Accepted Manuscript

Immobilization of Cd in river sediments by sodium alginate modified nanoscale zerovalent iron: Impact on enzyme activities and microbial community diversity

Danlian Huang, Wenjing Xue, Guangming Zeng, Jia Wan, Guomin Chen, Chao Huang, Chen Zhang, Min Cheng, Piao Xu

PII: S0043-1354(16)30727-8

DOI: 10.1016/j.watres.2016.09.050

Reference: WR 12389

To appear in: Water Research

Received Date: 23 May 2016

Revised Date: 21 September 2016

Accepted Date: 24 September 2016

Please cite this article as: Huang, D., Xue, W., Zeng, G., Wan, J., Chen, G., Huang, C., Zhang, C., Cheng, M., Xu, P., Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity, *Water Research* (2016), doi: 10.1016/j.watres.2016.09.050.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

¹ Immobilization of Cd in river sediments by sodium

alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity

4 Danlian Huang^{*a,b,**}, Wenjing Xue^{*a,b*}, Guangming Zeng^{*a,b,***}, Jia Wan^{*a,b*}, Guomin

5 Chen , Chao Huang , Chen Zhang , Min Cheng , Plac) Xu ""	, <i>и</i> ,
---	---------	--------------

- ^a College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR
- 7 China
- 8 ^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry
- 9 of Education, Hunan University, Changsha, 410082, PR China

10 Abstract

- 11 This paper investigated how sodium alginate (SA)-modified nanoscale zero-valent
- 12 iron (NZVI), play a constructive role in the remediation of cadmium (Cd)
- 13 contaminated river sediments. The changes of the fraction of Cd, enzyme activities
- 14 (urease, catalase, dehydrogenase) and bacterial community structures with the
- 15 treatment by SNZVI were observed. The sequential extraction experiments
- 16 demonstrated that most mobile fractions of Cd were transformed into residues (the

^{*} Corresponding author. College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.

^{**} Corresponding author. College of Environmental Science and Engineering, Hunan University,

Changsha, 410082, PR China.

E-mail address: huangdanlian@hnu.edu.cn (D. Huang), zgming@hnu.edu.cn (G. Zeng).

28	Keywords
27	immobilization in contaminated river sediments.
26	insights into the potential consequences of SNZVI treatments on the metal Cd
25	improve bacterial abundance. All the experimental findings of this study provide new
24	and the results showed that SNZVI and NZVI could increase bacterial taxa and
23	(PCR-DGGE) analyses were used for the detection of microbial community changes,
22	enzymes. Polymerase chain reaction denaturing gradient gel electrophoresis
21	ferric ions formed from SNZVI whereas no obvious inhibition was found for other
20	increase of incubation time, which indicated that dehydrogenase might be inhibited by
19	dehydrogenase, the activities of the other two enzymes tested were enhanced with the
18	of incubation at 0.1 wt% SA), with the decrease of bioavailability of Cd. Exclusive of
17	maximum residual percentage of Cd increases from 15.49% to 57.28% after 30 days

29 Nanoscale zero-valent iron; Sodium alginate; Cd; Enzyme activities; PCR-DGGE

30 1. Introduction

River sediments are basic components of our environment (Akcay et al., 2003). 31 32 Recently, the sediment with heavy metal pollution has attracted more and more 33 widespread attention due to its high toxicity, and even at a low concentration it can cause a great harm to living organisms (De Jonge et al., 2012; Olivares-Rieumont et 34 al., 2005; Zhang et al., 2016a). Cadmium (Cd) is one of the major environmental 35 pollutants in China and other countries/regions of the earth (Fassett et al., 1975; 36 Huang et al., 2015). Pollution of sediments with Cd causes its incorporation into the 37 food chain, which could result in a wide variety of adverse effects in animals and 38

