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Rhamnolipids have excellent solubiliza-
tion activity even below CMC concen-
tration.

Micellar HOCs bioavailability is based on
hemi-micelle formation on cell surface.
Rhamnolipids-induced release of LPS
and rhamnolipids adsorption can
change CSH.
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The widespread existence of hydrophobic organic compounds (HOCs) in soil and water poses a potential health
hazard to human, such as skin diseases, heart diseases, carcinogenesis, etc. Surfactant-enhanced bioremediation
has been regarded as one of the most viable technologies to treat HOCs contaminated soil and groundwater. As a
biosurfactant that has been intensively studied, rhamnolipids have shown to enhance biodegradation of HOCs in
the environment, however, the underlying mechanisms are not fully disclosed. In this paper, properties and pro-
duction of rhamnolipids are summarized. Then effects of rhamnolipids on the biodegradation of HOCs, including
solubilization, altering cell affinity to HOCs, and facilitating microbial uptake are reviewed in detail. Special atten-
tion is paid to how rhamnolipids change the bioavailability of HOCs, which are crucial for understanding the
mechanism of rhamnolipids-mediated biodegradation. The biodegradation and toxicity of rhamnolipids are
also discussed. Finally, perspectives and future research directions are proposed. This review adds insight to
rhamnolipids-enhanced biodegradation process, and helps in application of rhamnolipids in bioremediation.
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1. Introduction

The anthropogenic environmental pollution by hydrophobic organic
compounds (HOCs) is well documented (Luo et al., 2014; Wang et al.,
2010). The widespread existence of HOCs in soil and water causes seri-
ous problems to ecosystem and human health, and thus has drawn in-
creasing attentions (Cheng et al., 2016; Lee et al., 2014; Lin and Gan,
2011). It is reported that these compounds are carcinogenetic and
teratogenetic, and could cause allergy, skin diseases, heart diseases,
etc., after long-term exposure (Cheng et al., 2018; Xiong et al., 2018;
Daifullah and Girgis, 2003; Standeker et al., 2007). The sound and effec-
tive techniques to treat HOCs contaminated sites have been proposed,
and bioremediation is considered to have higher ecological significance
and greater promise (Budd et al., 2009; Cheng et al., 2017b; Zhu et al.,
2010). However, due to the hydrophobicity, most of HOCs either exist
as non-aqueous phase liquids (NAPLs) or strongly adsorb onto soil ma-
trix, which greatly decrease the bioremediation efficiency (de la Cueva
et al, 2016; Ren et al,, 2018).

Various studies have shown that the addition of surfactants facili-
tates removal of HOCs from contaminated soil and water (Mao et al.,
2015; Trellu et al., 2016; Zhong et al., 2017). They are able to decrease
the surface/interfacial tension of immiscible phase, increase the appar-
ent solubility of HOCs, and thereby enhance the bioremediation
(Cheng et al., 2017b; Zhang et al., 2015). Compared to chemical surfac-
tants, biosurfactants have higher solubilizing ability towards hydropho-
bic pollutants (Barnadas-Rodriguez and Cladera, 2015; Yu et al., 2015).
In addition, biosurfactants are more eco-friendly than most chemical
synthetic surfactants (De et al., 2015; Yadav et al., 2016). As a result,
biosurfactants have been promising alternatives in surfactant-based
bioremediation (Zhong et al., 2017). Rhamnolipids, as a class of anionic
glycolipid biosurfactant, have attracted particular interest. They present
the maximum number of patents and publications among
biosurfactants. According to Miiller et al. (2012), >200 patents were reg-
istered for biosurfactants until 2012, and 50% of them are related to
rhamnolipids. At the end of 2017, the numbers of publications on
rhamnolipids and biosurfactants have reached 2100 and 4500,
respectively.

Rhamnolipids are the most extensively studied and used
biosurfactant in bioremediation area (De et al., 2015; Kim et al., 2015).
They are biodegradable, less toxic, and can be produced from renewable
resources (Gudifia et al., 2015; Ramirez et al., 2015). Studies also sug-
gested that rhamnolipids are as good or better than synthetic surfac-
tants (e.g., Tween 80 and Triton X-100) in enhancing aqueous
solubility of HOCs, such as alkanes (Kiran et al., 2016), polycyclic aro-
matic hydrocarbons (PAHs) (Mahanty et al., 2011), polychlorinated bi-
phenyls (PCBs) (Chakraborty and Das, 2016), and pesticides (Singh

et al,, 2016). Moreover, it has been demonstrated that the presence of
rhamnolipids could decrease the energy consumption of
biodesulfurization by resting cells in biphasic O/W systems with hydro-
carbon as the oil phase (Raheb et al., 2012). Due to these advantages,
many studies have been performed on rhamnolipids-enhanced biore-
mediation in recent years (Llado et al., 2012; Tahseen et al., 2016).

Some review papers (Bai et al., 2017; HoSkova et al., 2013;
Lamichhane et al., 2017; Shao et al., 2017) and few book chapters
(Galabova et al., 2014; Leitermann et al., 2010) have summarized data
on the application of rhamnolipids in bioremediation. To the best of
our knowledge, however, these articles are mainly focused on biosyn-
thesis and characteristics of rhamnolipids (Bai et al., 2017; HoSkova
et al., 2013), influence of rhamnolipids on microbial metabolism process
(Shao et al., 2017), or simply the remediation efficiency (Lamichhane
et al., 2017). To date, a comprehensive overview on mechanisms for
rhamnolipids to enhance biodegradation of HOCs from a microscopic
view point of interactions between rhamnolipids, HOCs, and microor-
ganisms, are still in scarce. However, such an overview is important to
fill the knowledge gap and definitely required, and thus is the focus of
this article.

