4 is used as magnetic core, which is
coated with SiO2. AuNPs are loaded on the Fe3O4-SiO2 magnetic nano-
spheres through Sn2+ linkage and reduction (Fig. 11). In the case of
this design, the catalytic performance is improved with a rate constant
of 0.85min−1. Additionally, it provides convenient magnetic separation
and good reusability with a stable conversion of 91% after six cycles.

AuNPs have attracted wide attention and have been widely used in
photocatalytic field, especially in the oxidation reaction, because of its
SPR property, which provides strong absorption capacity of visible
light (Si et al., 2016; Yang et al., 2015; Yang et al., 2014b). When comb-
ingwith some semiconductors, the catalytic activity of the catalysts can
be changed (Yang et al., 2016b; Zhang et al., 2018). Thus, some reports
investigated the reduction of nitroaromatics by Au nanocatalysts under
light illumination and compared the catalytic activity in the presence
and absence of light. For example, Liu et al. prepared an Au-loaded
Na2Ta2O6 nanocomposite photocatalyst for 4-NP reduction and pre-
pared the catalytic activity in the dark and under visible and solar
light irradiation (Liu et al., 2017b) (Fig. 12). In the dark, AuNPs only
acted as an electrondonor and provided active sites for the reaction.
While under visible light irradiation, the strong SPR of AuNPs exited
electrons, more excess activated electrons were produced, which
promoting the catalytic performance. Different with the reaction pro-
cess under visible light irradiation, the Na2Ta2O6 was be easily excited
and generated plenty of free electrons under UV-light irradiation.
These electrons then transferred from the CB of Na2Ta2O6 to the surface
of AuNPs, which decreased the recombination rate of charge carriers,
the catalysis was further enhanced. Thus, under the irradiation of
solar light, the SPR promotion and charge transfer promotion were re-
sponsible for the high catalytic activity and the catalytic activity was



Fig. 9. Absorption of nitrobenzene on TiO2 supported Au nanocatalyst with oxygen vacancies. Adaptedwith permission from ref. (Wang et al., 2016) Copyright 2016 the American Chem-
ical Society.
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2.35 times higher than in the dark. This design also showed good stabil-
ity and reusability. Similar with this investigation, other Au-based
nanophotocatalysts like silica@apatite@Au composites (Chen et al.,
Fig. 10. Enhanced activity and selectivity for nitrobenzene reduction by Sn decorated M/TiO2
2018), apatite@Au composite nanosheet spheres (Wang et al., 2018c),
and TiO2/Au/CNTs catalyst (Xiang et al., 2014) have been developed
for nitroaromatics reduction under light irradiation. Thus, the catalytic
catalyst. Adapted with permission from ref. (Wang et al., 2018b) Copyright 2018 Nature.
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Fig. 11. Photographic representation for (A) preparation of Fe3O4-SiO2 magnetic nanospheres supported Au nanocatalyst and (B) in reduction of 4-NP using NaBH4. Adapted with
permission from ref. (Zheng et al., 2013) Copyright 2013 The Royal Society of Chemistry.
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activity for nitroaromatics reduction can be improved by combining the
AuNPs and some semiconductors. However, not all of the semiconduc-
tors have this function. The band potential of semiconductors should
bematchedwith the Fermi energy of AuNPs, namely the CB of semicon-
ductors should be higher in energy than the Fermi energy of AuNPs,
making the direct transfer of electrons from semiconductors to AuNPs.
More works would be proposed in the future.