39	humans, especially because it is a cumulative contaminant (Vinodhini et al., 2008).
40	Consequently there is an imperative need to remediate Cd-contaminated sediments.
41	Recent researches show that nanoscale zerovalent iron (NZVI) is promising in
42	removing contaminants including heavy metals, the treatments of which make the
43	heavy metals immobile and prevent their entering into the deeper sediment layers,
44	rivers, and groundwater (Zhang et al., 2016b; Dror et al., 2012; Xu et al., 2012; Feng
45	et al., 2010). NZVI is composed of a Fe (0) core and an iron oxide shell. The core acts
46	as an electron donor source, promoting reduction of compounds and the shell enables
47	sorption, surface complexation and electron transport from and to the core (Calderon
48	and Fullana, 2015). And it has been proposed as an efficient material for Cd
49	immobilization (Calderon and Fullana, 2015; Su et al., 2014). But due to the
50	small particle sizes and large specific surface areas of NZVI, it is probable that NZVI
51	is easy to aggregate (Cumbal et al., 2003). Maintaining a stable small particle
52	diameter is important to achieve sufficient mobility to reach the target contaminants
53	(Su et al., 2015; Kharisov et al., 2012). To avoid an agglomeration of the particles,
54	surface stabilizers (e.g., polyelectrolyte, surfactant, biopolymer) can be used that have
55	some special performance with electrostatic repulsion or steric stabilization (Dong
56	and Lo, 2013; Sirk et al., 2009). They can be coated onto the surface of the NZVI to
57	decrease agglomeration and enhance the mobility of NZVI (Kim et al., 2009). As one
58	of surface stabilizers, sodium alginate (SA) is a linear copolymer and natural anionic
59	macromolecules found in the cell walls of brown algae, and each monomeric unit of
60	sodium alginate contains one carboxylate and two hydroxyl groups. Its general

61	structure is comprised of 1,4- linked- α -L-guluronic acid (G) and β -d-mannuronic acid
62	(M) in alternating blocks of GG, MM and MG arranged in an irregular pattern (Borba
63	et al., 2016; Zia et al., 2015). This chemical conformation is good for chemical
64	reactions and linkages in view of the presence of reactive sites, such as hydroxyl and
65	carbonyl groups along the backbone (Zia et al., 2015). Researchers have reported that
66	sodium alginate (SA) can effectively eliminate heavy metal ions, such as Pb^{2+} , Cu^{2+} ,
67	and Cd^{2+} (Gong et al., 2016), which hence could be a promising polymeric material to
68	coat NZVI for immobilizing metal ions in contaminated sediments. The molecular
69	structures of sodium alginate (SA) and the schematic diagram of SA modified NZVI
70	is shown in (Fig. 1).

A successful immobilization remediation technique must maintain reasonable low 71 solubility and bioavailability of heavy metals (Ruttens et al., 2010). However, it is not 72 completely achievable to judge and measure their toxicity, mobility and 73 bioavailability on the basis of the total concentrations of the metals (Jain, 2004; Prica 74 et al., 2010), and moreover detecting the metals speciations is indispensable, which is 75 76 channelled back into remediation of river sediments. Enzymatic activities and microbial communities can directly address biological availability and toxicity of 77 heavy metals, and help define the acceptable cleanup standards (Kumpiene et al., 78 2006). Enzyme activities are credible designators for the process of biological 79 conversion in the river sediment (Zhou et al., 2005). Polymerase chain 80 reaction-denaturing gradient gel electrophoresis (PCR-DGGE) as a powerful 81 molecular method for rapid detection of microbial community changes or comparative 82