2. Rhamnolipids

As a biosurfactant produced by Pseudomonas aeruginosa,
rhamnolipids were first reported in 1949 (Jarvis and Johnson, 1949).
They are composed of L-rhamnose and 3-hydroxy fatty acids moieties
(Kiran et al., 2016). Up to date, over 60 congeners and homologues of
rhamnolipids have been reported in literatures (Kourmentza et al.,
2018). They are different in the number of rhamnose rings, chain length,
and the saturability of fatty acid moiety (Lovaglio et al., 2015). Four
common rhamnolipid homologues are Rha-C;¢-C;o, Rha-C;g, Rhaz-Cyo-
C10 and Rhay-Cyq, respectively (Liu et al.,, 2017).

It was reported that rhamnolipids can lower the interfacial tension
of hexadecane/water from 43 to below 1 mN/m, decrease the surface
tension of water from 72 to <30 mN/m, and have critical micelle concen-
tration (CMC) value in the range of 10 to 200 mg/L (Dubeau et al., 2009;
Hoérmann et al., 2010; Miiller et al., 2012). CMC is an important charac-
teristic for surfactants, defined as the concentration of surfactants at
which micelles begin to form and corresponds to the point at which
the surfactant achieves the lowest stable surface/interfacial tension
(Santos et al., 2016). Surface activity of rhamnolipids can be maintained
even under extreme conditions of temperature (able to withstand 90 °C
up to 120 min, and even 120 °C for 15 min) and pH (range from 3 to 11)
(HoSkova et al., 2015; Jackson et al., 2015; Pornsunthorntawee et al.,
2008). Patel and Desai (1997a) and Patel and Desai, (1997b) reported
that the hydrophilic/lipophilic balance (HLB) is 13 for
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monorhamnolipid and 21 for dirhamnolipid, which are indicative of the
strong emulsifying capacity. According to Lebrén-Paler et al. (2006),
pKa values of Rha-Cq-Cyp are 4.28 and 5.50, respectively, with the con-
centration below and above the CMC, suggesting rhamnolipids belong
to weak acid, which is due to their terminal carboxylic group. In com-
pare with the synthetic surfactants, rhamnolipids are more biocompat-
ible, which enable them to be used as a carbon source supporting
microbial growth (Galabova et al., 2014; Leitermann et al., 2010). In ad-
dition, rhamnolipids have a minimal toxic influence on aquatic microor-
ganisms, plants, and indigenous microbial communities (Johann et al.,
2016). Due to these properties, rhamnolipids are suitable for various in-
dustrial applications, such as wetting, solubilization, foaming, emulsifi-
cation, detergents, phase dispersion, and lubrication (Lovaglio et al.,
2015).

Bacteria of Pseudomonas genus are the main rhamnolipids-
producing strains (De et al., 2015); however, many other species also
have been found to produce rhamnolipids, e.g., Pseudoxanthomonas sp.
(Nayak et al., 2009), Acinetobacter calcoaceticus (HoSkova et al., 2013),
Burkholderia sp. (Tavares et al., 2013) and Streptomyces sp. (HoSkova
et al., 2015). An overview of rhamnolipids producing bacteria is
shown in Table 1.

It has been reported that many microorganisms can utilize renew-
able resources to produce rhamnolipids (De et al., 2015; Prabu et al.,
2015; Radzuan et al., 2017), for example, a P. aeruginosa can produce
as much as 0.43 g/L of rhamnolipids when they grow on agro-
industrial by-products (Radzuan et al.,, 2017). This is conducive to pro-
ducing various homologues (Lovaglio et al., 2015; Ramirez et al., 2015).

The carbon, nitrogen and phosphorus source types have significant
impacts on the production of rhamnolipids (Hoskova et al., 2015;
Varjani and Upasani, 2016). Rhamnolipids are generally produced
under growth-limiting conditions, but C-limitation was not included
(Miiller et al., 2012). P-limitation and N-limitation have been mostly de-
scribed for rhamnolipids production (De et al., 2015; Varjani and
Upasani, 2017). Interestingly, the replacement of nitrogen source, for
example NaNOs instead of (NH,4),S0,, could significantly enhance the
total rhamnolipids concentration (Hoskova et al., 2013). In addition to
N-limitation and P-limitation, limitation of trace element salts and mul-
tivalent ions, such as Mg, Ca, K, and Na can also improve the yield of
rhamnolipids (Arora et al., 2016; Gudifia et al., 2015). The most impor-
tant conditions influencing production of rhamnolipids by P. aeruginosa
have been discussed in detail by Miiller et al. (2011). Several possible
strategies are proposed to optimize the production of rhamnolipids, in-
cluding (a) process optimization (Long et al., 2017); (b) screening for
new non-pathogenic rhamnolipids-producing strains (Zhao et al.,
2015); (c) recombinant production of rhamnolipids (Tiso et al., 2015);
and (d) biocatalysis for customized rhamnolipids glycolipids (Miiller
et al., 2012).

