

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Ag₃PO₄/Ti₃C₂ MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance

Tao Cai^{a,b}, Longlu Wang^c, Yutang Liu^{a,b,*}, Shuqu Zhang^c, Wanyue Dong^{a,b}, Hui Chen^{a,b}, Xuanying Yi^c, Jili Yuan^c, Xinnian Xia^{d,**}, Chengbin Liu^c, Shenglian Luo^c

^a College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China
 ^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, PR China

^c State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China ^d College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China

ARTICLE INFO

Keywords: Ag₃PO₄ Ti₃C₂ MXene Anti-photocorrosion Photocatalytic degradation Schottky catalyst

ABSTRACT

The high carrier recombination rate and serious photocorrosion of Ag_3PO_4 greatly restrict its photocatalytic application. Here, we fabricated an Ag_3PO_4/Ti_3C_2 Schottky catalyst and found that Ti_3C_2 can greatly enhanced the catalytic activity and stability of Ag_3PO_4 . This arises from: (i) the abundant surface hydrophilic functional groups of Ti_3C_2 construct strong interfacial contact with Ag_3PO_4 , which facilitate the separation of carriers; (ii) the strong redox reactivity of surface Ti sites promote multiple electron reduction reactions to induce more \cdot OH production; and (iii) a Schottky junction formed at Ag_3PO_4 -Ti_3C_2 interface timely transfer electrons to Ti_3C_2 surface by built-in electric field, inhibiting the photocasion of Ag_3PO_4 caused by photogeneration electrons. Consequently, Ag_3PO_4/Ti_3C_2 exhibited excellent photocatalytic activity and stability for the degradation of organic pollutants. Especially, the apparent rate constant of 2,4-Dinitrophenol degradation with Ag_3PO_4/Ti_3C_2 toward tetracycline hydrochloride still maintained 68.4% after 8 cycles, while Ag_3PO_4/RGO and Ag_3PO_4/Ti_3C_2 with other photoreduction of Cr^{6+} using Ag_1/Ti_3C_2 further illustrated an enormous potential in coupling Ti_3C_2 with other photosensitivity semiconductor to improve their catalytic activity and stability.

1. Introduction

Photocatalysis has attracted great interest in resolving environmental problems caused by heavy metal ion (e.g., Cr^{6+} , Pb^{2+} , etc.) and organic pollutants (e.g., antibiotics, persistent organic pollutant, dyes, etc.) [1–3]. Silver-based semiconductors (such as Ag₃PO₄, AgBr and AgI, etc) are emerging as a class of high-effective catalysts for the removal of organic contaminants [4–10]. Among them, it is considered that Ag₃PO₄ has the highest quantum efficiency of about 90% at the wavelengths around 420 nm in water oxidation [11–13]. Although Ag₃PO₄ exhibits high-efficient visible-light photocatalytic performance, its degradation performance toward organic pollutants still needs to be improved. One reason is that the carrier recombination rate is relatively high and the potential of the conduction band (CB) is relatively low [14]. Another reason is that Ag₃PO₄ is easily decomposed into the silver by the photogenerated electrons during the photocatalytic process (Photocorrosion: $4Ag_3PO_4 + 6H_2O + 12h^+ + 12e^- \rightarrow 12Ag^+ 4H_3PO_4 + 3O_2$) [4,15]. These problems severely limit its practical application.

In order to solve above issues, Ag_3PO_4 based hybrid materials including Ag_3PO_4 /graphene [16,17], Ag_3PO_4 /BiVO_4 [18], Ag_3PO_4/g -C₃N₄ [19,20], AgX/Ag_3PO_4 [21], Ag_3PO_4 /NiFe₂O₄ [22], etc. had been largely studied. Photocatalytic performance of these Ag_3PO_4 -based composites were improved because of the reduced charge carrier recombination. Among them, two-dimensional (2D) layer materials (eg., graphene and g-C₃N₄.) have been considered as the most promising candidate for heterogeneous catalysis due to ultrahigh electron mobility [23,24] and large surface area [25], etc. However, several issues caused by the intrinsic properties of current 2D layer materials still exist: (i) These layer materials only provided weak and smaller contact between

https://doi.org/10.1016/j.apcatb.2018.08.053 Received 21 May 2018; Received in revised form 24 July 2018; Accepted 20 August 2018 Available online 22 August 2018

0926-3373/ © 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, PR China. ** Corresponding author.

E-mail addresses: yt_liu@hnu.edu.cn, liuyutang@126.com (Y. Liu), xnxia@hnu.edu.cn (X. Xia).

Fig. 1. Schematic representation of single 2D Ti_3C_2 sheets and Ag_3PO_4/Ti_3C_2 synthesis.

the bulk phases and Ag₃PO₄, which usually result in low conjunction of interface. The lower and weaker conjunction could significantly restrict the separation of charge carriers [26]; (ii) The oxidation of graphene could weaken the electronic conductivity for carriers transmission [4]; (iii) The electronic properties of graphene oxide (GO) can also be easily disrupted during the reduction process (The destruction of π -conjugated system) [27]. Thus, it is highly desirable to find new materials that can overcome these shortcomings.

MXene, two-dimensional (2D) early transition metal carbides, nitrides or carbonitrides, are widely used in batteries [28-30] and supercapacitors [31,32]. Moreover, recent studies have shown that Ti_3C_2 MXene has great potential as a co-catalyst for photocatalytic hydrogen production [33,34]. Notably, its unique natures render it extremely promising for handling the above issues as: (i) Ti₃C₂ MXene possesses a large number of hydrophilic functional groups (eg., –O and – OH) on its surface, making it easy to build a strong and sufficient connection with Ag₃PO₄ or other semiconductors; (ii) The surface terminal Ti sites might result in much stronger redox reactivity than that of traditional carbon materials [35]; (iii) The prominent metallic conductivity of Ti₃C₂ MXene make it to be an excellent "electron sink" for efficient carriers transfer. Considering the above excellent properties of the Ti₃C₂ MXene, it is expected that the combination of Ti₃C₂ MXene and Ag₃PO₄ can significantly improve the photocatalytic performance and stability of Ag₃PO₄. Moreover, since Ti₃C₂ MXene has excellent metallic conductivity, a Schottky junction may be formed at Ti₃C₂-Ag₃PO₄ interface, which usually formed at the semiconductor-metal interface. Schottky junctions are generally introduced to generate the built-in electric field, which has been recognized as an effective strategy to improve carrier separation [36]. In this regard, designing a Ti₃C₂ MXene based Schottky catalyst to achieve more high-efficient photocatalytic activity is very desirable, but still waiting to be studied.

