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A B S T R A C T   

Semiconductor-based photocatalysis can utilize solar energy to solve the problems of energy crisis and envi-
ronmental pollution. How to construct a visible-light-driven (VLD) photocatalyst was the key to efficient use of 
solar energy. In recent decades, nitrogen (N) resources have attained increasing interest benefit from its 
outstanding properties and abundant reserves. In addition, nitride and nitrogen-doped (N-doped) photocatalysts 
have attracted much attention owing to their unique structures, excellent physicochemical stability and low-cost. 
However, few reviews focus on the nitride and N-doped photocatalysts with high photocatalytic activity. Herein, 
the critical review summarized the recent progresses and advances in the preparation, properties and applica-
tions of nitride and N-doped photocatalysts in hydrogen evolution from water, environmental pollutants 
removal, carbon dioxide reduction etc. Meanwhile, the current challenges and prospects were also presented. 
This review aims to summarized the recent researches on nitride and N-doped photocatalysts for environmental 
applications and energy-related, and provide a constructive guidelines for this booming research topic.   

1. Introduction 

In our modern society, fossil fuels are the world’s main sources of 
energy. However, they are limited and non-renewable resources in na-
ture [1–12]. Overexploitation of fossil fuels leads to energy crisis that 
threatens national security [13–20]. In addition, the consumption of 
fossil fuels produces large amounts of gases (greenhouse gases and toxic 
gases) and causes environmental pollution [21–27]. Therefore, green 
and sustainable alternatives are highly desired for the development of 
our modern society [28–33]. Compared to the traditional method, 
photocatalytic technology shows superior performance and has been 
widely investigated in energy generation and pollutant treatment solv-
ing in recent years [34–39]. 

According to previous literature, choosing an appropriate photo-
catalyst was crucial for whole reaction, because different photocatalysts 

with various properties can lead to different experimental results [40]. 
In the past decades, various photocatalysts such as CdS [41], TiO2 [42], 
ZnO [43], SnO2 [44], WO3 [45], BN-based [46], and g-C3N4 [40] have 
been studied. Among them, metal-free g-C3N4 becomes a rising “star” 
materials in photocatalysis field owing to its unique two-dimensional 
structure, high stability and visible light response. Furthermore, 
g-C3N4 is earth-abundant and easily obtained via one-step polymeriza-
tion of cheap raw material like cyanamide [47], dicyandiamide [48], 
urea [40], melamine [49], and thiourea [50]. In addition, “white gra-
phene”—hexagonal boron nitride (h-BN) is another “hot” nanomaterial 
due to the graphene analogue layered structure. Moreover, compared 
with graphene, boron nitride (BN) shows better physical, chemical and 
optical properties [51,52]. Metal oxide nanostructures, such as SnO2, 
ZnO, TiO2 ZnO, and Fe2O3, have attracted considerable research interest 
because of their great potential in the photocatalytic oxidation of 
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organic pollutants [53–57]. Among the metal oxide nanostructures, 
TiO2 is one of the most classic photocatalyst, which has been mostly 
investigated in the fields of energy generation and pollutant treatment 
because of its relatively high photocatalytic activity, nontoxicity, and 
low production costs [58]. Nevertheless, the usage rate of TiO2 in pho-
tocatalysis field is not very high on account of its wide band gap [59,60]. 
Hence, the ways of tuning band gap of TiO2 will have a positive effect on 
its practical applications. Element doping is identified as an efficient 
method to tune band gap of TiO2, shift optical response of TiO2 and can 
enhance the charge separation. TiO2 doped with metal element (K, Pd, 
Fe, W, Zr and Cu) and various non-metal elements (N, F, S, B, C and P) 
have been carried out for improving its photocatalytic activities [58]. 
Among them, nitrogen doped TiO2 shows better performance and is 
taken for the most promising investigation since N and O present similar 
structural, chemical and electronic features (electronegativity, polariz-
ability, ionic radii and coordination numbers) [61–64]. Nitrogen doped 
TiO2 exhibits broad absorption in the visible region, which could allow 
the utilization of a large part of the solar spectrum [65,66]. This might 
be helpful for energy and environmental applications, such as water 
splitting, carbon dioxide reduction, and degradation of pollution. 

It was worth noting that g-C3N4, BN, N–TiO2 and other N-dopant 
have constituted a series of sustainable, environment benign, low-cost, 
and earth-abundant semiconductor for applications in hydrogen evolu-
tion from water, the degradation of contaminants and carbon dioxide 
reduction. There were many excellent reviews about TiO2 and g-C3N4 
photocatalyst [58,67–69], but rare reviews were about BN and N–TiO2. 
Furthermore, very few reviews were focused on nitride and N-doped 
photocatalysts and their application in the past few years. Many reviews 
can also be found mainly focusing on synthesis and catalytic applica-
tions of carbon-based nanomaterials [70–76]. However, the nitride 
photocatalysts were scarcely described in the literature, and their eco-
nomic potential and photocatalytic performance was completely over-
looked [77]. Therefore, the paper, aiming to summarize the preparation, 
properties, and applications in energy and environmental issues of 
nitride and N-doped photocatalyst was necessary. Herein, we introduced 
a renewed review which summarizes the synthesis methods, properties, 
and applications of nitride and N-doped photocatalysts. Firstly, the 
preparation methods of nitride photocatalysts were discussed. Secondly, 
the structure and properties of nitride photocatalysts were presented. 
Furthermore, recent progresses on water splitting, carbon dioxide 

Table 1 
Summary of methods synthesized g-C3N4 and BN.  

Photocatalysts Methods Advantages Disadvantages Morphology Ref 

g-C3N4 Solvothermal method cheap raw materials; uniformity of the reaction 
system; less pollution; mild reaction conditions; 

difficulty to controlled the reaction 
conditions and realized industrial 
production 

[80–82] 

Solid-state reaction control the morphology of g-C3N4 reaction conditions is difficulty [83,84] 

Thermal 
polymerization 

simple experimental operation; Short 
preparation cycle; large productivity 

the product is not pure; generate harmful 
gas 

[93,94] 

Electrochemistry 
deposition 

simple equipment; easy control; no high 
temperature and high pressure 

energy pollution [87–89] 

BN Mechanical 
exfoliation 

perfectly crystalline structures; 
high quality BN nanosheets; 

yield is very low; hard to control; difficult 
to produce on a large scale. 

[98–100] 

chemical vapor 
deposition 

simple and easy to control; high yield; 
perfectly crystalline structures; 

high cost; process immaturity [101–103] 

chemical exfoliation high quality BN nanosheets; 
easy to control; 

yield is not high; environment pollution; [112,113] 

liquid-phase 
exfoliation 

large quantities; high quality; hard to control the number of layers and 
the lateral size 

[114]  
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reduction, degradation of pollution of nitride and N-doped photo-
catalysts were reviewed. Finally, the existing challenges and future 
outlooks were also summarized and discussed. 

2. Synthesis methods 

2.1. Synthesis of g-C3N4 

Graphite carbon nitride, as an analogue of graphite, has become a 
hot material for environmental remediation due to its unique structure 
and potential application prospects [68,78]. In the past decades, people 
have tried various ways to synthesize g-C3N4 materials including sol-
vothermal method [79–82], solid-state reaction [83–85], thermal 
polymerization [86] and electrochemistry deposition method [87,88]. 
The synthesis methods of g-C3N4 were illustrated in Table 1, and 
including the advantages and disadvantages. 

2.1.1. Solvothermal method 
The solvothermal method was used to synthesize various functional 

materials due to the advantages of the uniformity of the reaction system, 
less pollution and mild reaction conditions [79]. Wang and coworkers 
successfully synthesized g-C3N4 by using melamine and cyanuric chlo-
ride as precursor with acetonitrile, benzene, chloroform as solvent, 
respectively [80]. When the reaction temperature reached 180 �C in 
acetonitrile, a diameter of about 50 nm and 10 nm in length of uniformly 
g-C3N4 nanorods were prepared and shown in Fig. 1a–b. Furthermore, 
the classic polymerization route was exemplified in Fig. 1c. Sol-
vothermal method can control temperature to prepare special structure 
of g-C3N4. Cao and his co-works used a simple solvothermal method to 
prepare a series of one-dimensional (1D) g-C3N4: aligned nanoribbons 
and nanotube bundles by changing the reaction condition including the 
pressure, temperature and reaction time [81,82]. The method has the 
disadvantages that the reaction conditions are difficult to control and 
the industrial production is difficult to realize in the process of preparing 
g-C3N4. 

2.1.2. Solid-state reaction 
Solid-state reaction was an ideal method to prepare g-C3N4 since it 

can control the morphology of g-C3N4. Various morphologies including 
nanospheres [89], nanowires [90], nanotubes [83], hollow spheres [84] 
and nanofibers [85] of g-C3N4 have been obtained. Khabashesku et al. 

used Li3N as a nitrogen-bridging agent and fluoride or cyanuric chloride 
as an s-triazine precursor to prepare a hollow spherical unshaped g-C3N4 
by optimizing temperature pressure and other reaction conditions [84]. 
Furthermore, Li et al. used melamine instead of Li3N to prepare carbon 
nitride hollow vessels [83]. 