3. Solubilization of HOCs
3.1. Solubilization mechanism

Comparing with the bulk phase, the intermolecular forces of an in-
terface are not balanced because of excessive free energy, which is

Table 1
An overview of recent studies on rhamnolipid producing bacteria.

measured as interfacial tension (Ozdemir and Malayoglu, 2004;
Prosser and Franses, 2001). Rhamnolipids are composed of a hydro-
philic head (one or two rhamnose molecules) and a hydrophobic tail
(one or two 3-hydroxy fatty acid chains) (Galabova et al., 2014). The ad-
dition of rhamnolipids to a given solution will reduce the interfacial ten-
sion due to the adsorption of rhamnolipids at liquid-air or liquid-liquid
interface (Pacwa-Plociniczak et al., 2011). Based on the classic surfac-
tant aggregation theories, at concentrations lower than CMC, surfactant
molecules exist alone as monomers in aqueous phase, and accumulate
at the liquid-liquid or air-liquid interface (Ansari et al., 2013; Guo
et al., 2016). Once the surface adsorption of rhamnolipids reaches its
threshold, the monomers in the bulk phase start to form aggregates as
the Gibbs energy required for establishing non-polar chains in contact
with water is higher than that of the repulsive head group interactions
(Rodrigues, 2015). Manko et al. (2014) systematically studied the ther-
modynamic properties of rhamnolipid micellization and adsorption.
The maximal surface excess concentration of rhamnolipids at water-
air interface was determined as 2.01 x 10~® mol/m? by using the
Gibbs adsorption equation. The corresponding minimal area occupied
by one rhamnolipid molecule at the water-air interface was measured
as 82.6 A2, Physical rhamnolipids interactions with HOCs will enhance
their aqueous dispersion, which arises from hydrophobic interactions
between HOCs and rhamnolipid monomers below the CMC, or
rhamnolipids encapsulation of HOCs into micelle cores above the CMC
(Hua et al., 2003; Zhang and Miller, 1994). The process of partitioning
HOCs into a micellar core is called solubilization.

For HOCs contaminated soil environment, the addition of
rhamnolipids can be expected to enhance bioremediation by desorption
and solubilization of HOCs (Cheng et al., 2017a). In generally, the hydro-
philic head of rhamnolipids tends to enter into the water and the hydro-
phobic tail is apt to combine with HOCs. At low concentrations, the
accumulation of rhamnolipid monomers at the soil-oil interface would
cause the repulsive force between solid phase and rhamnolipid hydro-
philic head, resulting in desorption of HOCs from soil (Cheng et al.,
2017a; He et al,, 2015). As concentration increasing, the interficial ten-
sion would be decreased due to rhamnolipid molecules gradually occu-
pying interficial sites (Santos et al., 2016). When rhamnolipids
concentrations in the aqueous phase are above CMC, HOCs would be in-
corporated into hydrophobic cores of micelles through strong competi-
tion between rhamnolipid micelles and soil particles (Lamichhane et al.,
2017; Pacwa-Plociniczak et al., 2011). This solubilization facilitates the
mobilization and availability of HOCs, which assists in the subsequent
treatments.

It is generally accepted that solubilization is mainly caused by the
formation of micelles when surfactant concentrations are above the
CMC. However, several reports have suggested that solubilization activ-
ity of rhamnolipids to HOCs is excellent even at very low concentration.
For example, in a recent study by Zhong et al. (2016) it showed that
rhamnolipids could enhance the solubility of octadecane and
hexadecane with concentrations both below and above the CMC, and
the solubilization was more efficient at sub-CMC concentrations. Simi-
larly, Singh et al. (2016) reported rhamnolipids could effectively en-
hance the aqueous phase solubility of chlorpyrifos at very low
concentrations (below CMC).

Strain

Carbon source

Main composition

Reference

Burkholderia thailandensis
Burkholderia kururiensis
Pseudomonas aeruginosa
Acinetobacter calcoaceticus
Enterobacter asburiae
Pseudomonas chlororaphis
Pseudomonas nitroreducens
Pseudomonas stutzeri

Glycerol

Glycerol

Sunflower oil

Sunflower oil/sodium citrate
Sunflower oil/sodium citrate
Waste cooking oil

Glucose

Lignite coal

Dirhamnolipid
Dirhamnolipid
Rha-C;o-Cyo Rhay-Cyo-Cio
Dirhamnolipid
Monorhamnolipid
Dirhamnolipid

A mixture of rhamnolipids
A mixture of rhamnolipids

Funston et al. (2016)
Tavares et al. (2013)
Amani et al. (2013)
Hoskova et al. (2013)
Hoskova et al. (2013)

Lan et al. (2015)

Onwosi and Odibo (2012)
Singh and Tripathi (2013)
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It was hypothesized that the solubilization activity of rhamnolipids
to HOCs is related to the aggregation behavior at low concentrations
(Zhong et al., 2016). Studies have shown the concentrations at which
rhamnolipids form aggregates, namely critical aggregation concentra-
tion (CAC), can be lower than CMC. Using dynamic lighter scattering
method, Abbasi et al. (2013) observed the signs of aggregate formation
in multi-component rhamnolipids system with the concentrations
below CMC. Recently, the results of cryo-transmission electron micros-
copy (cryo-TEM) and dynamic light scattering (DLS) further demon-
strated the occurrence of dirhamnolipid aggregates when below CMC
(Zhong et al,, 2015).

The mechanism for rhamnolipids to enhance aqueous dispersion of
HOCs can be summarized as follows (Fig. 1). (i) Rhamnolipid monomers
accumulate at the interface between HOCs and aqueous phase. By re-
ducing the interfacial tension they decrease the repulsive forces be-
tween these two phases, and allow formation of micro droplets. (ii)
Rhamnolipid molecules form co-aggregates with some HOCs or form
micelles to incorporate HOCs, which are responsible for HOC solubiliza-
tion at rhamnolipids concentrations below CMC and above CMC,
respectively.