Herein, we synthesized an Ag_3PO_4/Ti_3C_2 MXene Schottky catalyst by electrostatically driven self-assembly strategy successfully. The photocatalytic activity and anti-photocorrosion performance of the Ag_3PO_4/Ti_3C_2 MXene Schottky catalyst were evaluated by the degradation of antibiotics and persistent organic pollutant (POPs). Compared with typical Ag_3PO_4/RGO and pure Ag_3PO_4 , it showed preferable photocatalytic activity and anti-photocorrosion performance. The origin of this high activity and stability was studied systematically. Considering the complex composition of actual water bodies, the influences of diverse inorganic ion (eg., Na⁺, SO4²⁻ and NO₃-, etc.) and natural organic matters (NOMs) on its photocatalytic properties were also studied. Moreover, the efficient photoreduction of Cr^{6+} using AgI/Ti₃C₂ further demonstrated that the considerable potential of Ti₃C₂ MXene as an "electron sink" for the construction of Schottky junction to improve catalytic activity and stability of photosensitivity semiconductors.

2. Experimental

2.1. Chemicals

All chemicals (analytic grade reagents) used were purchased from Sinopharm Chemical Reagent Co. Ltd and without further purification. Deionized water (D.I. water) was prepared by ULUPURE purification system and used throughout the experiments.

2.2. Materials synthesis

2.2.1. Preparation of single Ti_3C_2 MXene sheet

 Ti_3C_2 MXene was fabricated by immersing Ti_3AlC_2 in etching solutions. The etching solution was prepared by mixing NaF (3.35 g) with HCl solution (20 mL, 36–38 wt.%) according to the previous report [37]. Briefly, 0.5 g Ti_3AlC_2 was dispersed in 20 ml etching solution, and then kept for 12 h at 60 °C with continuous stirring. Thereafter the precipitate was washed by diluted hydrochloric acid (2 mol/L), ethanol and D.I. water several times, and separated by centrifugation. Finally, the obtained MXene powder was dried in vacuum at 80 °C. Single Ti_3C_2 sheets were performed using dimethyl sulfoxide (DMSO) intercalation method [38]. 0.3 g of Ti_3C_2 was dispersed into 5 ml DMSO with continuous stirred for 24 h and then a black powder was obtained. Thereafter the powder was immersed in D.I. water and then sonication for 6 h. Finally, single Ti_3C_2 MXene sheets were obtained by filtering through a porous anodic alumina membrane filter.

2.2.2. Preparation of Ag_3PO_4/Ti_3C_2

 Ag_3PO_4/Ti_3C_2 was prepared by an electrostatically driven self-assembly method. Firstly, a certain amount of Ti_3C_2 sheets were dispersed into D.I. water and sonicated for 30 min to get a Ti_3C_2 suspension. Secondly, 10 mL, 0.6 M AgNO₃ aqueous solution was added to the above Ti₃C₂ suspension with vigorous stirring for 15 min. And then Na₂HPO₄ aqueous solution (10 mL, 0.2 M) was added dropwise to the mixture with keeping stirring for 2 h. Finally, the obtained precipitate was washed with D.I. water several times and dried in vacuum (80 °C) overnight. The detail preparation flowchart of Ti₃C₂ and Ag₃PO₄/Ti₃C₂ was provided in Fig. 1.

2.2.3. Preparation of Ag₃PO₄, Ag₃PO₄/GO and Ag₃PO₄/RGO

According to a typical synthesis method [16], Na₂HPO₄ aqueous solution (10 mL, 0.2 M) was slowly added dropwise to the AgNO₃ aqueous solution (10 mL, 0.6 M) with magnetically stirring, until the solution turned golden. The precipitate was collected, washed with D.I. water several times, and dried in vacuum (80 °C) overnight. GO was prepared by the improved Hummers method [39]. Ag₃PO₄/GO was prepared by the above electrostatically driven self-assembly method. Ag₃PO₄/RGO was obtained by directly photoreduction ($\lambda > 420$ nm) of Ag₃PO₄/GO aqueous solution containing ethanol (5%, v/v) for 15 min.

2.2.4. Preparation of AgI and AgI/Ti_3C_2

AgI was prepared by the direct reaction of AgNO₃ and NaI at room temperature. Briefly, NaI aqueous solution (10 mL, 0.2 M) was slowly added to the AgNO₃ aqueous solution (10 mL, 0.2 M) under magnetically stirring condition. After 30 min of reaction, the precipitate was collected, washed with D.I. water several times, and dried in vacuum (80 °C) overnight. AgI/Ti₃C₂ was also synthesized by the above electrostatically driven self-assembly method.

2.3. Characterization

The X-ray diffraction (XRD) with Cu-Ka radiation (Rigaku, Smartlab) at a scanning rate of 5 min^{-1} in the 2θ range of 5–80°, and Xrav photoelectron spectroscopy (XPS) with Al-Ka X-rav $(h\nu = 1486.6 \text{ eV})$ radiation (Thermo Fisher Scientific, England) were used to determine the crystal structures and chemical composition of samples. All of the binding energies were calibrated by C 1s peak at 484.8 eV. The field emission scanning electron microscopy (FE-SEM) (Hitachi, S-4800) and transmittance electron microscopy (TEM) (JEOL, JEM-2100F) were used to observe the morphologies. Energy dispersive X-ray spectroscopy (EDX) was collected by TEM (JEOL, JEM-2100 F). Raman spectra was acquired on a DXR spectrometer with the 532 nm laser. The UV-vis diffuse-reflectance spectra (DRS) was recorded using UV-vis spectrophotometer (Cary 300, Varian) with BaSO4 as the background. The photoluminescence (PL) spectra was acquired on Hitachi F-7000 fluorescence spectrophotometer with the excitation wavelength of 310 nm, scanning speed of 240 nm/min and PMT voltage of 650 V. The time-resolved PL spectra was tested in a single photon counting system. Bandgap excitation was triggered by a sub-nanosecond pulsed diode laser ($\lambda = 295 \text{ nm}$, PicoQuant).