analysis of environmental samples offers more accurate information about distribution
and composition of microbial species (Aydin et al., 2015).
Nanomaterials applied to contaminated river sediments can induce an important
change in the mobility and bioavailability of the heavy metal with potential
consequences on ecosystem health (Zou et al., 2016). In this study, sodium alginate
(SA)-modified nanoscale zero-valent iron (NZVI) was synthesized and the
performance of SNZVI in the remediation of Cd contaminated river sediments was
investigated. The mobility and bioavailability of sediment Cd was investigated using
the optimized European Community Bureau of Reference (BCR) three-step sequential
extraction procedure. Sediment enzymatic activities and microbial community
diversity were also studied to assess the effectiveness of Cd immobilization
diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI.
 diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods
 diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics
 diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics Sediments were sampled from the Xiangjiang River, one of the tributaries of the
diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics Sediments were sampled from the Xiangjiang River, one of the tributaries of the Yangtze River in Hunan province in southern China. It drains an area of
diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics Sediments were sampled from the Xiangjiang River, one of the tributaries of the Yangtze River in Hunan province in southern China. It drains an area of approximately 94,600 km ² and has a total length of approximately 856 km (Zhang et
diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics Sediments were sampled from the Xiangjiang River, one of the tributaries of the Yangtze River in Hunan province in southern China. It drains an area of approximately 94,600 km ² and has a total length of approximately 856 km (Zhang et al., 1989). In Hunan Province, there are abundant reserves of non-ferrous metals, and
diversity were also studied to assess the effectiveness of Cd immobilizationremediation using SNZVI.2. Materials and methods2.1. Sediment characteristicsSediments were sampled from the Xiangjiang River, one of the tributaries of theYangtze River in Hunan province in southern China. It drains an area ofapproximately 94,600 km² and has a total length of approximately 856 km (Zhang etal., 1989). In Hunan Province, there are abundant reserves of non-ferrous metals, andmost of the ores used for mining, mineral processing and smelting of non-ferrous and
diversity were also studied to assess the effectiveness of Cd immobilization remediation using SNZVI. 2. Materials and methods 2.1. Sediment characteristics Sediments were sampled from the Xiangjiang River, one of the tributaries of the Yangtze River in Hunan province in southern China. It drains an area of approximately 94,600 km ² and has a total length of approximately 856 km (Zhang et al., 1989). In Hunan Province, there are abundant reserves of non-ferrous metals, and most of the ores used for mining, mineral processing and smelting of non-ferrous and rare metals are found in the middle and lower reaches of the Xiangjiang River; and
diversity were also studied to assess the effectiveness of Cd immobilizationremediation using SNZVI.2. Materials and methods2.1. Sediment characteristicsSediments were sampled from the Xiangjiang River, one of the tributaries of theYangtze River in Hunan province in southern China. It drains an area ofapproximately 94,600 km² and has a total length of approximately 856 km (Zhang etal., 1989). In Hunan Province, there are abundant reserves of non-ferrous metals, andmost of the ores used for mining, mineral processing and smelting of non-ferrous andtare metals are found in the middle and lower reaches of the Xiangjiang River; andthe effluents from these intensive mining and industrial activities are discharged into

105	enlargement of the cities, the lower reaches of the Xiangjiang River have been
106	polluted seriously day by day in recent years (Zeng et al., 2006). For the present study
107	contaminated sediments (0-20 cm depth) were collected from Changsha, which is
108	located in the lower Xiangjiang River. Samples were air dried, crushed and sieved (75
109	μ m) and stored at 4 °C prior to the experiments.
110	The concentrations of metals in the sediment were determined after nitric acid
111	digestion employing US EPA standard method (EPA3050B, 1996). Atomic absorption
112	spectrophotometer (AAS, Agilent 3510, USA) was used to detect the concentrations
113	of metals in the samples. Potential ecological risk (PER) index developed based on
114	sedimentary theory was introduced to assess the ecological risk degree of heavy
115	metals in the present sediment. Risk index (RI) can be calculated by the formulas
116	proposed by Hakanson (Hakanson, 1980). Details about the procedures here used are
117	given in the Supplementary Materials. According to the PEI index, the potential risk
118	of the metals was 38 (Pb), 17 (Cu), 7 (Cr) and 1900 (Cd), showing the individual risk
119	of being low, low, low, and very high. The excess Cd results in an overall considerable
120	risk of the sediment (Supplementary Materials, Table S1). It shows that Cd
121	contributes the most to the potential environmental risk at the study region. In
122	addition, the fractionation pattern of the metals in the sediment samples, are given in
123	Fig. S1 (Supplementary Materials). Whereas the most Cd in the sediment was found
124	in the acid-soluble fraction (49.23%) (Fig. S1), indicating its higher mobility and
125	bioavailability compared to the other three metals (Peng et al., 2009). Thus, Cd was
126	selected as the main object of this study. The physical and chemical characteristics of