3.2. Biodegradation of solubilized HOCs

Bioavailable is a key term in biodegradation, which is defined as
“substrates are freely available to cross microbial cell membrane from
the medium the microorganism inhabits at a given time” (Semple
et al.,, 2004). For HOCs, the biodegradation involves degrading sorbed
or NAPL-state HOCs at the interface, aqueous HOCs (dissolution as a mo-
lecular state), and micellar HOCs (pseudo-solubilization). It is known
that the rhamnolipids/HOCs co-aggregates, as tiny HOCs reservoirs,
can enhance the mass transfer to microbial cells (Bordoloi and
Konwar, 2009; Sponza and Gok, 2010). Therefore, the addition of
rhamnolipids can enhance bioavailability of the sorbed or NAPL-state
HOCs (Brown, 2007; Guha and Jaffé, 1996a, 1996b; Lanzon and
Brown, 2013). However, it has been observed that the increasing appar-
ent solubility of HOCs due to rhamnolipids solubilization does not al-
ways result in enhancement of bioavailability (Liu et al., 2017; Zhong
et al.,, 2014). Potential mechanism regarding these contradictory results
is whether to form hemispherical micelle or not (Brown, 2007; Brown
and Al Nuaimi, 2005). When surfactants adsorb onto a surface, they
will form hemi-micelles on it, which is similar to the formation of mi-
celles in the aqueous phase. These hemi-micelles have hydrophobic
cores and can provide additional partitioning sites for HOCs (Lanzon
and Brown, 2013; Zhou and Zhu, 2005). According to a model devel-
oped by Guha and Jaffé (1996a) and Guha and Jaffé, (1996b), aqueous

L‘ Solublllzatlon % Aggregate
%%é%g Solubilization ability

el i i s —. = ————— -
Surface tension

Properties

>
>

Concentration of rhamnolipid

Fig. 1. Schematic representation of rhamnolipids-enhanced the aqueous dispersion of
HOCs.

HOCs can be transported into cells, and the pathway is described as
(A) in Fig. 2. For the mass transfer from micellar cores into microbial
cells, it was assumed to have three steps (pathway (B)). The first step
is transporting surfactant/HOCs aggregates from the bulk fluid to cells.
Then micellar HOCs will be transported into hemi-micelles adsorbed
on the cell surface under the condition of micelle breakdown due to mi-
cellar relaxation kinetics. Finally, HOCs will be transferred from hemi-
micelles into cells. The later research found that the formation of
hemi-micelles on the cell surface is necessary for surfactant-enhanced
biodegradation of HOCs (Brown, 2007; Brown and Al Nuaimi, 2005).
And thus a limiting case was supplemented in the process of mass trans-
fer (pathway (C)): if there is no hemi-micelles formation on cell surface,
the direct transport of micellar HOCs into cells will not occur.

Based on above revised model, Lanzon and Brown (2013) made a se-
ries of experiments and the results demonstrated that the effect of sur-
factant solubilization on the biodegradation of HOCs is related to
following aspects. (1) The formation of hemi-micelles on cell surface.
Specifically, when hemi-micelles adsorbed on the cell surface are dom-
inant in the system, micellar HOCs are directly available to cells; while
surfactant monomers are dominant in the system, micellar HOCs can't
be directly available to bacterial cells. (2) The impact of partitioning
and mass transfer on bioavailable HOCs concentration. A system is at
equilibrium in which has a sufficiently small mass of HOCs. After adding
surfactant, if solid-phase HOCs aren't residual due to partitioning into
micelles, the bioavailable HOCs concentration will be decreased, and
thus depress biodegradation rate. (3) The ability of microbe utilizing
the enhanced available HOCs. For example, when microbial growth is
already at maximum specific growth rate, the addition of surfactant
will not affect the total biodegradation rate.

4. Effect of rhamnolipids on affinity between cells and HOCs

Rhamnolipids not only have the ability to increase the solubility of
HOCs, but also have biological effects of modifying cell surface proper-
ties (De et al., 2015). Cell surface hydrophobicity (CSH) is an important
parameter for microorganisms. It has been known that CSH can affect
the efficiency of many bioprocesses, including cell adherence to HOCs
and cell-to-cell interactions (Habimana et al,, 2014). It has been well re-
ported that bacterial CSH can be affected by surfactants (Owsianiak
et al., 2009; Sun et al., 2016). For example, Owsianiak et al. (2009)
found that rhamnolipids could increase the CSH of microbial consortia
with low hydrophobicity, while reduce the CSH microbial consortia
with high hydrophobicity. Knowledge of how rhamnolipids affect CSH
is important for evaluation on the affinity between cells and HOCs and
thus biodegradation of HOCs.