Photoelectrochemical measurements were performed in 0.5 M Na₂SO₄ electrolyte solution in a typical three-electrode system (A working electrode, a platinum wire counter electrode and a Ag/AgCl reference electrode). The CHI 660C electrochemical analyzer (CHI Inc., USA) was use to record the electrochemical response. During the test of transient photocurrent, the working electrodes were prepared by coating the Ag₃PO₄, Ag₃PO₄/RGO and Ag₃PO₄/Ti₃C₂ samples on fluorine doped tin oxide (FTO) conductive glass, and then immersed into 0.5 M Na₂SO₄ aqueous solution. A 300 W Xe lamp was used as the light source. Mott-Schottky test was carried out under direct current potential polarization at different fixed frequencies of 1000 Hz, 2000 Hz and 3000 Hz. Nafion was used as the adhesive during the prepare process of working electrodes. Electron spin resonance (ESR) spectra was carried out on a JES FA200 electron paramagnetic resonance spectrometer. Instrument settings: center field, 3232 G; sweep width, 50 G; sweep time, 1 min; modulation frequency, 100 kHz; microwave power, 1 mW; microwave frequency, 9.05 GHz.

2.4. Photocatalytic performance measurement

2.4.1. Photodegradation of organic pollutants under visible light irradiation

The photodegradation of organic pollutants using as-prepared catalyst was performed under visible light irradiation (300 W Xe lamp with a cut off filter, $\lambda > 420$ nm). Typically, 20 mg of as-prepared catalyst was added into the reaction solution (50 mL, 20 mg/L methyl orange (MO), 2,4-Dinitrophenol (2,4-DNP), tetracycline hydrochloride (TC-H), thiamphenicol (TPL) or chloramphenicol (CPL)) with stirring for 30 min under dark environment to reach an adsorption-desorption equilibrium. During the photodegradation, 1 mL of suspension was taken out at a given interval time and separated through centrifugation (3000 rpm, 8 min) for further analysis.

2.4.2. Photoreduction of Cr^{6+} under visible light irradiation

The 50 mL K₂Cr₂O₇ solution with the concentration of 10 mg/L was employed as the pollutant for this test. 20 mg as-prepared catalyst was added into the K₂Cr₂O₇ solution. After reaching an adsorption-desorption equilibrium, the photoreduction of Cr^{6+} was conducted under visible light irradiation. The sample aliquot was intermittently withdrawn and separated through centrifugation (3000 rpm, 8 min) for further analysis.

2.5. Analysis

The concentration of Cr^{6+} was measured by the DPC (diphenylcarbazide) method [40]. The concentration of thiamphenicol (TPL) and chloramphenicol (CPL) was analyzed by a high-performance liquid chromatograph (HPLC, Shimadzu LC-20AT), which using a phenomenex Luna C-18 column and a SPD-20 A UV/Vis detector at 278 nm, with methanol and water (65/35, v/v) as effluent at a flow rate of 0.8 mL/min. The concentration of methyl orange (MO), 2,4-Dinitrophenol (2,4-DNP) and tetracycline hydrochloride (TC-H) was determined by the characteristic optical absorption at 465 nm, 370 nm and 357 nm, respectively with a UV–vis spectrophotometer (CARY 300 Conc).

3. Results and discussion

3.1. Structural investigations

The crystal structure of as-prepared catalysts were thoroughly investigated by X-ray diffraction (XRD). Obvious diffraction peaks associated with the Ti₃AlC₂ crystals were found and the (002) peak and (104) peak of Ti₃AlC₂ completely disappeared after etching (Fig. 2a). New peaks at 9°, 24.3° and 48° were observed, indicating that Ti₃AlC₂ completely converted to Ti₃C₂ [29,41]. All the diffraction peaks in pure Ag₃PO₄, Ag₃PO₄/RGO and Ag₃PO₄/Ti₃C₂ samples could be indexed to the typical body-centered cubic structure (JCPDS NO.06-0505) (Fig. 2(a, b)). A combination of Ti₃C₂ or RGO with Ag₃PO₄ did not affect the crystal structure of Ag₃PO₄, excluding the influence of the crystal structure on catalytic activity. Attributing to the relatively low amount and high dispersion of Ti₃C₂ and RGO, there were no notable characteristic diffraction peaks of Ti₃C₂ and RGO in the XRD pattern [16,33]. RGO was obtained by the reduction of GO. As shown in Fig. S1, The D/G intensity ratio (D peak at 1350 cm^{-1} and G peak at 1590 cm⁻¹) increases from 1.01 to 1.12, indicating the transform of GO to RGO [42]. The photo images of Ti₃C₂ and RGO were also provided in Fig. S2. Notably, a small amount of metallic Ag appeared in the XRD pattern of Ag₃PO₄/Ti₃C₂, which might be due to the Ag self-reduction in Ti₃C₂ MXene solution caused by low valence Ti [43,44]. Moreover, no any other trace of impurities were appeared in the pattern, suggesting the formation of pure Ag₃PO₄ and Ti₃C₂ crystal structure.

The morphologies of the as-prepared samples were investigated by (HR)TEM and SEM techniques. The formed accordion-like multilayer nanostructure reveal the typical MXene morphology (Figs. 3a and S3a)

Fig. 2. (a), X-ray diffraction (XRD) patterns of the as-prepared catalysts. (b), Crystal structure model of Ag₃PO₄.

[45]. After delaminating, single Ti₃C₂ sheets were obtained with a relatively broad size (Figs. 3b and S3b), which may provide more nucleation sites for the crystal growth of Ag₃PO₄. HRTEM image of Ti₃C₂ (inset in Fig. 3b) showed a lattice spacing of about 0.266 nm, which was assigned to the (010) plane of Ti_3C_2 [46]. After combined with Ag_3PO_4 particles (ca. 100–200 nm), the Ti_3C_2 sheets are completely wrapped on these particles (Figs. 3c and S3c). This can be attributed to the electrostatically-driven self-assembly between Ag⁺ and negatively charged Ti₃C₂ sheets. Note that the presence of Ti₃C₂ caused a slight decrease in the sizes of Ag₃PO₄ particles in the Ag₃PO₄/Ti₃C₂ composites compared with pure Ag_3PO_4 (Fig. S3 (c, d)). The results imply that Ti_3C_2 play an important role in the morphology and size control of Ag₃PO₄ particles, which is beneficial for photocatalytic process. The corresponding EDX spectrum in Fig. 3d indicated that Ag₃PO₄/Ti₃C₂ contained Ag, P, Ti, O and C and no any other impurities elements, which was consistent with the XRD result. For comparison, Ag₃PO₄/RGO was prepared by the same method, which exhibited similar morphology with Ag₃PO₄/Ti₃C₂ (Fig. S4), indicating that the difference in catalytic activity is not caused

by the morphology.