5.3. Carbon materials

5.3.1. Porous carbon
Carbon-based materials are well known as promising candidates for

Au catalytic carriers owing to the characteristic properties of high spe-
cific surface area, wonderful mechanical stability, and unique electrical
property (Huang et al., 2017b; Yi et al., 2018; Zhang et al., 2016).
Carbon-based materials with tailored pore sizes can encapsulate
AuNPs inside its pores and leave enough space for reactant passing.
Thereby AuNPs are highly dispersed in porous carbon and the porous
carbon-encapsulated Au nanocatalysts provide high efficient catalysis
for nitroaromatics reduction with good recyclability (Guo and Suslick,
2012).MChas been done to disperse AuNPs on it to prevent aggregation
and improve the catalytic activity (Wang et al., 2013). AuNPs occupy
both the adjacent pore walls and pore channels, but do not penetrate
the walls (Wang et al., 2015b). In addition, MC can serve as both carrier
and adsorbent for stabilizing AuNPs and adsorbing reactants, respec-
tively. MC with some electron withdrawing groups, such as\\COOH
and C_O groups, promotes the catch of 4-NP, which exhibits high effi-
ciency to remove 4-NP (Guo et al., 2016).

One of the advantages of carbon carriers is the electron-rich ability
(Liang et al., 2017; Zhang et al., 2011a). When linked with AuNPs, the
synergistic effect between carbon and Au makes excellent catalytic ac-
tivity for nitroaromatics reduction. The large surface area of carbon
nanomaterials possess high absorption of organic compounds via π-π
stacking interactions, hence increasing the opportunity to access
nitroaromatics and AuNPs (Geim, 2009; Wu et al., 2017). In this case,
a electrospun carbon nanofibers (CNFs) supported Au core–shell cata-
lyst is fabricated for 4-NP reduction (Zhang et al., 2013). Nitric acid, hy-
drochloric acid and SnCl2 treated CNFs with rich\\OH can reduce and
form small size of AuNPs. More 4-NP is absorbed on catalyst through
π-π stacking interactions. The electron transfer between CNFs and
AuNPs obviously facilitates the uptake of electrons by 4-NP molecules,
further improving the catalytic efficiency. It could also be easily recycled
for reuse. Distinct from CNFs loaded Au nanocatalyst, AC expresses sur-
face oxygen-containing functionalities, which act as AuNPs anchoring

Image of Fig. 11


Fig. 12. 4-NP reduction process (a) in the dark, (b) under visible light and (c) solar light illumination. Adapted with permission from ref. (Liu et al., 2017b) Copyright 2017 Elsevier.
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sites, promote the reduction of AuNPs, lower hydrophobicity of Au
nanocatalyst and enhance catalyst accessibility during synthesis
(Cárdenas-Lizana et al., 2015; Rodríguez-Reinoso, 1998). The ultimate
goal is to obtain highly efficient Au-based nanocatalyst for
nitroaromatics reduction. Nevertheless, the size of AuNPs is needed to
decrease in some case.

5.3.2. Graphene
GR, consisting of single-layer and sp2-hybridized carbon lattice with

excellent electrical, thermal, and mechanical properties, has been ex-
tensively employed as a promising support for Au nanocatalysts
(Deng et al., 2013; Liu et al., 2015; Novoselov et al., 2004; Yang et al.,
2016a; Zhang et al., 2015). GR as a support for the Au nanocatalysts
can improve the conductivity, provide more active sites, and exhibit
synergistic effect between AuNPs and GR, which promote the absorp-
tion of targets via π-π stacking interaction (Liu et al., 2015; Ying et al.,
2017). The catalytic efficiency can be further improved. For example, a
cylindrical piece of AuNPs/GR hydrogel has been synthesized using DP
method and illustrates excellent catalytic performance for 4-NP reduc-
tion, which is about 14 times larger than the PMMA supported AuNPs
mentioned above (Li et al., 2012). The details of these results are
shown in Table 4. In recent, the development tendency of GR-
supported Au nanocatalysts is diversification and high efficiency. Maji
and Jana (2017) synthesized a two-dimensional GR and mSiO2 sup-
ported AuNPs (RGS@AuNPs hybrid) for simultaneous reduction of 4-
NP and photo-degradation of MB dye. Graphitic carbon nitride (g-
C3N4), a sustainable and environmentally friendly metal-free semicon-
ductor which possessing a GR-like two dimensional crystalline struc-
ture, is regarded as innovative photocatalytic material (Jiang et al.,
2017; Qiu et al., 2018; Vidyasagar et al., 2018; Wang et al., 2017b;
Zheng et al., 2016; Zhou et al., 2018a). There are a few researches men-
tioned it had highly contribution to nitroaromatics reduction, while a
recent paper reported the Au/g-C3N4 concerted contact system was
highly efficient for reduction of 4-NP to 4-AP (Fu et al., 2017). Further-
more, under visible light irradiation, the catalytic efficient was largely
enhanced owing to the charge-transfer effect induced by strong interac-
tion between AuNPs and g-C3N4.