4.1. Rhamnolipids-induced removal of outer membrane components

CSH depends on the proportion of hydrophilic and hydrophobic re-
gions on the cell envelope. For most of Gram-negative microorganisms,
the hydrophobicity is attributed to certain lipids and proteins presented
in the outer membrane of the cells (Zimmermann et al., 2016). For ex-
ample, outer membrane (OM) of Gram-negative bacteria comprises an
inner leaflet of phospholipids, an outer leaflet of LPS, and proteins
inserted in the lipid bilayer (Whitfield et al., 1997). From inside to out-
side, lipid A tail, core oligosaccharide including 2-keto-3-deoxyoctonic
(KDO), and O-antigen together constitute the typical structure of LPS
(Kastowsky et al., 1992). One way for rhamnolipids to change CSH is
to induce the removal of LPS from bacterial cell envelope, which has
been firstly reported by Al-Tahhan et al. (2000). The possible mecha-
nisms for rhamnolipids-induced LPS release have been proposed
(Fig. 3), which are: 1) rhamnolipids could directly remove LPS or the
0-antigen part of LPS through micellar capture, resulting in the expo-
sure of hydrophobic LPS lipid A (Bhattacharjee et al., 2016; Zhao et al.,
2011); 2) rhamnolipids form complex with Mg?™, which is crucial for
bridging LPS molecules and maintaining stability of LPS-LPS interactions,
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(A) Aqueous Pathway

Bacterial
Cell

Bulk
Fluid

(B) Micellar Pathway

(C) Closed Micellar Pathway

@ Aqueous HOC
@ Micellar HOC

Fig. 2. Schematic diagram describing the uptake of HOCs by the bacterial cell Pathway (A): the transfer of aqueous HOCs into the cell; Pathway (B): the direct mass transfer of micellar HOCs
into the cell when the formation of hemi-micelles on the cell surface occurs; Pathway (C): the micellar HOCs are not directly bioavailable when no hemi-micelles are formed on the cell

surface. Adapted with permission from refs (Brown, 2007; Lanzon and Brown, 2013).

leading to direct release of LPS; 3) rhamnolipids can affect the structure of
OM proteins which are responsible for the synthesis of LPS (Andersen and
Otzen, 2014), and this has been evidenced by Fourier Transform Infrared
Spectroscopy (FTIR) spectra (Zeng et al., 2011). It should be noted that the
replacement or denaturation of components in OM would result in the ir-
reversible alteration of CSH (Zhang and Zhu, 2014).

4.2. Adsorption of rhamnolipids

Another way to modify the CSH can be attributed to adsorption of
rhamnolipids on the cell surface driven by polar interactions between
rhamnolipid molecules and functional groups on bacterial outer enve-
lope serving as adsorption sites (Hou et al., 2017). The bacterial cell sur-
face contains hydrophilic and hydrophobic sites. The orientation of
rhamnolipids adsorbed onto the cell surface determines the effect of
rhamnolipids on CSH. Fig. 4 illustrates the relationship between the ori-
entation and the change of CSH. On the one hand, rhamnolipids may ad-
sorb to the cell surface through the interactions between carboxyl or

I(° Rhamnolipid
° Mg2+

Lipopolysaccharides

I

i

<

Protei

£y
S

S00500500056005858b6 666666668

rhamnosyl groups and polar structures of cell surface by hydrogen
bonding, dipolar, electrostatic, or short-term forces (e.g., O-antigen of
LPS), turning cell surface more hydrophobic (Liu et al., 2014). On the
other hand, the adsorption could also be driven by van der Waals and
hydrophobic forces between nonpolar structures of cell surface
(e.g., lipids and some proteins) and hydrophobic tails of rhamnolipids,
causing the decrease of CSH (Gérna et al., 2011; Zhong et al., 2008).
Overall, adsorption of rhamnolipids on cell surface may result in the ex-
posure of the group with an opposite polarity into the environment
(Manko et al., 2014). Such a way of orientation of rhamnolipids is al-
ways inclined to change CSH from hydrophilic to hydrophobic, or
from hydrophobic to hydrophilic (Zhong et al., 2007). The CSH of Bacil-
lus subtilis BUM (with 73.5% of initial CSH) significantly decreased with
the adsorption of rhamnolipids (Zhao et al., 2011). For relatively hydro-
philic P. aeruginosa, the adsorption of rhamnolipids at low concentration
resulted in a significant increase of CSH (Zhong et al., 2008). However,
authors found that CSH could be slightly reduced at high rhamnolipids
concentration. This is probably due to the double-layer adsorption of

*

)
O-specific poly-
Y saccharide chain

Core polysaccharide

embrane

Fig. 3. Schematic diagram for removal of LPS by rhamnolipids: (I) Direct removal of LPS or the O-antigen part of LPS by rhamnolipids micellar capture as previously described (Zhao et al.,
2011); (II) Complex formation between rhamnolipids and Mg?* (Al-Tahhan et al., 2000); (IIl) Inhibition of synthesis and transport of LPS caused by the effect of rhamnolipids on protein

described by Andersen and Otzen (2014).
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Fig. 4. Orientation of rhamnolipids at cell surface of microorganisms. The possible adhesion of microbial cells to hydrophobic or hydrophilic interface is indicated. The hydrophobic
(hydrophilic) moiety of rhamnolipids will contact microbial cells with relative high (low) CSH (cell surface hydrophobicity), and the hydrophilic (hydrophobic) moiety of
rhamnolipids exposed to environment reduces (increase) the CSH (Gérna et al.,, 2011; Liu et al,, 2014).

rhamnolipids, or the accumulation of micelles on the hydrophilic sites of
cell surface (Mohanty and Mukherji, 2013).

4.3. Effect of rhamnolipids concentration on CSH

It is shown by many studies that the change of CSH is highly related
to rhamnolipids concentration (Domingues et al., 2014; Sun et al.,
2016). Sun et al. (2016) reported the addition of rhamnolipids signifi-
cantly enhanced the CSH of P. stutzier KS0013, and CSH was increased
from 14.9% to 24.1, 27.0, 29.2, 30.1 and 33.5% with 0.005, 0.010, 0.015,
0.020 and 0.025% of rhamnolipids concentrations, respectively. The con-
trol of CSH through rhamnolipids concentration could be an important
strategy to improve the efficiency of bioremediation.