Fig. 4a showed the survey XPS spectrum of Ag₃PO₄, Ti₃C₂ and Ag₃PO₄/Ti₃C₂. The binding energies of the samples were calibrated at 284.8 eV with respect to the carbon (C 1 s) as a reference line. All signals of Ag, P, O, C, and Ti were clearly observed in the survey XPS spectrum of Ag_3PO_4/Ti_3C_2 , which was consistent with the EDX result. Four peaks at 288.9, 286.7, 284.8 and 281.3 eV can be deconvoluted in the C 1 s pattern of Ti_3C_2 (Fig. 4b), which are ascribed to C-F, C-O, C-C and C-Ti bonds, respectively [47]. After the combination of Ti₃C₂ with Ag₃PO₄, the peaks of C-F and C-O were greatly decreased, implying a strong interaction between Ag₃PO₄ and Ti₃C₂. Because the abundant surface termination groups render negatively charged surface for Ti₃C₂ [33,48], which makes the connection of Ti₃C₂ with Ag₃PO₄ easier. It should be noted that the peak of C-Ti was disappeared in Ag₃PO₄/Ti₃C₂, indicating that part C-Ti bond was broken during the synthetic process. In the case of the Ti 2p pattern of Ti₃C₂, six peaks at 454.6, 456.2, 458.9, 460.8, 462.7 and 464.9 eV can be deconvoluted, which are ascribed to Ti(III) $2p_{3/2}$, Ti(II) $2p_{3/2}$, Ti(IV) $2p_{3/2}$, Ti(II) $2p_{1/2}$

Fig. 3. TEM images of (a) bulk Ti_3C_2 , (b) single Ti_3C_2 sheet and (c) Ag_3PO_4/Ti_3C_2 composite. (d) EDX spectrum of Ag_3PO_4/Ti_3C_2 composite.

Fig. 4. (a), Survey XPS spectrum of as-prepared catalysts. High-resolution XPS spectrum of C 1 s (b) and Ti 2p (c) of Ti_3C_2 and Ag_3PO_4/Ti_3C_2 composite. High-resolution XPS spectrum of Ag 3d (d), P 2p (e) and O 1 s (f) of Ag_3PO_4 and Ag_3PO_4/Ti_3C_2 composite.

₂, Ti(III) 2p_{1/2} and Ti(IV) 2p_{1/2}, respectively [44,49]. Such low valence Ti species with strong reductive activity could as electron donors to conduct reduction reaction [44]. After compounding with Ag₃PO₄, the peaks corresponding low valence Ti species were completely disappeared, indicating that the intense redox reaction occurred during the synthetic process due to the consume of low valence Ti species. This may explain why a small amount of metallic Ag appeared in the XRD pattern of Ag_3PO_4/Ti_3C_2 . Notably, a negative shift of Ti(IV) $2p_{3/2}$ and Ti(IV) $2p_{1/2}$ peaks were observed on Ag_3PO_4/Ti_3C_2 compared with Ti₃C₂. However, Ag 3d, P 2p and O 1s peaks in Ag₃PO₄/Ti₃C₂ moved to positive position (Fig. 4d, e and f). In general, the binding energy is negatively related to surface electron density [36]. Thus, XPS results indicated that electrons were transferred from Ag₃PO₄ to the Ti₃C₂ surface after Ti₃C₂ and Ag₃PO₄ contact, which lead to the formation of Schottky junction between Ti₃C₂-Ag₃PO₄ interface. Schottky junctions could generate a built-in electric field, improving carriers separation rate greatly. This will be discussed detailly in mechanism section.

3.2. Photoelectric properties and band structure determination

Fig. 5a presented the UV-vis diffuse reflectance spectra for as-prepared samples. All samples exhibited excellent absorption in the region less than 500 nm. Specially, there was a distinct enhanced absorbance from approximately 500 nm to 800 nm for both Ag_3PO_4/Ti_3C_2 and Ag₃PO₄/RGO composite compared with pure Ag₃PO₄, indicating that both Ti₃C₂ and RGO sheets successfully coupling with Ag₃PO₄. Since Ti₃C₂ and RGO covered on the surface of the Ag₃PO₄, the light absorption will be reduced to some extent. Thus, it is necessary to evaluate the transmittance of materials. Ti₃C₂ and RGO films with the same thickness were prepared by spin-coating method on the surface of FTO. As shown in Fig.5b, Ti₃C₂ had better transmittance than RGO in full spectrum, which could make more photons into the surface of Ag₃PO₄ to improve photon utilization rate. PL spectra, ns-level time-resolved PL decay spectra, EIS and transient photocurrent responses were employed to investigate the charge transfer process. As shown in Fig. 5c, compared with pristine Ag₃PO₄, both Ag₃PO₄/Ti₃C₂ and Ag₃PO₄/RGO exhibited substantially depressed PL emissions, indicating pronounced carriers separation [50,51]. To further investigate the photophysical behavior of the photogeneration carriers, the ns-level time-resolved PL

decay spectra of Ag₃PO₄, Ag₃PO₄/RGO, and Ag₃PO₄/Ti₃C₂ were recorded (Fig. 5d). The radiative lifetimes (τ) can be obtained by fitting the decay curves with a biexponential function. As shown in Table S1, The short radiative lifetime (τ_1) of Ag₃PO₄ is 1.58 ns, which is decreased down to 1.44 and 1.35 ns in the Ag₃PO₄/RGO and Ag₃PO₄/ Ti_3C_2 composites, respectively. The long radiative lifetime (τ_2) decreased from 26.61 ns for Ag_3PO_4 to 15.44 ns for Ag_3PO_4/RGO and 11.08 ns for Ag₃PO₄/Ti₃C₂ composites. This shortened carriers lifetime suggest that an additional nonradiative decay channel may be opened through the electron transfer from Ag₃PO₄ to Ti₃C₂, which effective suppressed the carrier recombination [52]. EIS Nyquist plots showed that Ag₃PO₄/Ti₃C₂ had smallest arc radius (Fig. 5e), which also demonstrated a more effective separation of carriers [53,54]. Furthermore, transient photocurrent responses of Ag₃PO₄, Ag₃PO₄/RGO and Ag₃PO₄/Ti₃C₂ electrodes were measured to further validate the enhanced carrier separation efficiency in Ag₃PO₄/Ti₃C₂ (Fig. 5f). As expected, the photocurrent responses of the Ag₃PO₄/Ti₃C₂ electrode was significantly higher than that of Ag₃PO₄ and Ag₃PO₄/RGO electrode, indicating an enhanced separation of carriers due to the formation of Schottky junction between Ti₃C₂-Ag₃PO₄ interface. These results demonstrated that the introduction of $\mathrm{Ti}_3\mathrm{C}_2$ sheet can remarkably improve the visible light absorption and carrier separation efficiency of Ag₃PO₄.