2.1.3. Thermal polymerization 
Thermal polymerization is the most popular strategy for the prepa-

ration of g-C3N4 due to its simple operation, short preparation cycle and 
large productivity [86]. The product of thermal polymerization pre-
pared g-C3N4 including carbon rich (C/N molar ratio range is 1–5) 
g-C3N4 with poor crystallinity and nitrogen rich (C/N molar ratio range 
is 0.6–1) g-C3N4 with good crystallinity [91,92]. For example, Zhang 
and coworkers reported thermal condensation method that entails using 
acetic-treated melamine as a precursor to synthesize nitrogen deficient 
g-C3N4, which acted as a photocatalyst for generation of hydrogen 
through water splitting and photocatalytic degradation of Rhodamine B 
(RhB) [93]. In Zhao’s works, g-C3N4 polymer was successfully prepared 
via a fractional thermal polymerization process and g-C3N4 obtained 
from different temperature and raw materials: melamine, guanidine 
carbonate and dicyandiamide [94]. 

Thermal polymerization preparation process of g-C3N4 is fairly un-
stable, different degrees of polycondensation reaction can coexist in a 
wide temperature range, so it is difficult to prepare a single molecular 
structure of carbon nitride materials [40]. Furthermore, materials are 
prone to decompose mildly at 600 �C, while decompose sharply at 
700 �C, and then generated gas such as NH3 and CxNyHz which are harm 
to human. The best annealing temperature of synthesized g-C3N4 
nanosheets in Ar atmosphere was 550 �C [40]. 

2.1.4. Electrochemistry deposition method 
Electrochemical deposition is widely used in the preparation of many 

solid materials due to its simple equipment, easy control and no need for 
high temperature and high pressure. This method has been used for 
preparation of g-C3N4 films in recent years since it can reduce the re-
action temperature of the nitride carbon generating system and the re-
action potential of C and N atoms bonding [87,88]. Cao et al. 
successfully prepared the g-C3N4 thin film on Si substrate by electro-
deposition method [87,88]. Electrochemical deposition method can also 
be combined with template method for the purpose of adjusting the 
morphology of carbon nitride. For example, Cao’s group used a simple 
electrodeposition method to prepared hollow g-C3N4 microspheres with 
exist of silica nanospheres template. And the size of obtained g-C3N4 
microspheres was 5–30 nm, which was obviously different from the 
previous turbostraticor or graphite-like g-C3N4 sphere with smooth wall 
microstructures [89]. 

2.2. Synthesis of BN 

Hexagonal boron nitride was also named “white graphene” since its 
layered structure is similar to graphene, whose layer is composed of B 
and N atoms arranged alternately unlimited extension of hexagonal 
honeycomb structure [95,96]. The structure of hexagonal boron nitride 
(h-BN) was depicted in Fig. 2. However, boron nitride (BN) has better 
physical, chemical and optical properties than graphene [51,52]. There 
were a lot of methods to prepare h-BN nanomaterials including chemical 
exfoliation, mechanical exfoliation, chemical vapor deposition (CVD), 
ultrasonic-assisted liquid phase exfoliation and other methods. These 
methods have been refined in Table 2. 

2.2.1. Mechanical exfoliation 
Mechanical exfoliation can generate nanosheets with perfect crys-

talline. Therefore many researchers have applied the mechanical exfo-
liation method to explore the intrinsic properties of the nanomaterials 
with wonderful sheets [95]. The mechanical exfoliation method was 
primarily applied to separate graphene monolayers by Novoselov. Since 

Fig. 1. (a) SEM and (b) TEM images of g-C3N4 nanorod networks; (c) poly-
merization processes of cyanuric chloride (CC) and melamine (MA) in 
subcritical acetonitrile solvent. Reprinted with permission from Ref. [80] 
Copyright 2012 Wiley. 
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then, multiplicity layered BN was successfully prepared by this method 
[96,97]. However, compared to prepared graphene, this technique was 
difficult to render a certain yield of few-layered and monolayered BN. 
Pacile et al. obtained thin sheets of h-BN and established their crystal-
linity by the micromechanical cleavage technique. The key step of 
peeling off few-layered h-BN was attached BN power to a 300 nm thick 
SiO2 substrate with adhesive tape, and then forced to separate it [98]. 

Another pattern of mechanical exfoliation was ball milling method 
via the utilization of shear forces to isolate BN nanosheets [99,100]. For 
example, Li et al. obtained high quality and high yield BN nanosheets by 
ball milling method. Fig. 3a and Fig. 3c illustrates two intermediate 
stages in h-BN preparation process. The laminated thin h-BN nanosheets 
were caused by milling ball colliding, exfoliation mechanisms and 
models of this process were also shown in Fig. 3. In this process, benzyl 
benzoate was used for decreasing milling contamination and ball im-
pacts [99]. Moreover, in the interaction of Lewis acid� base between 
boron atoms and amino groups, Lin et al. prepared layered h-BN nano-
sheets with long hydrophilic or lipophilic chains [100]. 

2.2.2. Chemical vapor deposition 
CVD was a technique for forming solid deposits at the gas-solid 

interface using a gaseous or vapor state, which was capable of synthe-
sizing graphene and h-BN layers on a large scale [52,101,102]. Laurie 
and colleagues prepared BN nanotubes by CVD method at temperatures 
around 1100 �C. In this process, borazine (B3N3H6) was used as a pre-
cursor and Co, Ni, NiB, Ni2B were particulate catalysts [103]. Gao et al. 
successfully synthesized a controllable thickness (25–50 nm) of h-BN 
nanosheets via catalyst-free CVD process under the condition of 
1100–1300 �C [104]. Many researchers synthesize h-BN thin films by 
CVD method with different precursors. Commixture nitrogen and boron 
precursors such as NH3/BCl3 [105], NH3/B2H6 [106], and NH3/BF3 

Fig. 2. (a–b) Structural models and corresponding parameters of h-BN layer; (c–e) Structural models of 2D, 1D and 0D h-BN nanostructures. (a) is reprinted with 
permission from Ref. [275] Copyright 2017 Springer. (b) is reprinted with permission from Ref. [95] Copyright 2013 American Chemical Society. (c, d and e) is 
reprinted with permission from Ref. [276] Copyright 2012 Elsevier. 

Table 2 
crystal structure parameters of boron nitride.  

Type Crystalline 
forms 

Crystalline 
structure 

Hybrid 
methods 

Crystal structures 

h-BN hexagonal layer structure sp2 

r-BN 

rhombohedral layer structure sp2 

c-BN 

cubic blende sp3 

w- 
BN 

wurtzite wurtzite sp3 

Fig.3. (a and c) SEM images of BN nanosheets and (b, d and e) Exfoliation 
mechanisms and model of wet ball milling method. (a–d) are reprinted with 
permission from Ref. [99] Copyright 2011 Royal Society of Chemistry. (e) is 
reprinted with permission from Ref. [277] Copyright 2015 American Chemi-
cal Society. 
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[107] were employed to prepared h-BN nanosheets. In above systems, 
control of boron source and the gas flow rate was vital for preparing 
h-BN layers. In addition, the deposition rate was affected by the mole 
ratio of boron source and NH3. Furthermore, there were a lot of re-
searches about the single boron source like borazine (B3N3H6), hexa-
chloroborazine (B3N3Cl6), and trichloroborazine (B3N3H3Cl3) attain BN 
nanosheets [108–110]. For example, Shi et al. use B3N3H6 as the pre-
cursor material to prepare smooth surface BN thin film by CVD method. 
In the process, the growth temperature can be decreased to 400 �C 
[111]. Compared to the mechanical exfoliation method, CVD method 
cannot easily manipulate the layer number and produce high yield of 
h-BN nanosheets. Therefore, the dry CVD method has been explored and 
was used for the synthesis of several layered BN nanomaterials on a large 
scale and high yield [95,103]. 

2.2.3. Chemical exfoliation 
The chemical stripping method reacts in solution, and the free 

movement of the reaction product can conquer the van der Waals force 
to obtain BN nanosheets [51]. Han et al. firstly prepared few-layer and 
mono-layer h-BN nanosheets via chemical-solution-derived method in 
2008 [51,112]. In this process, 0.2 mg of BN crystal was sonicated in a 
5 mL of 1,2-dichloroethane solution for 1 h to decompose h-BN crystal 
into several layers of h-BN nanosheets [112]. Among the methods of 
prepared single- and few-layered h-BN nanosheets, wet chemical reac-
tion was one of meaning methods. Nag et al. synthesized about 1–4 
layers of BN nanosheets by reacting different proportions of urea and 
boric acid under high temperature in N2 atmosphere. Interestingly, the 
final BN nanosheets exhibit negligible H2 adsorption but exhibit high 
CO2 adsorption [113]. Although the chemical stripping method has 
many advantages, the yield of the product obtained by this method was 
not high. 