The orientation of rhamnolipid monomers and micelle deposition on
cell surface are the basic means for altering CSH when rhamnolipids
concentrations are low and high, respectively (Zhong et al., 2007). The
effect of monomer adsorption is even more significant than that of mi-
celle deposition (ikizler et al, 2017; Liu et al., 2014). When
rhamnolipids are at low concentration, the adsorption is the presence
of tight-binding of one moiety of rhamnolipid molecules to the chemical
groups on cell surface (ikizler et al., 2017), and the orientation always
tends to alternate the CSH (Liu et al., 2014). While at high concentration
level, the change of CSH is less sensitive to micelle deposition since it is a
simple accumulation of rhamnolipid micelles on originally hydrophilic
sites of cell surface or pre-adsorbed rhamnolipids layer (Zhong et al.,
2007). At these points, using low-concentration of rhamnolipids can
be a way for controlling CSH (Liu et al,, 2014).

The native hydrophobicity of microorganisms is related to the pro-
teins and lipids on cell surface (Yoneda et al., 2016). Al-Tahhan et al.
(2000) showed that rhamnolipids at concentrations much less than
the CMC caused the removal of LPS, leading to an increase in CSH. In
contrast, the study by Sotirova et al. (2009) demonstrated when the
concentration was above CMC, rhamnolipids caused the decrease of
total LPS content of 22%, associated with an increase in CSH to 31% ad-
herence. When the concentration of rhamnolipids was decrease to
below CMC, however, rhamnolipids did not influence the LPS compo-
nent of OM but caused significant changes in outer membrane protein
(OMP) composition of P. aeruginosa (Galabova et al., 2014; Sotirova
et al., 2009). According to above results, the removal of proteins and
lipids from cell surface is related to the concentration of rhamnolipids,
but no obvious relationship was found among them.

5. Rhamnolipids-induced enhancement of cell membrane perme-
ability and uptake of HOCs

It is reported that the permeability barriers imposed by cell enve-
lopes lower whole-cell catalyzed reactions about 10 to 100 folds com-
paring with free enzymes catalyzed reactions (Sotirova et al., 2008).
The permeability of OM is an important parameter for substrate uptake
for Gram-negative bacteria. Solutes and metabolites <5 kDa are able to
freely permeate OM, mainly owing to the presence of a plentiful protein
(Schmidt et al., 2016). The induced permeability enhancement for mi-
crobial cells will probably enhance the enzyme reaction (Nesin et al.,
2011).

One of the theoretical bases for the application of rhamnolipids in
bioremediation processes is the enhancement in cell permeability
(Jadhav et al., 2011; Magalhdes and Nitschke, 2013). The perme-
abilization can facilitate the mass transfer and reduce the toxic effect
of prolonged incubation with HOCs, thus leading to the increase of min-
eralization rate (Tecon and van der Meer, 2010). Jadhav et al. (2011) in-
vestigated the potential of mono-rhamnolipid to permeabilize Bacillus
sp. VUS NCIM 5342. It was shown that mono-rhamnolipid had excellent
performance in Bacillus cell permeabilization, and the efficiency of tex-
tile dye Brown 3REL decolorization was enhanced by 50%. On the
other hand, permeabilized cells can be as a source of proteins and insol-
uble enzymes with analogous effects as those immobilized by conven-
tional methods, allowing them to be tested under the identical
conditions as those observed in vivo (Oliveira et al, 2016).
Rhamnolipids can partition into microbial membrane because of the
amphiphilicity, which causes the alteration of membrane in physico-
chemical properties and function (e.g., transport and energy genera-
tion) (Bai and McClements, 2016). Recently, many studies focus on
the membrane actions of rhamnolipids, especially the induction of
membrane permeabilization in liposome system (Diaz De Rienzo
et al, 2016; Inés and Dhouha, 2015). The mechanism underlying
rhamnolipids-induced leakage of liposomes might be that rhamnolipids
adsorb onto the outer leaflet of microbial membrane, flip the inner leaf-
let, and then properly intercalate the phospholipid molecules, leading to
destabilization of the membrane (Sanchez et al., 2010; Zhang and Zhu,
2014). Some researchers suggested rhamnolipids could induce the re-
lease of cell surface materials, such as LPS and outer membrane protein
(OMP) (Kim et al., 2015; Sotirova et al., 2009; Galabova et al., 2014)
which are not only responsible for cell surface hydrophobicity, but
also responsible for cell permeability characteristics (Amro et al.,
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2000). The removal of cellular LPS is probably due to solubilization of
OM through binding the aggregated rhamnolipids to the membrane,
followed by the reduction of LPS (Sotirova et al., 2009). This usually oc-
curs when the concentration of rhamnolipids is above CMC. When its
concentration is below CMC, rhamnolipids could cause a marked reduc-
tion in the amount of proteins. This is probably because rhamnolipid
monomers can cause alterations in membrane organization (Galabova
et al, 2014). Fig. 5 shows the rhamnolipids-induced membrane
permeabilization.