The band structures of as-prepared samples were examined by Mott-Schottky measurement. It is well known that Mott-Schottky analysis is a tool to determine the flat band potential [55,56], which usually is approximate to the conduction band of n-type semiconductors (CB \approx U_{fb} - 0.2 V) [57]. As shown in Fig. S5, the flat-band potential of Ag₃PO₄, Ag₃PO₄/Ti₃C₂ and Ag₃PO₄/RGO could be extracted from the x-axis intersection and they were approximately 0.2 V, 0.3 V and 0.3 V versus Ag/AgCl, respectively. Thus the conduction band (CB) of Ag₃PO₄, Ag₃PO₄/Ti₃C₂ and Ag₃PO₄/RGO were O V, 0.1 V and 0.1 V, respectively (equivalent to 0.24 V, 0.34 V and 0.34 V versus NHE, Normal Hydrogen Electrode, respectively). Furthermore, the band gap of Ag₃PO₄ evaluated from the Kubelka-Munk method was about 2.42 eV (Fig. S6a). The band structure of Ag₃PO₄, Ag₃PO₄/Ti₃C₂ and Ag₃PO₄/RGO were presented in Fig. S6b.

Fig. 5. UV-vis diffuse reflectance spectra (a, b), PL spectra (c), time-resolved PL decay spectra (d), EIS Nyquist plots (e) and transient photocurrent responses (f) of asprepared catalysts.

3.3. Photocatalytic degradation of organic pollutants

For simplicity, a model pollutant, methyl orange (MO), was used to optimize the content of Ti_3C_2 and RGO in composites. The optimal contents of Ti_3C_2 in Ag₃PO₄/Ti₃C₂ and RGO in Ag₃PO₄/RGO both were 2 wt.% (Fig. S7). Ag₃PO₄/Ti₃C₂ exhibited preferable photocatalytic activities compared with Ag₃PO₄ and Ag₃PO₄/RGO, which preliminarily proved the superiority of Ag₃PO₄/Ti₃C₂. Hereafter, only the catalytic activity of optimized Ag₃PO₄/Ti₃C₂ and Ag₃PO₄/RGO catalysts were discussed in detail unless otherwise stated.

As mentioned above, a small number of metallic Ag generated in Ag₃PO₄/Ti₃C₂ during the synthetic process due to the reduction of Ag⁺ by low valence Ti species. Thus, to identify the role of metallic Ag in the Ag₃PO₄/Ti₃C₂ system, the control experiment was carried out. First, the Ti₃C₂ was immersed into K₂CrO₇ aqueous solution to consume the low valence Ti species, which get the sample Ti₃C₂-R. As shown in Fig. S8, after treatment by K2CrO7, the peaks corresponding low valence Ti species were completely disappeared, indicating that the low valence Ti species were consumed by Cr⁶⁺ (electron acceptor). After careful washing with HCl (10 mM) and D.I. water to remove the adsorbed Cr³⁺, and then Ag₃PO₄/Ti₃C₂-R can be prepared by above electrostatically driven self-assembly method. As expected, there were no obvious characteristic peaks in connection with metallic Ag appeared in the XRD pattern of Ag₃PO₄/Ti₃C₂-R compared with Ag₃PO₄/Ti₃C₂ (Fig. S9). Finally, the catalytic activities of Ag_3PO_4/Ti_3C_2 -R and Ag_3PO_4/Ti_3C_2 -R and AgTi₃C₂ was compared by the degradation experiment of MO. As shown in Fig. S10, the catalytic activity of Ag₃PO₄/Ti₃C₂ is slightly higher than Ag₃PO₄/Ti₃C₂-R, which may be caused by the surface plasma resonance of metallic Ag. Since the influence of Ag toward the degradation of MO is relative weak, for simplicity, the role of Ag is ignored in the later discussion.

To investigate the catalytic performance of as-prepared catalysts, typical antibiotic degradation experiments were carried out. Under visible light illumination, all catalysts exhibited vigorous activity to-ward chloramphenicol (CPL) degradation, while the performance of Ag₃PO₄/Ti₃C₂ was more prominent (Fig. 6a). To quantify the photo-catalytic activity for different catalysts, the apparent rate constant (k) of CPL (k_{CPL}) degradation was calculated with the pseudo-first-order approximation. As shown in Fig. 6b, the Ag₃PO₄/Ti₃C₂ gave rise to a k_{CPL} value of 0.025 min⁻¹, which is higher than that of Ag₃PO₄/RGO (0.012 min⁻¹) and Ag₃PO₄ (0.007 min⁻¹). Fig. 6c showed the HPLC chromatogram of CPL degradation in Ag₃PO₄/Ti₃C₂ system. The CPL

peak (retention time at 4.65 min) became weaker with time and a new peak (retention time at 5.2 min) appeared, indicating that CPL was gradually degraded. The superiority of Ag_3PO_4/Ti_3C_2 over the other catalysts in CPL photodegradation was ascribed to the sufficient interfacial contact, the pronounced charge separation resulting from Schottky junction, and stronger redox reactivity rendered by the surface metal Ti sites on Ti_3C_2 . Further explanations are shown in the section of mechanism. Thiamphenicol (TPL) (Fig. 6d–f) and tetracycline hydrochloride (TC-H) (Fig. 6g–i) were also used to further assess the photocatalytic activity of as-prepared catalysts under visible light. No surprisingly, Ag_3PO_4/Ti_3C_2 also displayed the highest photocatalytic activity for both TPL and TC-H compared with other catalysts.

A typical persistent organic pollutant 2,4-Dinitrophenol (2,4-DCP) was also employed to evaluate the catalytic activity of as-prepared catalysts. As shown in Fig. S11(a, b), Ag_3PO_4/Ti_3C_2 also exhibited excellent performances among them. The $k_{2,4-DNP}$ value degradation with Ag_3PO_4/Ti_3C_2 was 2.5 times that of Ag_3PO_4/RGO and 10 times that of Ag_3PO_4 . The results strongly demonstrated that Ag_3PO_4/Ti_3C_2 is an efficient photocatalyst that can degrade most organic pollutants. The apparent rate constant for degradation of various pollutants were shown in Table 1.