5.4. Multi-metal alloy or doping

Another important typical design for the application on
nitroaromatic reduction by Au-based nanocatalysts is in conjunction
with other metal NPs e.g. Pt, silver (Ag), Ni, and palladium (Pd), which
all have wonderful catalytic performance for chemical reactions
(Gong, 2012; He et al., 2017). It is reported that AuNPs alloy or combine
with other transition metals to form multi-metal NPs can potentially
lead to higher catalytic activity as compared to monometallic NPs
(Zhang et al., 2014b). Hammer–Nørskov model identifies that the syn-
ergistic effect induced by multi-metal NPs catalysis is mainly due to
the d-band of metal surface, which is the controlling factor in chemi-
sorption strength (Pozun et al., 2013). Introduction of another metal
NPs results in geometric and electronic effects with structure changes
(Tuo et al., 2015). With this respect, many wonderful reports have
been published for nitroaromatics reduction by Au-based multi-metal
NPs.

AuNPs served as core or shell combine with Ni (Le et al., 2014), Pd
(Qian et al., 2014), and Ag (Jayabal and Ramaraj, 2014) to form
dandelion- and volcano-like structures for highly efficient reduction of
nitroaromatics. The bimetallic structure effects are responsible for pro-
viding more active sites and exhibiting maximum catalytic activity
(Pretzer et al., 2016). Furthermore, the catalytic activity is improved
not only by a multi-metallic system, but also by making porous struc-
tures (Sahoo et al., 2015). Interestingly, in order to improve the catalytic
performance of mono-AuNPs, Godfrey et al. (2017) prepared an Au@
Ag@Au (core@shell@shell) structure using the sequential citrate reduc-
tion technique. This structure provided a second Au–Ag interface. The
extended X-ray absorption fine structure analysis suggested that this
structure exhibited an increased proportion of bimetallic interactions
and indicated higher catalytic activity than the Au@Ag structure.

The new trend of multi-metal NPs-based catalysts toward
nitroaromatics reduction lies upon loading multi-metal NPs on other
supports mentioned above, such as metal oxide and carbon materials.
Themetal oxide used as carrier mainly has TiO2with corner or edges ef-
fect to improve the chemoselectivity and Fe3O4 with excellent magne-
tism to separate easily (Boronat and Corma, 2010). Particularly, Shen
et al. (2017a) synthesized multifunctional Fe3O4@TiO2@Ag-Au micro-
spheres by incorporating Au-Ag bimetallic nanostructures onto the
Fe3O4@TiO2 microspheres, which significantly increased the ‘hot spot’
effect, thereby offering stronger electromagnetic field enhancements
(Fig. 13).