127	tested sediment were analyzed according to Bao (2000). The basic physiochemical
128	properties of the tested sediments are listed in Table 1.
129	2.2. Preparation of NZVI and modified NZVI
130	Ferrous sulfate heptahydrate (99%), sodium borohydride (98.5%), and SA used for the
131	preparation of NZVI and SNZVI were purchased from Jingkang New Material
132	Technology Co., Ltd (Changsha, China). Ultra-pure water (18.2 M Ω cm, Barnstead
133	D11911), ethanol and other solutions were deoxygenated before the reaction by
134	introduction of nitrogen gas. All reagents for the experiments were of reagent grade
135	and all solutions and dilutions were prepared in ultra-pure water.
136	NZVI nanoparticles were then prepared by reducing Fe^{2+} ions to Fe^{0} using
137	borohydride solution at a BH_4^{-}/Fe^{2+} molar ratio of 2.0 (He and Zhao, 2007). An
138	aqueous solution of 0.05 M FeSO ₄ ·7H ₂ O was continuously mixed while 0.1 M
139	$NaBH_4$ was added into a three-necked flask meanwhile continuously stirred with
140	mechanical agitator under nitrogen protection, followed by an hour of mixed reaction.
141	After synthesis, nanoparticles were separated magnetically and then washed three
142	times with deoxy ultrapure water and ethanol in order to remove the remaining
143	borohydride and dried under vacuum drying oven (DZF-6020, Shanghai) and stored
144	in brown bottles filled with nitrogen gas.
145	SNZVI was prepared by dispersing NZVI particles in aqueous SA to result in
146	suspensions comprising iron nanoparticles (0.5 g/L) and SA of various concentrations
147	(0, 0.05, 0.1, 0.15, 0.2 wt%) individually, followed by sonication for 30 min.

2.3. Characterization

149	SEM images of NZVI and SNZVI were determined using a scanning electron
150	microscope (SEM) (Quanta TM 250, USA). NZVI and SNZVI particle hydrodynamic
151	diameters were determined by dynamic light scattering (DLS) using a Zetasizer Nano
152	ZS (Malvern). Images of the materials were obtained at an accelerating voltage of 20
153	kV. X-ray diffraction (XRD) patterns of NZVI and SNZVI samples were studied
154	using AXS D8 Advance, LynxEye array detector equipped with Cu-Ka radioactive
155	source (λ =0.154 nm). The angle of diffraction was varied from 10° to 80° at the speed
156	of 2°/min. Fourier transform infrared spectra of NZVI and SNZVI were obtained
157	using 5700 FTIR Spectrometer (NICOLET, USA). 32 scans were taken.
158	2.4. Experimental design
159	Different fractions of Cd, enzyme activities and bacterial community diversity were
160	analyzed with sediment samples respectively treated by adding 0.5 g / 2 g / 2 g (dry
161	weight) of sediments and 5 mL/ 20 mL/ 20 mL of the SNZVI (0, 0.05, 0.1, 0.15, 0.2
162	wt%) suspension in 50 mL centrifuge tubes with screw caps, resulting in a
163	suspension-to-sediment ratio of 10:1 (mL/g) in each sample. The mixtures were
164	sealed and then placed at room temperature (23 \pm 1 °C) for aging without any prior
165	pH adjustment. Control experiments with sediment samples were also conducted
166	using ultra-pure water instead of the SNZVI suspensions. For the purpose of
167	investigating the effect of reaction time on Cd-immobilization efficiency, the sediment
168	reaction time was undertaken on day 0, 1, 3, 5, 7, 10, 15, 30 for the analysis of metal
169	fraction and enzyme assays and the diversity of bacterial communities. In order to
170	ensure the quality of the data, all sediment treatments were performed in triplicate.