3.4. Effect of natural organic matters and inorganic salts

Generally, some of the coexisting constituents in the real wastewater, such as inorganic salts [58] and natural organic matter (NOM) [59], can significantly affect the photocatalysis activities of target pollutants. Herein, the proper amounts of humic acid (HA), fulvic acid (FA), K⁺, Cr⁶⁺, SO₄²⁻, H₂PO₄²⁻ and Na⁺ ions (Table S2) were added into TC-H solution respectively to investigate the influence of these constituents for degradation efficiency. As shown in Fig. 7a, both HA and FA had a certain inhibitory effect on TC-H degradation. This can be attributed to the competition between NOM and TC-H, which NOM can scavenge photogenerated holes and radicals [59]. To verify the inhibitory role of natural organic matter, the generation of ·OH in Ag₃PO₄/Ti₃C₂ system under visible light irradiation was detected by ESR. As shown in Fig. S12, when using 5,5-dimethyl-1-pyrroline Noxide (DMPO) as the spin trap reagent, four characteristic peaks of the DMPO-·OH adducts were detected in Ag₃PO₄/Ti₃C₂ system under visible light irradiation, indicating the generation of •OH. However, in the presence of HA, the production of •OH was decreased, which reveal that NOM serves as a scavenge of ·OH, thereby retarding the

Fig. 6. Photocatalytic degradation of various pollutants by as-prepared catalysts. (a) CPL, (d) TPL and (g) TC-H degradation efficiency in the presence of as-prepared catalysts under visible light irradiation (λ > 420 nm). The corresponding ln(C₀/C) vs. reaction time plots of (b) CPL, (e) TPL and (h) TC-H with the fitting results included. HPLC chromatogram of (c) CPL and (f) TPL under different degradation times using as-prepared catalysts. (i) UV-vis absorption spectra of TC-H under different degradation times using different catalysts.

 Table 1

 Degradation details of different pollutants by as-prepared catalysts.

Pollutants (20 mg/L)	Structure	Catalysts (0.4 g/L)	Rate constants (min ⁻¹)
МО		Ag ₃ PO ₄ Ag ₃ PO ₄ /RGO Ag ₃ PO ₄ /Ti ₃ C ₂	0.035 0.072 0.094
2,4-DNP		Ag ₃ PO ₄ Ag ₃ PO ₄ /RGO Ag ₃ PO ₄ /Ti ₃ C ₂	0.0005 0.002 0.005
ТС-Н		Ag ₃ PO ₄ Ag ₃ PO ₄ /RGO Ag ₃ PO ₄ /Ti ₃ C ₂	0.2 0.22 0.32
TPL		Ag ₃ PO ₄ Ag ₃ PO ₄ /RGO Ag ₃ PO ₄ /Ti ₃ C ₂	0.0025 0.0027 0.0042
CPL		Ag ₃ PO ₄ Ag ₃ PO ₄ /RGO Ag ₃ PO ₄ /Ti ₃ C ₂	0.007 0.012 0.025

photocatalytic activity toward TC–H. When adding $K_2Cr_2O_7$, K_2SO_4 and NaH_2PO_4 into reaction solution, respectively, there was no significant difference in the degradation of TC–H, indicating that K⁺, SO_4^{2-} , Na^+ $Cr_2O_7^{2-}$ and H_2PO_4 - did not affect the catalytic efficiency of Ag_3PO_4/Ti_3C_2 (Fig. 7b). In summary, the catalysis activities of Ag_3PO_4/Ti_3C_2 easily influenced by NOM but not K⁺, SO_4^{2-} , Na^+ $Cr_2O_7^{2-}$ and $H_2PO_4^{2-}$. Thus, in practical applications, it is necessary to exclude NOM interference through preprocessing.

3.5. Stability test

Since the photocorrosion of Ag_3PO_4 severely limits its application, the stability test of Ag_3PO_4 is necessary, which is one of the important index to evaluate its performance. The anti-photocorrosion through multiple cycles removal of TC-H. An obvious decrease of reaction rate can be observed for both Ag3PO4 and Ag3PO4/RGO (Fig. 8a). Notably, the photocatalytic performance of pure Ag₃PO₄ declined by about 92.2% after 8 cycles, indicating a large amount of Ag₃PO₄ decomposition caused by photocorrosion. On the contrary, there was a relatively little loss (about 31.6%) in the photocatalytic performance after 8 cycles over Ag₃PO₄/Ti₃C₂ composite, suggesting the enhanced anti-photocorrosion performance. XRD patterns of Ag₃PO₄, Ag₃PO₄/RGO and Ag₃PO₄/Ti₃C₂ after reaction were shown in Fig. 8b. Two peaks at 38.1 and 64.4 eV emerged after reaction, which could be classified as characteristic peaks of silver (JCPDS NO.04-0783). Obviously, the peak intensity was in the order of $Ag_3PO_4 > Ag_3PO_4/RGO > Ag_3PO_4/Ti_3C_2$. It needs to be pointed out that fresh Ag₃PO₄/Ti₃C₂ also existed a small amount of metal Ag due to the Ag self-reduction in Ti₃C₂ MXene solution. However, no significant change in XRD pattern of Ag₃PO₄/Ti₃C₂ before and after reaction indicates that it has good stability. TEM image showed that an amount of metal Ag particles appeared on the surface of Ag₃PO₄ (Fig. 8c). HRTEM further showed that the spacing of adjacent lattice planes was ca. 0.236 nm, which can be ascribed to the interplanar spacing of the (111) planes of cubic Ag (inset in Fig. 8c) [57]. However, only a small amount of silver can be found on the surface of Ag₃PO₄/Ti₃C₂, indicating its stronger stability. Above results powerfully reveal that Ag₃PO₄/Ti₃C₂ sample is more stable than pure Ag₃PO₄ and Ag₃PO₄/RGO under the same condition. This is due to the effectively transfer of photoinduced electrons from Ag₃PO₄ to Ti₃C₂ though Schottky junction, which greatly reduces the possibility of electrons return to Ag₃PO₄.

performance of Ag₃PO₄, Ag₃PO₄/RGO and Ag₃PO₄/Ti₃C₂ was tested

3.6. The mechanism of the enhanced photocatalytic performance and stability in Ag_3PO_4/Ti_3C_2 Schottky catalyst

Spectroscopic technique combined with band theory were used to investigate the interfacial interactions between Ti_3C_2 and Ag_3PO_4 before and after Schottky contact. The XPS results (Part 3.1) have

Fig. 8. (a) Photodegradation of TC-H for 8 cycles using different catalysts under visible light irradiation ($\lambda > 420$ nm). XRD patterns (b) and TEM images (c) of asprepared catalysts before and after reaction.