2.2.4. Ultrasonic-assisted liquid phase exfoliation 
Ultrasound-assisted liquid phase exfoliation produces dispersed two- 

dimensional BN nanomaterials in different aqueous or solvent surfactant 
solutions [95]. Lin and colleagues have shown that water can effectively 
remove the layered h-BN structure to form a “clean” aqueous dispersion 
of h-BN nanosheets with the help of sonication [114]. Under ultrasonic 
conditions, the shedding mechanism was BN hydrolysis, and the adja-
cent borazine units were hydrolyzed to the edges, the defects were 
further diffused. The final result was “cutting” the large h-BN sheets into 
a single layer and several layers of nanosheets and reducing the lateral 
dimension in water dispersion [114]. These progress and exfoliation 
mechanisms are shown in Fig. 4. Compared with mechanical exfoliation 
and other methods, liquid-phase exfoliation is an efficient method to 
obtained large quantities of single-layer and multi-layer materials. But it 
should be known that the controlling of the lateral size and the number 
of layers was difficult [95,115]. 

3. Properties of nitride photocatalysis 

The nitride and N-doped materials possess wide physicochemical 
properties especially in pollutant treatment and energy generation. The 
typical nitride materials including g-C3N4, BN, N–TiO2 and so on, which 
have the ability to generate energy and degrade pollutants [116,117]. 
The nitrogen economy is a proposed future system in which nitride 
compounds are produced to help meet the demands of energy sectors 
and environment protection agency [77]. 

3.1. g-C3N4 

There are five structures (graphite phase, quasi cubic phase, cubic 
phase, beta phase and alpha phase) of carbon nitride, and graphite phase 
is just one of them [118]. As a graphite analogue, g-C3N4 also has 
nanosheet structure including C3N3 rings and C6N7 rings. With the 
characteristic band-gap structure and highly conjugated electron pair of 

N atom, g-C3N4 has been become the “rising star” semiconductor ma-
terial [49,69]. Moreover, g-C3N4 has stable physicochemical properties, 
low-cost and large specific surface area, it also can be easily fabricated 
from available precursors like melamine, urea, cyanamide, dicyandia-
mide and etc [68]. A fundamental understanding of these chemical and 
structural properties will guide us build g-C3N4-based photocatalysts 
with high photocatalytic performance. 

3.1.1. Stability properties 
The stability of a material includes thermal and chemical stability. As 

an organic substance, carbon nitride can be heat-resistant to 550–600 �C 
in air. For instance, Zhang et al. used pyrolytic thiourea method to 
prepared g-C3N4, and the g-C3N4 starts to decompose rapidly at 550 �C 
[119]. Furthermore, the thermal stability of g-C3N4 synthesized by 
different preparation methods is slightly different, which is probably 
related to different degrees of condensation of the starting compounds. 
The complete decomposition temperature of g-C3N4 occurs at about 
750 �C [120]. It should be noted that the thermal stability of g-C3N4 has 
been regarded to be the highest among organic materials [121–124]. In 
addition, the g-C3N4 also reveals excellent chemical stability. The 
g-C3N4 is not dissolved in the most part of solvents such as acid, alkali, 
water, and various organic solvents (toluene, ethanol, diethyl, etc) 
because of its interlayer van der Waals force. Interestingly, the proton-
ation effects and wonderful acid stability of g-C3N4 has further 
confirmed by Zhu and coworkers [125]. 

3.1.2. Optical and electronic properties 
Graphite carbon nitride has good optical and electronic properties, 

and the typical ultraviolet–visible absorption spectrum of g-C3N4 syn-
thesized at different temperature were depicted in Fig. 5a [126,127]. It 
can be noted that these two samples fabricated at 550 and 600 �C show 
similar bandgap absorption edges (about 450 nm). In particular, the 
bandgap of g-C3N4 synthesized at 550 �C is estimated to be 2.7 eV, which 
is consistent with previous results [128–130]. As depicted in the inset of 
Fig. 5a, the color of g-C3N4 powder is greyish yellow, which further 

Fig. 4. Sonication—assisted hydrolysis and exfoliation mechanism of h-BN. 
Reprinted with permission from Ref. [114] Copyright 2011 American Chemi-
cal Society. 
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verified the favorable medium band gap for vis absorption. Apart from 
the optical properties, suitable electronic properties also play crucial 
roles in photocatalysis. The electronic properties and charge carrier 
dynamics (carriers generation, recombination, separation, and transfer) 
are studied by many different advanced techniques, such as photo-
luminescence (PL), Nyquist impedance plots, transient photocurrent 
decay, photocurrent response and surface photovoltaic technique (SPV), 
etc [131–137]. For example, Xie et al. used the SPV and PL technology to 
test the separation efficiency of lightgenerated carriers of g-C3N4-based 
photocatalysts [138]. From Fig. 5b, the photovoltage response region of 
bare g-C3N4 (Ni0) and g-C3N4 loaded Ni (Ni10) is in the range of 
300–450 nm. The photoelectric signal of Ni10 is stronger than Ni0, 
suggesting Ni10 obtained a higher carriers separation efficiency. As a 
co-catalyst, Ni nanoparticles can effectively promote charge separation 
efficiency of g-C3N4. With the constant efforts of the researchers, many 
other properties (adsorption, crystal structural, surface physicochem-
ical, photoelectrochemical, and electrochemical) of carbon nitride have 
been continuously discovered [139,140]. 

3.2. BN 

Rhombohedral BN (r-BN), hexagonal BN (h-BN), wurtzite BN (w-BN) 
and diamond-like cubic BN (c-BN) are four crystal forms of BN [96]. 
There are two kinds of hybrid methods including sp2 and sp3 hybridi-
zation. Among them, w-BN and c-BN are low-density phases with sp3 

hybridized bonds; however, r-BN and h-BN are dense phases with sp2 

hybridized B–N bonds [51,96]. The crystal structure parameters of 
boron nitride were shown in Table 2. In the recent publications, the 
two-dimensional h-BN nanosheets not only have the unique layered 
structure of graphene, but also have the unique properties of high sur-
face areas, non-toxicity, low density and high chemical stability, which 
have attracted a great deal of attention [46]. Many researchers showed 
that BN/semiconductor nanomaterials such as BN/TiO2 [141], 
BN/g-C3N4 [46] and BN/ZnO [142] could be regarded as a promising 
catalyst for the heterogeneous photocatalysis. Hence, h-BN was reported 
to be a robust substrate for semiconductor photocatalysts owing to its 
optical properties, electrical properties and hydrogen storage properties. 
In order to understand the applications and interaction mechanism of 
BN-based and BN nanomaterials, it was vital to study their electronic 
and optical properties [143]. 

3.2.1. Optical properties 
Bare h-BN single crystals manifest a series of s-like exciton absorp-

tion bands about 215 nm and a dominant luminescence peak under high- 
temperature and high-pressure [144]. In a similar pattern, h-BN nano-
sheets exhibit strong cathodoluminescence (CL) emission in the deep 

ultraviolet range [104,145].The representative CL spectrum of the 
BNNSs was depicted in Fig. 6a, it exhibits broad emission band centered 
about 265 nm. Fig. 6b also exhibits the representative CL spectra of 
granular BN films, which show centered around 360 nm in the range of 
260–520 nm [145]. Owing to this property, 2D h-BN nanomaterial was a 
“rising star” for ultraviolet optical devices. Furthermore, h-BN may have 
a number of applications such as hydrogen storage, ophthalmic surgery, 
photocatalysis and sterilization [51,144]. 

Similar to CL spectra, the Raman spectrum characteristic peaks of h- 
BN nanosheets are also equivalent to those of the bulk counterpart [115, 
146]. The general Raman characteristic peaks of h-BN nanosheets were 
within range of 1364–1368 cm� 1 (about 1365 cm� 1), which belongs to 
the B–N high-frequency vibrational mode (E2g) and analogous to the 
Raman shift in bulk h-BN single crystals (1366 cm� 1) [51,115,145]. The 
representative FTIR and Raman spectrum of the BNNSs is shown in 
Fig. 6c and d. In Gorbachev’s study, the mutual effect between neigh-
boring nanosheets in few-layer h-BN and growth temperature-induced 
variation of crystalline nature lead to red shifts of Raman spectra. On 
the contrary, single-layer h-BN which has a mildly shorter B–N bond 
could render blue shifts of Raman spectra [147]. 

3.2.2. Electronic properties 
Different from carbon nanomaterials, unmodified 2D BN nano-

structures such as nanotubes, nanosheets and nanoribbons show insu-
lator characteristics with a wide bandgap in the range of 5.0–6.0 eV. 
There were various methods to effectively modify band-gap of BN 
nanostructures, and the common one was doping a third element (i.e. 
carbon) into their nanostructures [148–150]. Recently, many studies 
revealed that a mixture of N, C and B atoms forms a more 
stable structure than pure h-BN and graphene [148]. Hence, Boron 
carbonitride (BxCyNz) nanostructures become very popular in electronic 
field because of their semiconductor-like properties. As mentioned 
above, the band gap of bare h-BN nanosheets is 5.66 eV [148,149], while 
BN–C compound showed much smaller band gaps 4.25 eV due to 
incorporation of C in BN domains. 