Benefiting from the high conductivity and tremendous surface area,
GO iswidely used as carrier formulti-metal NPs based catalyst. The con-
nection between GO and substrate molecules relies on non-covalent
bonding interactions such as hydrogen bonding, hydrophobic π-π

Image of Fig. 12


Fig. 13. Schematic for (A) fabrication, (B) SEM image, and (C) TEM image of Fe3O4@TiO2@Ag-Au microspheres. Adapted with permission from ref. (Shen et al., 2017a) Copyright 2017
Elsevier.
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stacking, andelectrostatic interactions (Rout et al., 2017). GO can reduce
metal precursors to form a stable suspension of metal NPs/GO without
any reducing agent or surfactant (He et al., 2014). Depending on the de-
sign of Au-Pt NPs/GO structure, the catalytic activity for 4-NP reduction
is significantly enhanced with kapp of 0.228 min−1, which is about 12-
fold and 5-fold higher than the value of homemade AuNPs
(0.018 min−1) and commercial Pt black (0.042 min−1) (Lv et al.,
2015). Moreover, the electron-enhanced effect of RGO support and
strong synergistic effect between noble metal NPs play a significant
role in long-life stability and excellent catalytic performance (Li et al.,
2017). Recently, our team has reported a Pd/Au bimetallic NPs-loaded
g-C3N4 nanosheet for highly efficient catalytic reduction of 4-NP. The
average diameter around 8 nm of Pd/Au NPs are homogeneously dis-
persed on the surface of support, which proposed special p-bonded pla-
nar structure and large surface area (Fang et al., 2017). The comparison
of different parameters of Au-based multi-metal NPs for nitroaromatics
reduction is shown in Table 5.

6. Reduction of nitroaromatics with non-spherical AuNPs: shape-
dependent effect

6.1. Polyhedral Au nanocrystals

The catalytic efficiency of Au nanocatalysts not only depends on the
particle structure and size, but also on the shape (Cao et al., 2001; Nehl
and Hafner, 2008). Different shapes of AuNPs have diverse configura-
tion, which provide various active sites, thus have a great impact on
the catalytic activity. In early, most of studies concentrated on the syn-
thetic method of different shapes of AuNPs (Rashid and Mandal,
2008). Conveniently, Premkumar et al. (2011) fabricated different
shapes of polyhedral AuNPs in high yield and investigated the effect
on catalytic performance for shape distribution. Differently, a seed-
mediated growth approach was employed by Chiu et al. (2012) to syn-
thesize cubic, octahedral, and rhombic dodecahedral AuNCs. With this
respect, they compared the catalytic activity toward NaBH4 reduction
of 4-NP and found that rhombic dodecahedral AuNCs showed the
highest reduction rate.

6.2. Irregular Au nanocrystals

Irregular AuNCs such as rods, flowers, cages, boxes, and stars have
been introduced for reduction of nitroaromatics (Fig. 14). Nanorods
with high surface area of hollow structures show enhanced optical sen-
sitivity and catalytic activity when compared to Au spheres, nanorods,
and hollow spheres (Khalavka et al., 2009). Loading Au nanorods on
the surface of carbon-coated magnetic nanoparticles (Fe3O4@C MNPs)
further enhances the catalytic activity and exhibits wonderful recycla-
bility and stability. Another factor affecting the catalytic activity is the
thickness of the AuNCs wall. Compared the nanocages and nanoboxes,
the kinetic data indicate that Au-based nanocages are catalytically
more active due to the extremely thin but electrically continuous wall
(Zeng et al., 2009). Also, the high content of Au and the accessibility of
both outer and inner surfaces through the pores in wall are responsible
for high efficient catalysis.

It is reported that branched Au nanostructures can enhance the per-
formance in many reactions (Guerrero-Martínez et al., 2011). In this
case, some researchers investigate the catalytic activity of multi-
branched Au nanoantennas, nanostars, and nanoflowers (Soetan et al.,
2016). The results showed that the efficient absorption of 4-NP on the
surface of these shapes lied in the shorter protrusions. This is because
there are (100) and (110) crystal planes on the shorter protrusions,
where had high density of atomic steps and kinks, promoting higher
catalytic activity for 4-NP reduction. Hence, it is very important to ob-
tain Au nanocatalyst of crystal plane with high index facets.