Fig. 9. The mechanism of photodegradation and anti-photocorrosion of Ag_3PO_4/Ti_3C_2 Schottky catalyst.

demonstrated that electrons are transferred from Ag_3PO_4 to the Ti_3C_2 surface after Schottky contact. (Fig. 4C–F). Here, the band theory was employed to further investigate the interfacial interactions between Ti_3C_2 and Ag_3PO_4 . The Fermi level of Ag_3PO_4 is higher than that of Ti_3C_2 , which obtained by above Mott-Schottky measurement (Fig. S5 and Fig. S6b). Thus, the difference of Fermi levels between Ti_3C_2 and Ag_3PO_4 drives the electrons flow from Ag_3PO_4 to Ti_3C_2 until a uniform Fermi level is formed, followed by band bending and Schottky junction formation (Fig. 9). The XPS results combined with the band theory unequivocal demonstrate that a Schottky junction was formed at the interface of Ti_3C_2 and Ag_3PO_4 .

The benzoquinone (BQ), Isopropanol (IPA), AgNO₃ and Ethylenediaminetetraacetic acid disodium salt (EDTA) were employed as the scavengers for $\cdot O_2^-$, $\cdot OH$, e^- and h^+ , respectively, to determine the photocatalytic degradation mechanism (Table S3) [60]. As shown in Fig. S13a, the degradation activity was sharply decreased, only when EDTA was added into reaction suspensions, indicating that h^+ are main active species for the degradation of TC-H, TPL and CPL. In addition, \cdot OH also played a weaker role in degradation process. The generation of $\cdot OH$ was further confirmed by ESR results. As shown in Fig. S13b, the relative intensity of DMPO- $\cdot OH$ signals was in the order of Ag₃PO₄/ Ti₃C₂ > Ag₃PO₄/RGO > Ag₃PO₄. This result may be due to the strong redox reactivity of exposed Ti sites on the surface of Ti₃C₂, which can promote multiple electron reduction reactions ($O_2 \rightarrow H_2O_2 \rightarrow \cdot OH$).

According to the above results, we proposed that the mechanism of the enhanced photocatalytic performance and stability in Ag_3PO_4/Ti_3C_2

Schottky catalyst (Fig. 9). The enhanced photocatalytic activity and anti-photocorrosion performance of Ag_3PO_4/Ti_3C_2 can be attributed to the following reasons: (i) The sufficient and close interfacial contact between Ag_3PO_4 and Ti_3C_2 (Figs. 3c and S3c) is beneficial to transfer the carriers (Fig. 5C–F); (ii) the surface metal Ti sites on Ti_3C_2 with stronger redox reactivity promotes multiple electron reactions (Fig. S13b). (iii) A Schottky junction is formed at Ag_3PO_4 - Ti_3C_2 interface (Figs. 4C–F and 9), which steers the unidirectional electron flow to be trapped by the Ti_3C_2 ("electron sink") due to the role of built-in electric field, thereby promoting the separation of carriers.

3.7. Ti_3C_2 as a versatile "electron sink" coupled with other semiconductors

To verify that Ti_3C_2 could as a versatile "electron sink" coupled with other semiconductors, AgI/Ti_3C_2 Schottky catalyst was also prepared by a similar method to Ag_3PO_3/Ti_3C_2 . Morphological structure and crystal structure of AgI/Ti_3C_2 were provided in Fig S14 and Fig. S15. As shown in Fig. S16 (a, b), the photocatalytic reduction efficiency of AgI/Ti_3C_2 for Cr^{6+} greatly increased compared with AgI. The apparent rate constant for the reduction of Cr^{6+} using AgI/Ti_3C_2 was 5 times that of pure AgI. This finding clearly shows an enormous potential in coupling Ti_3C_2 sheet with a wide variety of semiconductor photocatalysts for more applications.

4. Conclusion

Ag₃PO₄/Ti₃C₂ Schottky catalyst was synthesized for the first time by electrostatically driven self-assembly strategy successfully. It showed prominent photodegradation performance toward MO, 2,4-DNP, TC-H, TPL and CPL under visible light irradiation. A certain concentration NOM can slightly weaken degradation efficiency because of the competition between NOM and pollutants. Importantly, Ag₃PO₄/Ti₃C₂ Schottky catalyst showed excellent stability compared with pure Ag₃PO₄ and Ag₃PO₄/RGO. The enhanced photocatalysis activity and anti-photocorrosion performance of Ag₃PO₄/Ti₃C₂ can be attributed: the sufficient and close interfacial contact between Ag₃PO₄ and Ti₃C₂, unidirectional electron flow to be trapped by the Ti₃C₂ across the Schottky barrier, and the surface metal Ti sites on Ti₃C₂ with stronger redox reactivity. Moreover, the efficient photocatalytic reduction of $\mbox{Cr}^{6\,+}$ in AgI/Ti $_3\mbox{C}_2$ system was also achieved, which demonstrated that Ti₃C₂ can as a versatile "electron sink" for more widely environmental application. This study provide a new idea to improve the photocatalytic activity and anti-photocorrosion performance of photosensitivity semiconductors.

Acknowledgements

This work wassupported by the National Natural Science Foundation of China (51478171, 51672077 and 51378187), Hunan Provincial Natural Science Foundation of China (2017JJ2026) and China Postdoctoral Science Foundation. (Nos. 2018M632956).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.08.053.

References

- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919–9986.
- [2] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69–96.
- [3] C. Li, Y. Xu, W. Tu, G. Chen, R. Xu, Green Chem. 19 (2017) 882–899.
- [4] N. Shao, J. Wang, D. Wang, P. Corvini, Appl. Catal B Environ. 203 (2017) 964–978.
- [5] H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, D. Chen, Appl. Catal. B Environ. 134 (2013) 46–54.