3.3. N-doped 

In addition to graphite carbon nitride and boron nitride, N–TiO2 and 
other N-dopant is also the representative of nitride and N-doped pho-
tocatalysts family. TiO2 is a popular nanomaterial for photocatalysis 
applications owing to its high stability, low toxicity and low cost, but it is 
active only under the UV light [58,61,151]. A breakthrough work about 
nitrogen doping TiO2 for photocatalysis application of 
photo-degradation of pollution (methylene blue) was reported in 2001 
[62]. After that, there are many researches on the nitrogen doping TiO2. 

Fig. 5. (a) UV/Vis absorption spectra of g-C3N4 prepared at different temperature. Inset: photograph of the photocatalyst [126] Copyright 2017 Elsevier.; (b) SPV of 
g-C3N4 (Ni0) and Ni@g-C3N4 (Ni10). The inset shows the schematic setup of SPV measurements [138] Copyright 2015 Royal Society of Chemistry. 
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For example, Pablos et al. successfully prepared nitrogen doped TiO2 
nanotubes by anodizing Ti foil, and the as-prepared materials possess 
excellent UV–Vis activity [152]. Other photocatalyst (NiO, ZnO, 
(BiO)2CO3 etc) mixed with nitrogen materials could also improve the 
property of electron transport and suppress electron� hole recombina-
tion [153,154]. For instance, Keraudy and his team had synthesized 
N-doped nickel oxide (N–NiO) via reactive magnetron sputtering 
method in gas atmosphere of N2/O2/Ar, and some testing tools revealed 
the final product exhibited good performance [153]. ZnO is a semi-
conducting material with 3.2 eV band gap, it has wurtzitetype hexagonal 
crystal structure [155–157]. In Narayanan’s paper, authors tried to 
prepare N-doped ZnO to further enhance its photocatalytic activity via 
spray pyrolysis method. Crystallinity of N-doped ZnO thin films was 
deteriorated, which might cause increased absorption losses and in-
crease in scattering of photons. The bandgap energy of N-doped ZnO got 
narrowed with N concentration increased, which might caused by 
localization of impurity levels in the forbidden gap near the valence 
band edge in the ZnO lattice [155]. Particularly, consider the limited 
application of pure (BiO)2CO3, nitrogen element doping have been uti-
lized to enhance its photocatalytic efficiency [158–161]. The introduc-
tion of nitrogen element could upshift the VB position of (BiO)2CO3. 
Combined DFT calculations and experimental results, Dong and co-
workers prepared N-doped (BiO)2CO3 with narrowed band gap and su-
perior photocatalytic activity [161]. 

4. Catalysis applications in water splitting 

Producing clean and sustainable hydrogen energy is an important 
prerequisite for the future development of the hydrogen energy econ-
omy. By water electrolysis from renewable resources and the direct solar 
photochemical water splitting into hydrogen transformation is a prom-
ising pathway to achieve sustainable hydrogen production [162,163]. 
To mimic the natural photosynthesis, the materials of nitride family are 
prepared for photocatalysis water splitting into oxygen (O2) and 
hydrogen (H2). Nevertheless, most of researchers have studied the half 
reaction of water splitting, mainly the production of H2 [78]. The pho-
tocatalysts for hydrogen generation must meet certain conditions: (1) 
the position of the semiconductor catalyst conduction band (CB) is 
negative to the potential of H2/H2O, and the valence band (VB) position 
is at the potential of O2/H2O. (2) The band gap of semiconductor cata-
lyst is greater than the cracking voltage of water 1.23 eV. 

4.1. g-C3N4 

Wang et al. firstly used g-C3N4 as photocatalyst in 2009, and they 
observed an efficient H2 production by using visible light irradiation 
[164]. On the basis of that, g-C3N4 has dramatically attracted research 
interest [165–168]. Wang and his coworkers prepared the mesoporous 
g-C3N4 by the template method and the resulted sample enhanced nearly 
8-folds for photocatalytic H2 evolution than bulk g-C3N4 [165]. Very 
recently, Zhang and coworkers used SBA-15 as the template synthesis of 
the ordered mesoporous CN (ompg-CN). The optimized ompg-CN ex-
hibits a commendable photocatalytic activity towards hydrogen evolu-
tion which could reach 290 μmol h� 1 [166]. Zhao et al. have found that a 
facial, one-step soft templating method to synthesize the hollow g-C3N4 
nanospheres with more porosity and bigger surface area. To study the 
photocatalytic performance of as-prepared materials, the hydrogen 
evolution experiments were carried out. Especially, the sample CN-E0.08 
(ethanol carbon nitrogen) shows the highest hydrogen production, as 
high as 157 μmol h� 1 [167]. Niu and coworkers successfully prepared 
g-C3N4 nanosheets with ~2 nm thickness via a thermal oxidation 
etching process, and the H2 evolution rate of nanosheets reaches 
170.5 μmol h� 1 under VLD irradiation [168]. These studies showed that 
researchers could control g-C3N4 nanostructure to enhance the photo-
catalytic activity of g-C3N4 photocatalysts. 

However, there are still much room to improve the bare g-C3N4 ef-
ficiency because of low sunlight absorption and unsatisfactory charge 
separation [169–171]. Element doping is known to be a promising 
method to control the electronic properties and structure of g-C3N4 to 
obtain enhanced performance [67]. Huang et al. described a new pre-
cursor reforming strategy to prepare 3D porous ultrathin N self-doped 
g-C3N4 products, which exhibits ~3 nm thickness sheets (7 or 8 
layers). The optimum photocatalyst UM3 (the molar ratio of urea:mel-
amine ¼ 3:1) yields hydrogen evolution rate of 700 μmol h� 1, which was 
far superior to that of the bulk counterpart obtained by direct melamine 
calcination (17 μmol h� 1) [172]. Another interesting observation is that 
N-doped graphitic carbon-incorporated g-C3N4 (denoted as N-g-C3N4) 
exhibits better photo-catalytic property compared with pure g-C3N4. 
Zhou et al. use a simple one-pot method to obtain N-g-C3N4, which the 
generation rate of H2 was about 4.3 times on bulk g-C3N4 [173,174]. In 
this composite, the N atom mainly work for extended and delocalized 
aromatic p-conjugated system of g-C3N4 and remarkably enhanced 
photocatalytic H2 evolution activity [173]. 

Fig. 6. Typical CL spectra of the BNNSs (a) and granular films (b); Typical Raman (c) and FTIR (d) spectra of the BNNSs. Reprinted with permission from Ref. [145] 
Copyright 2010 American Chemical Society. 
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4.2. BN based and N-doped 

Hexagonal boron nitride was extensively researched and applied in 
the photocatalysis fields. However, the band-gap of h-BN was about 
5.5 eV, which was not suitable for photocatalytic H2 evolution [175, 
176]. Coincidentally, graphene nanomaterial cannot directly absorb the 
light energy because of its zero band-gap, and its further applications of 
photocatalytic were restricted [177]. Hence, it is desirable to constitute 
medium-bandgap photocatalyst including h-BN and graphene (or car-
bon), which shows better properties and tunable electronic structure 
system. Wang’s group prepared boron carbon nitride tubes (introduced 
C into h-BN) via a facile and novel biotemplating method with using 
kapok fibers (carbon sources and templates) [178]. In this work, the 
boron carbon nitride tubes-2 sample shows the highest hydrogen evo-
lution rate (2.8 μmol h� 1). As depicted in Fig. 7a, with the carbon con-
tent in BCNTs further increases, the hydrogen evolution rate of 
photocatalytic performance gradually decreases. The catalytic stability 
of as-prepared sample was shown in Fig. 7b. Furthermore, the 
morphology of boron carbon nitride tubes-2 was also shown in Fig. 7c 
and d. Moreover, based on carbon doping, Huang and his team had 
synthesized a ternary catalytic of BCN nanosheets with a narrowed 
band-gap (2.0 eV), and the BCN nanomaterials could be excited by 
visible light [179]. The best performance of H2 evolution was BCN-30, 
its reactivity was maintained for about 100 h, which indicates an 
excellent chemical stability and its quantum efficiency reached 0.54% at 
405 nm wavelength through calculation. 

The pioneering works in hydrogen production field about TiO2 
photocatalysis were performed by Fujishima and Honda in 1972 [180]. 
Since then, N doped TiO2 photocatalyst has attracted global interest for 
hydrogen production under solar irradiation owing to its stable chemical 
properties and unique photoelectric [181,182]. Shim et al. found a novel 
method to prepared N–TiO2 with anatase/rutile/brookite mixed phases 
in urea aqueous solution [181]. In this paper, the sample NTU-2.5 
(anatase: rutile: brookite ¼ 69%: 14%: 17%) showed the highest 

photoactivity of hydrogen yield of 10500 mmol/h/g relative to other 
photocatalysts tested such as P25 (commercial TiO2) and NTU-0 (pure 
anatase). 