In conclusion, the nature of supports has a significant impact on cat-
alytic performance of Au nanocatalysts. As for most polymer-supported
Au nanocatalysts, the shapes of the catalyst can be controlled. Many of
them can reduce AuNPs in situ by specific ligands without adding any
reducing agent. But the catalytic activity and stability of AuNPs should
be further improved. The oxide supported Au nanocatalysts like SiO2

can effectively overcome this because of the confinement effect. With
this design, the recycle and stability of Au nanocatalysts are greatly en-
hanced with no Au leaching. Other metal oxides as supports will form
the synergistic effectwith Au and the catalytic performance is improved
because more active sites are provided. Interestingly, the catalysts are
separated easily in the presence of some magnetic metal oxides
(Gawande et al., 2014; Shokouhimehr et al., 2018). Nevertheless, the
synthetic process is complex and the activity is easier to lose in air.
The surface of carbon usually contains a large number of oxygen-
containing groups, which benefits the deposition and stability of
AuNPs. Some of them possess electron-rich ability and high absorption
of organic compounds via π-π stacking interactions, hence increasing
the opportunity to access nitroaromatics and AuNPs, improving the cat-
alytic performance, and broadening the application of Au nanocatalysts,
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Fig. 14. Figures and TEM images of Au nanocrystals with different shapes. (A) Polyhedral and nanorods; Adapted with permission from ref. (Premkumar et al., 2011) Copyright 2011
Springer. (B) flowers; Adapted with permission from ref. (Liu et al., 2017a) Copyright 2017 Elsevier. (C) cages; (D) boxes; Adapted with permission from ref. (Zeng et al., 2009)
Copyright 2010 the American Chemical Society. (E) stars. Adapted with permission from ref. (Ma et al., 2017) Copyright 2017 Multidisciplinary Digital Publishing Institute.
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especially photocatalysis. Other new supports, such as membrane
(Zhong et al., 2018), montmorillonite (Rocha et al., 2018), and molecu-
lar sieve (Kusumawati et al., 2018), have been developed and showed
highly catalytic performance. The investigation does not just tend to
some new supports, but to some new technology like photocatalysis
in recent.

7. Comparison with other metal catalysts

Except AuNPs, othermetallic NPs including Pd (Shokouhimehr et al.,
2013), Pt (Berillo and Cundy, 2018), Ag (Wu et al., 2013), Cu (Pi et al.,
2018), and Ni (Xia et al., 2018) NPs have also been used for
nitroaromatics reduction and the mechanism is similar to that of
AuNPs. Just like AuNPs, these free metallic NPs are unstable and easy
to aggregate. Accordingly, stabilized metal nanocatalysts are needed
and desirable for nitroaromatics reduction (Kim et al., 2015;
Shokouhimehr et al., 2014). Among these well stabilized metallic
nanocatalysts, Pd-based nanocatalysts always show the highest cata-
lytic activity for nitroaromatics reduction, even higher than Au
nanocatalysts (Deraedt et al., 2014; Shokouhimehr et al., 2018). This is
because PdNPs have very strong adsorption for activated hydrogen,
which is the rate-limiting step for nitroaromatics reduction (Durand
et al., 2008). The catalytic activity is enhanced because ofmore activated
hydrogen. While the rate-limiting step of Au nanocatalyt is the transfer
ability of hydrogen to products. Even so, the high catalytic efficiency of
Au nanocatalysts under low temperature is still significant. Simulta-
neously, the low toxicity of Au nanocatalysts is more suitable for practi-
cal application.

Ag-based nanocatalysts have widely used in nitroaromatics re-
duction because of its much lower cost, high activity and selectivity
(Ji et al., 2016). However, in most cases, the catalytic activity is not
as high as Au nanocatalysts. Besides, the bactericidal ability and tox-
icity of Ag nanocatalyts cannot be ignored, which will be harmful for
beneficial microbes and humans. The other metallic nanocatalysts
like Cu and Ni nanocatalysts are very cheap and have also been re-
ported for the reduction of nitroaromatics in these years (Xia et al.,
2016; Xiao et al., 2016). But the chemical tolerance and catalytic ac-
tivity of them are obviously not as good as Au nanocatalysts. In addi-
tion, CuNPs also show high propensity for oxidation, which may
affect the catalysis.