- [6] H. Dong, G. Chen, J. Sun, Y. Feng, C. Li, C. Lv, Chem. Commun. 50 (2014) 6596–6599
- [7] H. Dong, G. Chen, J. Sun, C. Li, Y. Hu, Z. Han, Inorg. Chem. 54 (2015) 11826–11830.
- [8] H. Dong, G. Chen, J. Sun, Y. Feng, C. Li, G. Xiong, C. Lv, J. Chem. Soc. Dalton Trans. 43 (2014) 7282–7289.
- [9] H. Dong, J. Sun, G. Chen, C. Li, Y. Hu, C. Lv, PCCP 16 (2014) 23915-23921.
- [10] C. Li, S. Yu, Y. Wang, J. Han, H. Dong, G. Chen, J. Taiwan Inst. Chem. E. 87 (2018) 272–280.
- [11] J. Guo, S. Ouyang, P. Li, Y. Zhang, T. Kako, J. Ye, Appl. Catal. B Environ. 134-135 (2013) 286–292.
- [12] Z.-M. Yang, G.-F. Huang, W.-Q. Huang, J.-M. Wei, X.-G. Yan, Y.-Y. Liu, C. Jiao, Z. Wan, A. Pan, J. Mater. Chem. A 2 (2014) 1750–1756.
- [13] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, Nat. Mater. 9 (2010) 559–564.
- [14] J. Guo, H. Zhou, S. Ouyang, T. Kako, J. Ye, Nanoscale 6 (2014) 7303-7311.
- [15] Q. Xiang, D. Lang, T. Shen, F. Liu, Appl. Catal. B Environ. 162 (2015) 196–203.
- [16] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, ACS Catal. 3 (2013) 363-369.
- [17] L. Liu, J. Liu, D.D. Sun, Catal. Sci. Technol. 2 (2012) 2525.
- [18] X. Lin, X. Guo, W. Shi, F. Guo, G. Che, H. Zhai, Y. Yan, Q. Wang, Catal. Commun. 71 (2015) 21–27.
- Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 49 (2015) 649–656.
 X. Miao, X. Yue, Z. Ji, X. Shen, H. Zhou, M. Liu, K. Xu, J. Zhu, G. Zhu, L. Kong, Appl.
- Catal. B: Environ. 227 (2018) 459–469. [21] Y. Bi, S. Ouyang, J. Cao, J. Ye, Phys. Chem. Chem. Phys. 13 (2011) 10071–10075.
- [22] S. Huang, Y. Xu, T. Zhou, M. Xie, Y. Ma, Q. Liu, L. Jing, H. Xu, H. Li, Appl. Catal. B Environ. 225 (2018) 40–50.
- [23] A.K. Geim, Science 324 (2009) 1530-1534.
- [24] J. Yuan, X. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, Y. Liu, S. Luo, Y. Pei, Appl. Catal. B Environ. 237 (2018) 24–31.
- [25] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B Environ. 163 (2015) 135–142.
- [26] L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, Appl. Catal. B Environ. 183 (2016) 133–141.
- [27] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3 (2008) 563–568.
- [28] P. Simon, ACS Nano 11 (2017) 2393-2396.
- [29] Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, ACS Nano 11 (2017) 4792–4800.
- [30] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, J. Am. Chem. Soc. 135 (2013) 15966–15969.
- [31] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502–1505.
- [32] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
- [33] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Nat. Commun. 8 (2017) 13907.
- [34] G. Gao, A.P. O'Mullane, A. Du, ACS Catal. 7 (2016) 494–500.
- [35] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78.
- [36] Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang, K. Zhao, L. Zhou, L. Moskaleva, S. Guo, L. Mai, Angew. Chem. Int. Ed. 130 (2017) 505–509.
- [37] F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu, Appl. Surf. Sci. 416 (2017) 781–789.
- [38] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall'Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4 (2013) 1716.
- [39] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4 (2010) 4806–4814.
- [40] Y. Choi, M.S. Koo, A.D. Bokare, D.H. Kim, D.W. Bahnemann, W. Choi, Environ. Sci. Technol. 51 (2017) 3973–3981.
- [41] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248–4253.
- [42] Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang, PCCP 14 (2012) 15657-15665.
- [43] G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, ACS Appl. Mater. Interfaces 8 (2016) 22280–22286.
- [44] Z. Zhang, H. Li, G. Zou, C. Fernandez, B. Liu, Q. Zhang, J. Hu, Q. Peng, ACS Sustain, Chem. Eng. 4 (2016) 6763–6771.
- [45] N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, Adv. Energy Mater. 6 (2016) 1601372.
- [46] Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang, C. Zhi, Adv. Mater. 29 (2017) 1604847.
- [47] S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136.
- [48] T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55 (2016) 1138–1142.
- [49] J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, J. Catal. 361 (2018) 255–266.
- [50] C. Li, G. Chen, J. Sun, H. Dong, Y. Wang, C. Lv, Appl. Catal. B Environ. 160 (2014) 383–389.
- [51] C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, W. Xing, C. Zhang, Appl. Catal. B Environ. 188 (2016) 39–47.
- [52] C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 27 (2017) 1604328.
- [53] T. Yan, J. Tian, W. Guan, Z. Qiao, W. Li, J. You, B. Huang, Appl. Catal. B Environ. 202 (2017) 84–94.
- [54] C. Li, G. Chen, J. Sun, Y. Feng, J. Liu, H. Dong, Appl. Catal. B Environ. 163 (2015) 415–423.
- [55] J. Liu, C. Zhang, B. Ma, T. Yang, X. Gu, X. Wang, J. Zhang, C. Hu, Nano Energy 38

(2017) 271–280.

- [56] Q. Li, Y. Xia, C. Yang, K. Lv, M. Lei, M. Li, Chem. Eng. J. 349 (2018) 287–296.
 [57] T. Cai, Y. Liu, L. Wang, S. Zhang, Y. Zeng, J. Yuan, J. Ma, W. Dong, C. Liu, S. Luo, Appl. Catal. B Environ. 208 (2017) 1–13.
- [58] X. Hua, F. Teng, Y. Zhao, J. Xu, C. Xu, Y. Yang, Q. Zhang, S. Paul, Y. Zhang,
- M. Chen, X. Zhao, Water Res. 81 (2015) 366-374. [59] M. Long, J. Brame, F. Qin, J. Bao, Q. Li, P.J. Alvarez, Environ. Sci. Technol. 51 (2016) 514–521.
- [60] P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26 (2014) 4920–4935.