In the studies by Magalhdes and Nitschke (2013), they observed an
increase in cell permeability with the presence of rhamnolipids, and
the hypothetical action site is the phospholipids in cell membrane, al-
though the mechanism was not completely understood. In order to con-
firm the permeabilizing effect of rhamnolipids, Scanning-Electron
Microscopy (SEM) was used to observe the morphologic changes of
strain cells by Sotirova et al. (2008). The results showed strain cells in
0.5% rhamnolipids solution had significant changes in cell shapes and
membranes fold, and formed various cavities with different shapes
and sizes as compared to the untreated cells. Result of several other
studies showed that the addition of rhamnolipids can eliminate cyclo-
propane fatty acids of 17:0 cyclo and 19:0 cyclo which have been recog-
nized can assist in tolerance of disturbance and stabilize membrane
lipids (Denich et al., 2003; Mrozik et al., 2007). Moreover, Sanchez
et al. (2010) studied the action of dirhamnolipid on biological mem-
brane through determining the release of carboxyfluorescein, and the
results showed that permeabilization of dirhamnolipid induced leakage
in liposomes with concentrations below the CMC, at which the solubili-
zation of membrane was not observed.

The permeabilization can facilitate the mass transfer of HOCs
through cell membrane, and thus lead to an increase in HOC uptake
rate (Tecon and van der Meer, 2010). Jadhav et al. (2011) investigated
the potential of mono-rhamnolipid to permeabilize Bacillus sp. VUS
NCIM 5342. It was shown that mono-rhamnolipid had excellent perfor-
mance in Bacillus cell permeabilization, and the efficiency of textile dye
Brown 3REL decolorization was enhanced by 50%.

6. The biodegradation of rhamnolipids

Mohan et al. (2006) investigated the biodegradation of rhamnolipids
and the results showed that rhamnolipids could be rapidly degraded

o
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'
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.
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under aerobic conditions, while the degradation was remarkably
slower under anaerobic conditions. In another study it was shown
that microorganisms can degrade rhamnolipids after the biodegra-
dation of solubilized HOCs (Oberbremer et al., 1990). Maslin and
Maier (2000) proposed that rhamnolipids by themselves may serve
as a carbon source. This observation caused increasing attentions be-
cause preferred utilization of rhamnolipids, as an alternative carbon
source, may affect biodegradation efficiency of primary contami-
nants (Lawniczak et al., 2013). Ghosh and Mukherji (2016) carried
out the biodegradation experiment of pyrene by P. aeruginosa with
the presence of rhamnolipids JBR 515, and they found that
rhamnolipids were preferentially degraded as compared to pyrene.
According to observations concerning the preferential use of
rhamnolipids over HOCs, a negative impact of rhamnolipids supple-
mentation may well exist in environmental biodegradation trials.
Moreover, it is also plausible that rhamnolipids may be co-
degraded with substrates, which means their effect on biodegrada-
tion of substrates will be slowly diminished. Lin et al. (2011) ob-
served a significant increase in the biodegradation rate of diesel oil
in the initial stage, while the process efficiency was similar to that
of the control group (without rhamnolipids) in the latter stages.
However, biodegradability can be an advantage of rhamnolipids for
HOCs degradation. It has been reported that the biodegradation of sur-
factants may cause the release of HOCs from the micellar cores into
the aqueous phase, eliminating the blocking effect of surfactants (Liu
etal, 2017; Peziak et al., 2013). Under such conditions, the biodegrad-
ability of rhamnolipids is beneficial for the degradation of the solubi-
lized hydrocarbon. Zeng et al. (2011) found that the metabolism of
rhamnolipids as carbon and energy source contributed to the growth
of Candida tropicalis, which further enhanced the degradation of
hexadecane. However, contradictive results were obtained by Ghosh
and Mukherji (2016), who confirmed that the preferred utilization of
rhamnolipids decreased the specific growth rate during the biodegrada-
tion of pyrene. These results indicate that unintended effects of
rhamnolipids on HOCs biodegradation efficiency will occur when
rhamnolipids are available to microorganisms in the system. Therefore,
in practical applications, it is necessary to find the balance between the
biodegradability of rhamnolipids and their effects on the HOCs biodeg-
radation (Kumar et al., 2017; Maire and Fatin-Rouge, 2017). Parameters
to be considered include the physical properties of rhamnolipids

Destabilizing membrane

Intercalation WW?W?ZW

CIBBBAAL B ESES

Rhamnolipid

Removal of LPS, protein, etc.

Fig. 5. Schematic diagram of rhamnolipids-induced the permeabilization of cell membrane: The intercalation of rhamnolipids monomers into phospholipid molecules cause the
destabilization of the membrane (Zhang and Zhu, 2014); the release of several cell surface materials induced by rhamnolipids increase the permeability of the membrane (Amro et al.,

2000; Kim et al.,, 2015).
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(stability, etc.), solubilization capacity of rhamnolipids for HOCs, and a
suitable degree of biodegradability (Brycki et al., 2014).

7. Toxicity of rhamnolipids

Surfactants can be toxic to functionally important bacteria or may
change bacterial community composition (Alvarez-Paino et al.,, 2015).
Therefore, it is necessary to know their potential toxic effect to microor-
ganisms when considering the environmental impacts of rhamnolipids.

One opinion is that rhamnolipids have no toxic effect on the micro-
bial cells cultured in medium (Banat et al., 2010; Hadibarata and
Kristanti, 2014; Solaiman et al., 2016). Hadibarata and Kristanti (2014)
investigated the effects of diverse surfactants on the growth of Armilaria
sp. F022, and they observed that the system with rhamnolipids
(10 mg/L) obtained the highest biomass. Solaiman et al. (2016) found
that the lag phase of bacteria could be shortened by the presence of
rhamnolipids. Several studies also have shown that addition of
rhamnolipids can enhance the activity of indigenous microbes in the
soil and sediment (Guo et al., 2016; Liao et al., 2015; Mathurasa et al.,
2012). Liao et al. (2015) reported that the microbial number signifi-
cantly increased with increasing concentrations of rhamnolipids. Be-
sides, it was also found that rhamnolipids can promote microbial
growth in solid-state fermentation systems (Liu et al., 2010; Zhou
etal.,2011). For instance, Zhou et al. (2011) reported that rhamnolipids
caused a significant increase of P. simplicissimum biomass. The promot-
ing effect might be directly due to rhamnolipids, or the greater levels of
dissolved organic matter released by the surfactants, serving as carbon
sources for additional microbial growth.