For other N doped catalysis, Carbon quantum dots (CQDs) can be an 
appropriate choice due to quantum confinement effects, proper band- 
gap and excellent electron donor/acceptor properties [182,183]. Shi 
and co-workers fabricated N-doped carbon quantum dots (NCDs)/TiO2 
photocatalysts via a facile hydrothermal method for photocatalytic 
hydrogen evolution [182]. As shown in Fig. 8a and Fig. 8b, Shi et al. 
studied the efficiency of hydrogen production under different light 
illumination conditions. Under VLD illumination, H2 evolution rates 
were 58.6, 27.1, 21.2 and 0 nmol h� 1 for NCDs-3/P25, NCDs-2/P25, 
NCDs-1/P25 and bulk P25 (TiO2), respectively. When the light condition 
was full spectrum illumination, NCDs-3/P25, NCDs-2/P25, NCDs-1/P25 
and bare P25 can generate 9.80, 5.12, 2.70 and 1.15 μmol H2 each hour, 
respectively. It is evident that N-doped carbon quantum dot express 
much better photocatalytic performance than P25 under both full 
spectrum and visible light [182]. The photocatalytic stability test under 
full spectrum is shown in Fig. 8c, and a plausible mechanism of photo-
catalytic H2 evolution is described in Fig. 8d. On the basis of data pre-
sented herein, NCDs could regard as both electron reservoirs and 
photo-sensitizers in NCDs/P25 composites. In addition, Jing et al. used 
template-free method to prepare three different morphologies (nano-
particles, nanorods and nanobelts) N–MoC2 for hydrogen evolution re-
action [184]. The favorable HER catalytic performance might be caused 
by heteroatom N, because the existence of pyridinic N, charge density 
distribution and asymmetry spin could enhance the interaction with Hþ. 
Ulteriorly, the nitrogen dopants could possess strong 
electron-withdrawing features, thus making the neighboring carbon 
atoms to play dual roles both as electron acceptors and electron donors 
[184–186]. 

Fig. 7. (a) Photocatalytic water splitting activity of 1.0 wt% Pt-loaded BCNTs samples under visible light (λ > 420 nm) illumination. (b) Cyclic stability test of 
hydrogen evolution by 1.0 wt% Pt-loaded BCNTs-2 under visible light illumination for 20h. (c, d) SEM images of BCNTs-2 sample, scale bar, 50 μm and 5 μm, 
respectively. Reprinted with permission from Ref. [178] Copyright 2017 Royal Society of Chemistry. 
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5. Photocatalytic degradation of pollutants 

As the economy continues to develop, we face a huge environmental 
problem since widespread effluents and gaseous pollution enter into 
human society [26,187–196]. In recent decades, many scientific re-
searchers made a large quantity of effort to solve the above problem, 
among many methods, photocatalytic technology attains widely atten-
tion and has been applied in environmental conservation due to its 
simple, economic and feasible [68,197–201]. 

5.1. g-C3N4 

In 2009, Wang and his coworkers used the g-C3N4 as photocatalysts 
for photocatalytic hydrogen evolution [164]. Since then, g-C3N4 has 
quickly become a hotspot in the field of photocatalysis and it was 
extensively used in environmental applications including water decon-
tamination and air purification. However, bare g-C3N4 was rarely used 
in photocatalysis field because of its insufficient solar light absorption 
and low efficient of degradation pollutants. Hence, g-C3N4-based 

semiconductor photocatalysts have been extensively applied to photo-
catalytic degradation of environmental pollutants [58,202–204] 
(Fig. 9). Generally, the photocatalytic degradation of pollutants with 
modified g-C3N4 showed in researches can be classified into two cate-
gories: liquid-phase removal of contaminants and gas-phase degradation 
of pollutants mainly about NOx [202,205–208]. G-C3N4 dopant photo-
catalysts and their photocatalytic performances are shown in Table 3. 

5.1.1. Liquid-phase degradation of pollutants 
Among the organic contaminants that evaluated the photoactivity of 

the catalyst, dyes [209–211], tetracycline (TC) [212–215] and other 
antibiotics [190,216–219] were most widely used in water. For instance, 
Dong et al. fabricated inorganic–organic composites comprised of VLD 
photocatalysts of CdS and g-C3N4 via a precipitation–deposition method. 
The optimum photocatalyst 0.7g-C3N4-0.3g-CdS was almost 3.1 and 
20.5 times higher than pure CdS and g-C3N4 toward remove dye of 
methyl orange (MO), respectively [209]. Zou and coworkers prepared 
bulk g-C3N4 and boron-doped g-C3N4 (BCN) via heating melamine and 
the mixture of melamine and boron oxide, respectively. Optimum BCN 

Fig. 8. Photocatalytic H2 evolution rates in 25 vol% methanol (a) for pure P25 TiO2 and NCDs/P25 composites and (b) for NCDs-3/P25 composites with different 
NCDs loadings under full spectrum and visible light (λ > 450 nm) illumination. (c) Photocatalytic stability tests under full spectrum illumination. (d) Schematic 
illustration of the electron transfer mechanisms. Reprinted with permission from Ref. [182]. Copyright 2017 Wiley. 

Fig. 9. The advantages of modified g-C3N4 with minor modifications from Ref. [58]. Copyright 2015 Elsevier.  
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Table 3 
g-C3N4 based and their properties.  

Composite type Precursor Photocatalytic activity Light source Main active 
species 

Ref 
(year) 

CdS/g-C3N4 Cd(NO3)2⋅4H2O and thiourea 
(CdS) 

Degradation of MO and 4-ABA 300 W Xe lamp with a 420 nm 
cutoff filter 

hþ and �O2
� [209] 

melamine (CN) k ¼ 0.123 min� 1 and 73% degradation after 1h, 
respectively   

(2013) 

Bi/α-Bi2O3/g- 
C3N4 

Bi(NO3)3⋅5H2O (α-Bi2O3) Degradation of Tetracycline and RhB 300 W Xe lamp with a 400 nm 
cutoff filter 

hþ and �O2
� [212] 

urea (CN) 90.2% and 95.6% degradation after 180 min and 
90 min, respectively   

(2018) 

Cl/g-C3N4 ammonium chloride (Cl) Degradation of NO and RhB 150 W Xe lamp with a 400 nm 
cutoff filter 

hþ and �OH [47] 

melamine (CN) about 60% degradation after 0.5h and k ¼ 0.9 h� 1, 
respectively   

(2017) 

B/g-C3N4 boron oxide (B) Degradation of MO and RhB 300 W Xe lamp with a 420 nm 
cutoff filter 

hþ and �O2
� [210] 

melamine (CN) k ¼ 0.061 min� 1 and k ¼ 0.199 min� 1, respectively   (2010) 
Ag3PO4/g-C3N4 AgNO3 and Na3PO4(Ag3PO4) Degradation of MO 300 W Xe lamp with a 420 nm 

cutoff filter 
hþ and �O2 [211] 

urea (CN) almost 100% degradation only 5 min   (2014) 
rGO/g-C3N4 urea and dicyandiamide (CN) Degradation of MO and TC 300 W Xe lamp with a 400 nm 

cutoff filter 
hþ and �O2

� [213]  

97% degradation after 3h and 90% degradation after 
2h, respectively   

(2018) 

WO3/g-C3N4 Na2WO4 (WO3) Degradation of Ceftiofur sodium 300 W Xe lamp with a 420 nm 
cutoff filter 

hþ and �OH [216] 

dicyandiamide (CN) 82% degradation after 2h   (2018) 
Bi3TaO7 QDs/g- 

C3N4 

Bi(NO3)3⋅5H2O and TaCl5 

(Bi3TaO7) 
Degradation of CIP 300 W Xe lamp with a 420 nm 

cutoff filter 
�OH and �O2

� [217] 

dicyandiamide (CN) 91% degradation after 2h   (2017) 
Ag/BiVO4/g- 

C3N4 

Bi(NO3)3⋅5H2O and AgNO3 (Ag/ 
BiVO4) 

Degradation of NO 350 W Xe lamp with a 420 nm 
cutoff filter 

�OH and �O2
� [224] 

melamine (CN) 83% degradation after 2.5h   (2017) 
Na/g-C3N4 NaOH (Na) Degradation of RhB 300 W Xe lamp with a 420 nm 

cutoff filter 
�OH and �O2

� [278] 

dicyandiamide (CN) k ¼ 0.0064 min� 1   (2014) 
K/g-C3N4 KOH (K) Degradation of RhB 300 W Xe lamp with a 420 nm 

cutoff filter 
�OH and �O2

� [48] 

dicyandiamide (CN) k ¼ 0.011 min� 1   (2015)  

Fig. 10. (a) Photocatalytic activities of g-C3N4, Ag3PO4 and 10, 25, 50, and 70 wt% g-C3N4/Ag3PO4 hybrid photocatalysts on the decolorization of MO under visible- 
light irradiation (>440 nm). (b) Proposed formation mechanism of g-C3N4/rGO coatings immobilized on nickel foam. (c) Partial enlarged XRD patterns of as- 
prepared g-C3N4/rGO hybrid coatings immobilized on nickel foam. (a) is reprinted with permission from Ref. [211]. Copyright 2014 American Chemical Society; 
(b–c) are reprinted with permission from Ref. [213]. Copyright 2018 Elsevier. 
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sample possessed the highest degrading rate of RhB which was 
approximately 1.5-fold faster than RhB photodegrading over the bulk 
g-C3N4 prepared at the uniform conditions [210]. Katsumata et al. 
prepared a highly efficient g-C3N4/Ag3PO4 Z-Scheme photocatalysts by 
situ precipitation method. Among the hybrid photocatalysts, best hybrid 
sample revealed the highest photocatalytic activity which took only 
5 min of VLD irradiation for the total remove of 10 mg/L MO [211]. The 
photocatalytic activity of g-C3N4, Ag3PO4 and g-C3N4/Ag3PO4 com-
pound photocatalysts on the degradation of MO was shown in Fig. 10a. 