Image of Fig. 14
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8. Conclusions, future outlook and challenges

Efficient reduction of nitroaromatics into corresponding amines
compounds has paid much attention. Au nanocatalysts can offer
an efficient way because of the high catalytic efficiency under low
temperature and specific size, synergistic, interfacial, and shape ef-
fects. Due to the trends in size increase of AuNPs when sintering,
several synthetic strategies of Au nanocatalyst are widely employed
to suppress, including: i) immobilizing or depositing AuNPs on
high-surface area substances; ii) encapsulating them in the chan-
nels or porous materials; iii) stabilizing them with surface bound li-
gands. Thus, new green and simple routes of Au nanocatalyst
synthetic methods with large loading amount, highly dispersed
AuNPs, and wonderful catalytic efficiency for nitroaromatics reduc-
tion are still needed. The future outlook and challenges are pro-
posed as follows:

i). Most of studies focus on the synthesis of highly efficient Au
nanocatalysts for nitroaromatics reduction but ignore the reason
for the high efficient. In addition, the combination of photocata-
lytic materials is a trend to improve the catalytic performance
and energy saving, but the investigation on the mechanism of
nitroaromatics reduction under light irradiation should be fur-
ther developed.

ii). Free AuNPs have high catalytic activity but are easy to aggregate.
For this, supported Au nanocatalysts are development, but some-
times the recovery is still limited by unstably interfacial interac-
tion between supports and Au. Thus, the design of core-shell or
yolk-shell is a good choice.

iii). For recycle, magnetic materials are usually used as a core to sta-
bilize AuNPs and separate Au nanocatalyst easily, but the mag-
netic materials only act as a support. Some magnetic metal NPs
with the ability to reduce nitroaromatics, such as Ni NPs, can be
used to combine with AuNPs to enhance the catalytic perfor-
mance by bimetallic synergetic effect.

iv). An alternative promising way to enhance the catalytic perfor-
mance is the synthesis of irregular AuNPs or multi-metallic NPs
owing to the edge and corner effects or synergistic effect.

v). Most of works provide efficiently active catalysts, but few of
them have been suited to the large-scale industrial use. Thus,
synthesis of large-scale industrial used catalysts is needed to fur-
ther develop.

vi). New materials supported Au nanocatalysts present huge poten-
tial in environmental applications. Particularly, a productive
way of AuNPs may be combination with other biocompatible
materials deposited on different supports either in micro- and
nanometer scales. In this manner, metal–organic frameworks
system provides a good choice.

vii). Most consideration of researchers is on reducing nitroaromatics
in aqueous phase by NaBH4 solution, further investigation on
other medium such as sediment and soil and organic solution is
needed to consider.

viii). Most of the papers focus on the reduction of nitroaromatics but
few of themmention the reduction of aliphatic nitro compounds.
Thus, more investigations on themechanism and reduction of al-
iphatic nitro compounds by Au nanocatalysts should be devel-
oped in the future.

ix). It is reported that the surface electron density of AuNPswould be
somewhat responsible for the catalytic property of some mate-
rials like TiO2 supported Au nanocatalysts (Yang et al., 2016a).
The photo-induced electron transfer can further enhance the
oxidability of Au nanocatalysts (Yang et al., 2014a). Thus, the
electron behavior including electron transfer and density may
have effect on the reduction also. In this case, the electron-
dependent effect of Au nanocatalysts should be considered in
the future work.
x). For further improvement of the catalytic activity, the single-atom
catalyst is deserved to investigate.
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