The second opinion is that rhamnolipids have toxic effect on the
growth of microorganisms during the HOCs biodegradation but it de-
pends on the concentration of rhamnolipids. Sotirova et al. (2008)
found that the application of low concentration of rhamnolipids has
no effect on the growth of Gram-negative P. aeruginosa and Gram-
positive B. subtilis, but high concentration (above CMC) of rhamnolipids
showed toxic effects to B. subtilis. Fuchedzhieva et al. (2008) reported
that the presence of rhamnolipids suppressed B. cereus growth on fluo-
ranthene solution, and the inhibitory effect of rhamnolipids was better
expressed when rhamnolipids concentrations are above 100 mg/L.
This phenomenon was also shown by Mukherjee et al. (2006), and
they suggested that the toxicity of rhamnolipids towards the microor-
ganisms at high concentrations could be an issue hindering their appli-
cability. It was suggested that with the increase of surfactant
concentration, the formed surfactant micelles may solubilize cell mem-
branes by forming mixed micelles with cell membrane lipids, leading to
the necrosis of cells (Kim et al., 2013). In all, these results demonstrated
that concentration is an important factor that should be seriously con-
sidered for successful application of rhamnolipids in bioremediation.

8. Conclusions and perspectives

Rhamnolipids have been frequently employed to enhance the biore-
mediation of HOCs polluted soil and water environment due to their
high solubilizing ability, environmental friendly, etc. This paper pro-
vides a comprehensive review on the interaction mechanisms of
rhamnolipids with HOCs and microorganism including solubilization,
changing affinity through rhamnolipids adsorption or LPS release, per-
meabilization, with the aim of a better understanding and controlling
of rhamnolipids-mediated HOCs biodegradation. In addition, effects
from biodegradation and toxicity of rhamnolipids should be considered
since the factors are also important for the successful application of
rhamnolipids in bioremediation of HOCs pollution.

Rhamnolipids-mediated biodegradation provides a promising way
to remediate HOCs contaminated environment. The following main
areas need to be considered for subsequent work in research and prac-
tical application:

(1). The commercial application of rhamnolipids is limited due to the
high cost of production. Some measures could be taken to make
the production of rhamnolipids more profitable and economi-
cally feasible, for example, using cheaper renewable substrates,
optimizing growth/production conditions and employing origi-
nal and effective multi-step downstream processing methods.
Moreover, it is also necessary to find recombinant and mutant
microorganisms that could utilize a wide range of cheap sub-
strates to grow or produce rhamnolipids in high yield, bringing
a real breakthrough for their economic production.

(2). Currently, the data on the formation of rhamnolipids/HOCs ag-
gregates below CMC concentration is even less clear. The re-
search is needed to describe the morphology and stability of
formed aggregates, as well as the sub-CMC solubilization ability
for different HOCs. Moreover, it is necessary to verify whether
the conclusions on rhamnolipid micelles are still suitable for
sub-CMC aggregates, for example, the mechanism for micellar
bioavailability based on hemi-micelles formation on cell surface.

(3). The mechanisms of rhamnolipids-induced release of LPS and
rhamnolipids adsorbed on cell surface to change CSH have
been recognized. However, how to regulate rhamnolipids
achieving the optimal microbial CSH remains rarely discussed.
In addition, the studies about rhamnolipids-induced release of
LPS and rhamnolipids adsorption changing CSH are carried out
independently. The question is how rhamnolipids perform in
the actual application system. It is of importance to solve these
problems in the near future.

(4). The study of rhamnolipids permeabilization is built mainly on in-
direct evidence, such as the measure of released cell surface ma-
terials. The direct analysis and determination are needed to
further investigate the permeabilization mechanism through ad-
vanced instruments and inspection methods.

(5). In some cases, the preferential biodegradation of rhamnolipids
might result in the less effectiveness in the contaminant biore-
mediation process. Therefore, it is of importance to solve these
problems in the further, for example, the investigation of suitable
strain and environmental conditions.

(6). Future researches should not only focus on exploring how to en-
hance the efficiency, but also on extending this challenging prob-
lem through illuminating the complex mechanisms underlying
the whole system based on the extensive data of other surfac-
tants, e.g., interactions among rhamnolipids, microorganisms
and HOCs.

(7). Agreat deal of research efforts have been devoted to enhance the
biodegradation of HOCs by means of rhamnolipids. However,
most of the attempts are limited to the laboratory or theory
study, and larger scale experiments are needed to demonstrate
the feasibility of field application of this technique.

(8). Another important consideration is that most studies have been
conducted with simulated wastewater or single HOCs in growth
media, which means that few studies are executed on actual pol-
luted water. The wide differences could be obtained between
contaminants removal efficiencies in simulated and actual pol-
luted wastewater due to the fact that the compositions of real
wastewater are more complex. Hence a massive effort is required
to assess these application technologies of rhamnolipids for use
with actual contaminated wastewater.
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