Because of widely distribution in water resource and unique difficult 
decomposing of antibiotic, many researchers use TC as target pollution 
to explore the photocatalytic properties of materials [220]. For instance, 
Chen et al. successfully prepared a three-component heterojunction 
photocatalyst (Bi/α-Bi2O3/g-C3N4, labeled as BBC) which Bi/α-Bi2O3 
nanoparticles loading on g-C3N4 nanosheets via a calcination photore-
duction technique. BBC showed a remarkably high photocatalytic per-
formance under VLD irradiation, the degradation rate reached almost 
90.2% for TC [212]. In Wang’s study, they developed a facile method to 
immobilize 2D/2D structured g-C3N4/rGO hybrid coating on 3D nickel 
foam so as to enhance the phtocatalytic performance and cyclic stability 
of g-C3N4 [213]. Because of the abundant coupling heterointerfaces 
between rGO and g-C3N4 in this hybrids, the recombination of 
light-induced hþ/e� were hugely suppressed and the 2D/2D structured 
g-C3N4/rGO compound coating on 3D nickel foam demonstrated the 
superior photocatalytic performance. In the photocatalytic test, CN-9 
(weight ratio of g-C3N4 nanosheets to GO) sample demonstrates the 
highest degradation efficiency (90%) [213]. The mechanism of 
g-C3N4/rGO coatings immobilized on nickel foam was shown in Fig. 10b 
and the XRD patterns of g-C3N4/rGO materials were depicted in Fig. 10c. 

Antibiotics are another target pollutants, their resistance has become 
more and more evident. And antibiotics could be detected in soils, 
sediment, aqueous system and even the food on our table [216,217]. Dr. 
Xiao’s team synthesized a promising g-C3N4/WO3 heterojunction hol-
low microsphere by in situ hydrolysis and polymerization, and the 
as-prepared materials showed high photocatalytic activity for removal 
ceftiofur sodium (CFS) under VLD irradiation. The optimal sample 
exhibited the highest degradation efficiency (82%) of CFS after 120 min 
of VLD irradiation [216]. Zhang et al. constructed a 0D/2D hetero-
junctions of Bi3TaO7 quantum dots/ultrathin g-C3N4 nanosheets via an 
economical sol-gel method. The best sample of 20 wt% g-C3N4 NSs has 
excellent photocatalytic performance for the degradation of ciproflox-
acin, and its photocatalytic efficiency was 12.2 times and 4 times that of 
pure g-C3N4 and Bi3TaO7, respectively [217]. 

5.1.2. Gas-phase degradation of pollutants 
NOx including NO2 and NO has been one of main air pollutants 

[202]. NOx can cause atmospheric pollution like urban smog and acid 
rain which were harmful for human health. Therefore, removing NOx is 
a challenging task nowadays. As a big photocatalyst family of nitride, 
g-C3N4-based gives a new avenue for this research [221,222]. In order to 
solve bulk g-C3N4 problem of high recombination of light-induced car-
riers and small surface area, Li and coworkers prepared mesoporous 
g-C3N4 (MCN) mix with graphene oxide (GO) and graphene (G) to 
remove NO [223]. The MCN-G showed a NO removal efficiency of 
64.9%, which was better than that of bare g-C3N4 (16.8%) and MCN-GO 
(60.7%), confirming that porous g-C3N4 and graphene have a synergistic 
effect to improve the photocatalytic performance [223]. Qu et al. 
designed a hierarchical g-C3N4@Ag/BiVO4 (040) hybrid photocatalyst 
which exhibited higher photocatalytic performance for NO oxidation 
with respect to pristine BiVO4 and bulk g-C3N4 [224]. In this paper, the 
reason of the high performance for removing NO was the efficient 
generation of hþ, ⋅O2, ⋅OH, and ⋅OH plays a vital role [224]. Owing to 
the property of resistance to oxygen of g-C3N4, it makes g-C3N4 
decompose NO can be reacted in the presence of NO, and there are no 
negative effects for photocatalysts. Compared to other photocatalyst, 
g-C3N4 have a bright future and huge potential in NO decomposition 

[222]. 

5.2. BN based and N-doped 

Boron nitride nanomaterials has special chemical stability, extreme 
large surface area and high thermal conductivity, and demonstrates 
advantages in water cleaning [96]. This section presents the BN or BN 
modified photocatalysts for the degradation of diverse contaminants 
from water. BN-based photocatalysts and their photocatalytic perfor-
mances are shown in Table 4. 

For the degradation of dye, Wu et al. prepared composites Ag2CrO4/ 
few layer boron nitride via a situ precipitation method [225]. In this 
paper, the as-prepared Ag2CrO4/FBNNS-10 wt% exhibited the highest 
photocatalytic activity of 96.7% higher than 75% of pure Ag2CrO4. 
Similarly, Song et al. synthesized graphene-analogues BN modified 
Ag3PO4 photocatalysts, and the 0.5 wt% BN/Ag3PO4 composite pre-
sented the optimum photocatalytic performance [226]. BN can improve 
other photocatalyst charge separation ability and enhanced photo-
catalysis ability. Very recently, for broaden the absorption spectrum, 
Weng et al. prepared BN mesoporous nanosheets (BNPS) with richly 
exposed (002) plane edges by a simple method and the materials exhibit 
wide-spectrum light absorptions [227]. The photocatalytic perfor-
mances of TiO2/BNPS composites were evaluated via photocatalytic 
oxidation of organic compounds (acetic acid and crystal violet) to evolve 
CO2 in aqueous solutions, and compared to P25 (TiO2). The photo-
catalytic performances of composites were shown in Fig. 11. 

N-doped nanomaterials such as N–TiO2 [228–231], N–ZnO [232, 
233] and N-CQDs [234,235] have made a great contribution to the 
removal of organic pollutants in water due to theirs chemical stability 
and good optical property. Very recently, Liu and their teamworkers 
developed a heterojunction composites N-doped KTiNbO5/g-C3N4 
(NTNO/CN) via one-step calcination approach [236]. The NTNO/CN 
photocatalysts exhibited excellent photocatalytic activity for degrada-
tion of rhodamine B and bisphenol A. It is noted that the layered het-
erojunction and N doping has synthetic effect to improve the efficiency 
of light harvesting and charge separation of NTNO/CN. During the 
photocatalytic process of RhB degradation, the active species of �O2

�

played a dominated role and hþ played an assistant role [236]. Simi-
larly, Peter et al. used coprecipitation and wet chemical method to 
prepared N-doped ZnO/GO (NZGO), and their photocatalytic activity 
were evaluated by the degradation of brilliant smart green (BG) dye 
[237]. The lattice constants, the cell volume, and the crystalline size of 
N–ZnO are smaller than ZnO, which might caused by nitrogen occupies 
interstitial positions of crystal lattice. Thus N–ZnO shows a higher 
photocatalytic activity than pure ZnO under visible light irradation. 
Many other N-doped photocatalysts and their photocatalytic perfor-
mances of degradation of organic pollutants were shown in Table 5. 

6. Photocatalytic carbon dioxide reduction 

As one of the reasons causing the global climate change, greenhouse 
gas carbon dioxide (CO2) has now become a global environmental issue 
because of fossil fuel abundant consumption. In the foreseen future, 
energy shortage and environmental pollution have become two main 
problems [189,238–241]. Solar energy is considered to be the most 
important sustainable energy source. Therefore, it is of significant 
importance to efficiently and inexpensively convert solar energy into 
chemical fuels by manual method [242]. 

Photocatalytic reduction of CO2 is known as a challenging but 
promising application for energy utilization to settle the climate change 
and energy crisis in the near future [68]. The pioneer work of photo-
catalytic reduction of CO2 was made by Honda and coworkers, who 
studied various semiconductor photo-catalysts transformation efficiency 
and photo-degradation products [243]. CO2 can be converted into for-
mic acid (HCOOH), methanol (CH3OH), CO, methane (CH4), and 
formaldehyde (HCHO) during the photocatalytic process [244]. The 
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possible products from CO2 reduction depending on the different reac-
tion mechanisms and pathways are shown in Table 6 [245,246]. 

6.1. g-C3N4 

As a member of nitride and N-doped materials family, g-C3N4 was a 
metal free, low-cost and great visible light adsorbing potential semi-
conductor, which has been proven to be the appropriate photocatalytic 
material since its CB and VB are positioned at � 1.14 eV and 1.57 eV, 
respectively. Clearly, the CB location of g-C3N4 was adequately negative 
to transform CO2 [244]. Owing to the fast recombination of 
light-induced hþ/e� , it still exist some problems photocatalytic reduc-
tion of CO2 by using bare g-C3N4. 

Many researchers paid their efforts to overcome this issue. For 
example, Wang et al. synthesized conjugated g-C3N4 nanosheets modi-
fied with barbituric acid via a simple chemical condensation of urea 

[247]. In this study, the best sample (CNU-BA0.03) showed 15-fold-en-
hanced photocatalytic performance for the CO2-to-CO conversion reac-
tion compared to the bulk CNU (non-modified) material. After 4 h 
reaction, 56.3 μmol CO were obtained from the reaction system with the 
help of CNU-BA0.03 [247]. In the other aspect, Wang and colleagues 
synthesize noble-metal-free system by integrating g-C3N4 with a 
cobalt-containing zeolitic imidazolate framework (Co-ZIF-9), this 
hybrid system significantly enhanced CO2-to-CO conversion efficiency 
under VLD illumination. Among them, Co-ZIF-9 showed various func-
tions in promoting photo-generated charge separation and CO2 
adsorption [244,248]. 

In addition to CO, CO2 also can be converted into many other 
chemicals and fuels including CH4, CH3OH, HCOOH and HCHO. In 
Mao’s study, they synthesized two kinds of g-C3N4 via a thermal 
decomposition process of urea or melamine, and denoted as u-g-C3N4 or 
m-g-C3N4. They found an interesting phenomenon that CO2 can be 

Table 4 
BN based and their properties.  

Composite 
type 

Precursor Photocatalytic activity Light source Main active 
species 

Ref 
(year) 

Ag2CrO4/BN K2CrO4 and AgNO3 Degradation of RhB 300 W Xe lamp with a 420 nm cutoff 
filte 

hþ and �O2
� [225] 

hexagonal BN k ¼ 0.027 min� 1 and 97% 
degradation after 2h, respectively   

(2017) 

Ag3PO4/BN AgNO3 and Na3PO4 Degradation of RhB 300 W Xe lamp with a 400 nm cutoff 
filte 

hþ and �O2
� [226] 

hexagonal BN k ¼ 0.28 min� 1 and 97% degradation 
after 2h, respectively   

(2014) 

BN/TiO2 guanidine hydrochloride Degradation of RhB and phenol 300 W Xe lamp with a 420 nm and 
300 nm cutoff filte, respectively 

hþ and �O2
� [279] 

boron trioxide and TiO2 99% degradation after 6 h   (2017) 
BN/Bi4O5I2 Bi(NO3)3⋅5H2O and BN Degradation of bisphenol A and RhB 300 W Xe lamp with a 400 nm cutoff 

filte 
hþ and �O2

� [280] 

TiO2� xNx/ 
BN 

tetrabutyl titanate Degradation of RhB 250 W halide lamp with a 400 nm cutoff 
filte 

hþ and �O2
� [281] 

melamine–boron acid adducts 97.8% degradation after 40 min   (2014) 
CdS/BN boric acid and melamine Degradation of RhB 300 W Xe lamp with a 420 nm cutoff 

filte 
hþ and �O2

� [282] 

CdS 74% degradation after 80 min   (2016) 
SnS2/BN SnCl4⋅5H2O and thioacetamide Degradation of RhB 300 W Xe lamp with a 420 nm cutoff 

filte 
�OH [283] 

hexagonal BN 93.7% degradation after 210 min    
BN/g-C3N4 melamine and BN Degradation of RhB and TC 300 W Xe lamp with a 420 nm cutoff 

filte 
hþ and �O2

� [46] 

99.5% degradation after 40 min and 79.7% 
degradation after 1h, respectively    

(2018)  

Fig. 11. CO2 evolved rates of acetic acid photocatalytic oxidations by TiO2/BNPS composite with the comparison to commercial P25 (TiO2) under λ > 300 nm 
irradiation (a), and under λ > 420 nm irradiation conditions (b). (c) CO2 evolved rates of crystal violet photocatalytic oxidations by the composite under the 
λ > 420 nm irradiation. Reprinted with permission from Ref. [227]. Copyright 2015 Elsevier. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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converted into C2H5OH when m-g-C3N4 was photocatalyst, while u-g- 
C3N4 leads to a mixture including C2H5OH and CH3OH [249]. This 
phenomenon was possibly caused by the different crystallinity and 
microstructure of the two kinds of g-C3N4. Moreover, Yu et al. used a 
simple calcination method to constructed binary Z-scheme of 
g-C3N4/ZnO, and applied it for the photocatalytic converted of CO2 into 
CH3OH [250]. Maeda et al. prepared a promising heterogeneous pho-
tocatalyst system with ruthenium complex based on g-C3N4, this hybrid 
material realized the high selectivity for HCOOH production which can 
maintained HCOOH 67.7 mmol with 20 h. Therefore, Maeda’s research 
clearly demonstrates the potential of carbon dioxide-based multiphase 
photocatalysts to reduce carbon dioxide using solar energy [251]. The 
photocatalysis of CO2 reduction by using a Ru complex/C3N4 hybrid was 

illustrated in Fig. 12, along with structures of the used Ru complexes. By 
doping g-C3N4 with elemental photocatalyst red phosphor, Xue and 
coauthors also found that an enhanced CH4 production by CO2 photo-
reduction under 500W xenon arc lamp irradiation. In their study, 
optimal red phosphor/g-C3N4 hybrids (PCN-30) exhibited a CH4 pro-
duction yield of 295 mol h� 1 g� 1, which was twice higher than bare red 
phosphor (145 mol h� 1 g� 1) and approximately enhanced three times 
than bare g-C3N4 (107 mol h� 1 g� 1) [252]. 

6.2. BN based and N-doped 

Compared to g-C3N4, BN and N-doped photocatalysts research in 
photocatalytic reduction of CO2 was very rare. The reason of this phe-
nomenon was that hexagonal BN has a wide band-gap (5.5 eV) and its 
light absorptions is negligible when the light wavelength is above 
300 nm [253]. For nitrogen doped TiO2, Akple et al. fabricated 
nitrogen-doped anatase TiO2 microsheets (N–TiO2 MS) via a hydro-
thermal method with the help of HF and HCl [254]. In this paper, the 
N–TiO2 MS sample exhibited a much better property than its precursor 
TiN and P25 (commercial TiO2) for photocatalysis CO2 reduction. The 
detected product from as prepared materials is CH4, CH3OH and CH2O. 
Besides, Oliveira et al. used urea as a nitrogen precursor to obtained 
N-doped ZnO, and the N–ZnO showed outstanding performance for CO2 
photoreduction [156]. In this work, CH4 was the only product of CO2 
photoreduction reaction, and the CH4 production rate of optimal sample 
was about 0.23 mol l� 1g� 1h� 1. Similarly, Núnez et al., prepared ZnO:N 
nanoparticles and used the samples for photocatalysis CO2 reduction 
under UV irradiation, and the final product were H2, CO, CH4, and 

Table 5 
N-doped and their properties.  

Composite type Precursor Photocatalytic activity Light source Main active 
species 

Ref 
(year) 

Cu deposited 
N–TiO2/ 

standard TiO2 Degradation of bisphenol A (BPA) Four 8 W UV or visible lamps with a 
420 nm cutoff filte 

hþ and �OH [284] 

titanate nanotubes NH3/N2 atmosphere k ¼ 0.012 min� 1 and 93% degradation after 
240 min   

(2017) 

Ag-modified g- 
C3N4/ 

melamine and TiN Degradation of methyl blue (MB) 500 W Xe lamp with a 420 nm cutoff 
filte 

�O2
� and �OH [285] 

N-doped TiO2 AgNO3 k ¼ 0.0201 min� 1 and about 80% degradation 
after 80 min   

(2017) 

N–TiO2 Urea Degradation of 4-chlorophenoxyacetic acid (4- 
CPA) 

two visible white LED lamps of 100 W hþ and �OH [228] 

titanium isopropoxide 95% degradation after 240 min   (2017) 
N-doped ZnO zinc nitrate hexahydrate Degradation of RhB 300 W Xe lamp with a 420 nm cutoff 

filte 
no data [232] 

WO3/TiO2–N tetrabutyl orthotitanate Degradation of diclofenac 1500 W Xe lamp with a 420 nm cutoff 
filte 

�O2
� and �OH [229] 

ammonium (para) tungstate 
hydrate 

about 92% degradation after 120 min    

N–In2O3 In(NO3)3⋅4.5H2O and NH3 Degradation of RhB 150 W Xe lamp with a 420 nm cutoff 
filte 

no data [286]  

97% degradation after 180 min    
N-doped ZnO/ zinc nitrate and melamine Degradation of RhB 300 W Xe lamp with a 400 nm cutoff 

filte 
O2
�- and �OH [233] 

g-C3N4 ammonium oxalate k ¼ 0.0679 min� 1 and about 98% degradation 
after 60 min   

(2014) 

N-doped carbon 
dots/ 

citric acid and urea Degradation of indomethacin (IDM) 350 W Xe lamp with a 420 nm cutoff 
filte 

hþ and �O2
�- [234] 

g-C3N4 Dicyandiamide k ¼ 0.0272 min� 1 and about 91.5% degradation 
after 90 min   

(2017) 

N–HTiNbO5 K2CO3, Nb2O5 and TiO2 Degradation of methylene blue (MB) 500 W Xe lamp with a 420 nm cutoff 
filte 

no data [287] 

ammonia atmosphere about 54% degradation after 170 min    
N-CQDs/Bi2WO6 ammonium citrate Degradation of TC 300 W Xe lamp with a 420 nm cutoff 

filte 
hþ and�O2

� [235] 

N–KTiNbO5/ K2CO3, Nb2O5 and TiO2 Degradation of RhB 300 W Xe lamp with a 420 nm cutoff 
filte 

hþ and�O2
� [236] 

g-C3N4 melamine about 100% degradation after 80 min    
N–ZnO/GO zinc acetate dihydrate and 

urea 
Degradation of brilliant smart green (BG) 300 W Xe lamp with a 420 nm cutoff 

filte 
�O2
� [237] 

graphite flakes about 99% degradation after 90 min   (2018)  

Table 6 
The main products of CO2 and corresponding reduction potential with reference 
to NHE at pH of 7.  

Product Reaction E0 

Hydrogen 2H2Oþ 2e� →2OH� þ H2  � 0.41 
Methane CO2 þ 8Hþ8e� →CH4 þ 2H2O  � 0.24 

Carbon monoxide CO2 þ 2Hþ þ 2e� →COþ H2O  � 0.51 

Methanol CO2 þ 6Hþþ6e� →CH3OHþ H2O  � 0.39 

Formic acid CO2 þ 2Hþþ2e� →HCOOH  � 0.58 

Ethane 2CO2 þ 14Hþþ14e� →C2H6 þ 4H2O  � 0.27 

Ethanol 2CO2 þ 12Hþ þ 12e� →C2H5OHþ 3H2O  � 0.33 

Oxalate 2Co2 þ 2Hþ þ 2e� →H2C2O4  � 0.87  

W. Wang et al.                                                                                                                                                                                                                                  



Composites Part B 172 (2019) 704–723

717

CH3OH [255]. Although the reduction of CO2 via BN based and N-doped 
photocatalysts was in the early stages of development, it still was a very 
promising direction worthy of research. 

7. Theoretical advances on nitride and nitrogen-doped 
photocatalysts 

With the development of nanomaterials, the system of nanomaterials 
is more and more complicated, and the traditional analytical derivation 
method is insufficient [256,257]. Fortunately, the theoretical calcula-
tions relying on computer simulation provide a new means for the study 
of complex systems. The combination of theoretical calculations and 
experimental research has become the inevitable result of scientific 
progress [258]. For photocatalysis, Density functional theory (DFT) may 
explain the possible photo-induced charge transfer within photo-
catalytic process which is fundamental to guide the modification of the 
photocatalysts nanomaterials [259–261]. Therefore, it is necessary to 

understand the theoretical advances on nitride and nitrogen-doped 
photocatalysts. 

Based on results of DFT calculations, the tri-s-triazine-based struc-
ture of g-C3N4 was proved the most stable structure [262]. In order to 
further explore the catalytic mechanism of g-C3N4 (mainly to clarify the 
position of catalytic active sites), the lowest unoccupied orbit (LUMO) 
and the highest occupied orbit (HOMO) of monolayer g-C3N4 are given, 
as depicted in Fig. 13a and b [263,264]. It should be noted that HOMO is 
mainly composed of N 2p orbits with weak in-plane coordination, while 
LUMO is mainly composed of C 2p orbits in the Z-axis direction [265, 
266]. The distribution of HOMO and LUMO tends to a low coordination 
N atom and edge C atoms, respectively [267]. Moreover, no e� would be 
excited from bridge N (N3) atoms under visible light, and the light-
generated e� can neither migrate to N3 atoms nor transfer from one 
heptazine (C6N7) unit to the adjacent unit through N3 atoms, resulting 
the separation efficiency of photogenerated carriers of bare g-C3N4 is 
inefficient [263]. Therefore, the computational study of HOMO and 

Fig. 12. CO2 reduction using a Ru complex/C3N4 hybrid photocatalyst, along with structures of the Ru complexes used. CB ¼ conduction band, VB ¼ valence band. 
Reprinted with permission from Ref. [251] Copyright 2015 Wiley. 

Fig. 13. Calculated LUMO (a) and HOMO (b) of monolayer g-C3N4. Reprinted with permission from Ref. [263]. Copyright 2017 Elsevier. Crystal structures, 
calculated band structures and density of states of (c, d) h-BN. Reprinted with permission from Ref. [271]. Copyright 2017 Elsevier. 
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LUMO provides a favorable theoretical basis for the strategy of 
enhancing the photocatalytic activity of g-C3N4 [268,269]. 

The 2D h-BN is a particularly attractive nanomaterial and has drawn 
intensive interest due to its unique structure, stability and low cost 
[270]. Based on results of DFT calculations, the band structure and 
electron density of h-BN were shown in Fig. 13c and d [271]. It is easy to 
find that the VB edge of h-BN is mainly composed of N 2p and N 2 s 
orbits, and the CB edge of h-BN is basically composed of B 2p orbit. The 
nitrogen atoms of VB have a lower hybridization with the adjacent 
boron atoms, which indicats that e� of VB are easily to be excited 
[271–273]. Based on the fact that nitrogen doping is a good strategy for 
adjusting the electronic structure and enhancing the photocatalytic 
performance of semiconductor, there are also many theoretical studies 
and experimental scenarios on nitrogen-doped photocatalysts [61,154]. 
For example, Dong et al. prepared a visible light driven N-doped 
(BiO)2CO3 photocatalyst via a facile green route, and the role of N atoms 
was revealed by DFT calculations [161]. The nitrogen atoms are doped 
into the crystal structure for upward shift VB top of (BiO)2CO3, resulting 
in narrowed bandgap and boost the visible light absorption. Similar 
results have also been discovered in Peng’s work, the DFT results indi-
cate that nitrogen doping can produce vacant states above the Fermi 
level and shift the CB into lower energy region, resulting in a stronger 
light absorption of N-doped ZnO [274]. In brief, the theoretical in-
vestigations on nitride and nitrogen-doped photocatalysts may shed 
light on the fundamental understanding of the underlying mechanism. 

8. Conclusions and perspectives 

The new family of nitride and N-doped nanomaterials covers a wide 
range of physicochemical properties for the applications in environment 
and energy. However, compared to carbon-based photocatalysts, the 
nitride materials are barely described in reviews, and their economic 
potential (energy aspect) and photocatalytic performance (environment 
aspect) are fully covered. The models of nitride and N-doped materials 
are BN, g-C3N4, N–TiO2 and other N-dopants, most of them have the 
ability to solve problem of energy crisis. In this review, the preparation 
methods of nitride photocatalysts are firstly discussed. Then the prop-
erties of nitride photocatalysts (optical and electronic) and the catalysis 
applications of nitride photocatalysts are also showed. In conclusion, 
this critical review summarizes family of nitride and N-doped prepara-
tion, properties and applications in hydrogen evolution from water, 
environmental pollutants removal and carbon dioxide reduction etc. 

Many researchers studied the representatives of nitride and N-doped 
photocatalysts and achieved significant progress, but the researches in 
photocatalysis field were still needed further systematic investigation 
and there were many challenges in the future development studies: (1) 
One of awkward challenges we met is the nonrepeatability of photo-
catalysts fabrication. From buy raw materials to construction of pre-
cursor and final product, from calcination materials to any experimental 
operation, none of the unified standard is listed, and neither specifica-
tion of experimental instrument nor the unified presentation of tech-
nological process and synthesis process were introduced. (2) Density 
functional theory (DFT) can indicate a way for practice of photo-
catalysts. However, to our best knowledge, the quantitative calculation 
is barely applied to demonstrate the relationship between photocatalytic 
efficiency and quantum yield of photocatalysts. Moreover, DFT may 
explain the possible photo-induced charge transfer within photo-
catalytic process which is fundamental to guide the modification of the 
photocatalysts nanomaterials. (3) The mechanisms of photocatalytic 
improvement by the nitride semiconductor systems are partly unclear. 
For instance, a photocatalyst which is more effective in removing 
contamination may exhibit poor performance in the process of gener-
ating hydrogen from water or carbon dioxide reduction. Also, it is 
indispensable to develop a uniform method to evaluate the photo-
catalytic property because of current diverse evaluation methods. (4) 
Although some researches about quantum dots are ongoing, we should 

further developed nitride photocatalysts quantum dots. 
The prospect of nitride photocatalysts looks bright. Continued 

progress in this field will overcome the above challenges, and to develop 
a class of photocatalysts with excellent selectivity and superior photo-
sensitivity for a wider range of applications. 
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