171 Illustration of the preparation procedure and the whole experiment procedure are172 presented in Fig. 2.

173	2.5. Sequential extraction of sediment-sorbed Cd ²⁺
174	Different fractions of Cd in the samples were determined by the procedure of selective
175	sequential extraction (SSE). The procedure adopted in our experiment was the
176	three-step extraction of the European Measurements (Salomons, 2006). Four different
177	fractions are considered: i) Soluble species, carbonates, cation exchange sites (here
178	after defined as acid-soluble), extracted utilizing 0.11 M acetic acid, pH 2; ii) iron and
179	manganese oxides fraction (i.e. reducible fraction), extracted with 0.5 M
180	hydroxylammonium chloride, pH 2; iii) organic and sulfide fraction (i.e. oxidizable
181	fraction), extracted by hydrogen peroxide 30% and treated with 1 M ammonium
182	acetate at pH 2, and iv) the residual fraction, that remains in the solid (i.e., the metals
183	in the crystalline lattice of primary and secondary minerals), extracted by aqua regia.
184	0.5 g treated sediment was put in a 50 mL Teflon centrifuge tube and the first step of
185	extract fluid mixed with samples of supernatant fluid. For each step, the extract fluid
186	was decanted, filtered through a 0.45 μ m filter membrane, and then the filtrate was
187	analyzed for Cd by AAS. All of the extractions were performed in triplicate.

188

2.6. Enzyme activity assays

189 Enzyme activity can be used as a good indicator for studying the activity of

190 microorganisms, and it also represents the scope of nutrient cycling and the process of

- 191 decomposition. Urease activity was assayed with method described by Hu et al. (2014)
- 192 expressed as NH₄-N mg/g. Catalase activity was analyzed by titration with 0.1 mol/L

193	KMnO ₄ (Sun et al., 2012), expressed as mL/g. Dehydrogenase (DEH) activity was
194	determined as described by Casida Jr et al. (1964) and the reddish color intensity of
195	the filtrate was measured with a ultraviolet-visible spectrophotometer (UV-2700,
196	SHIMADZU) at a wavelength of 485 nm and methanol was used as a blank. All the
197	enzyme activities assays were applied to the moist sediment samples in triplicate.
198	2.7. DNA extraction and PCR-DGGE analysis
199	DNA was extracted from the sediment samples using the Soil DNA Extraction Kit
200	(MoBio Laboratories), according to the manufacture instructions. Previous studies
201	showed that the kit provides estimates of bacterial diversity equal to those obtained
202	using other in situ lysis procedures (Luna et al., 2006). The extracted DNA was stored
203	at -20 °C for future applications. Confirmation of the extraction and integrity of DNA
204	was performed in agarose gel with ethidium bromide staining.
205	Bacterial 16S rRNA genes were amplified by using the universal forward primer
206	PRBA338F (5'-ACTCCTACGGGAGGCAGCAG-3') and PRUN518R (5'-ATTACC
207	GCGGCTGCTGG-3') primers with a GC clamp attached to the forward primer
208	(Ovreås et al., 1997). PCR and DGGE were performed by the method of Liu et al.
209	(2014).
210	2.8. Statistical analysis
211	All univariate data were analyzed using the software package SPSS 16.0 (SPSS Inc,
212	Chicago, Illinois, USA). One-way analysis of variance (ANOVA) and Two-way
213	ANOVA were used to determine differences of urease activity, catalase activity,

214 dehydrogenase activity among the treatment groups and individual effect of time and

215 concentrations. Shannon-Wiener diversity index (H) for bacterial DGGE community

216 fingerprinting calculated as follows:

₂₁₇ H =
$$-\Sigma(\frac{Ni}{N})\ln(\frac{Ni}{N})$$
 (1)

218 Where Ni was the height of a peak of each band i, i was the number of bands in each

219 DGGE profile, and N was the sum of all peak heights in a given DGGE profile.

220 The correlation between the distributions of bacterial communities and the

221 different SNZVI concentrations were assayed by principal component analysis (PCA)

using CANOCO software V4.5 (Biometris, Wageningen, Netherlands) (Zhang et al.,

- 223 2011a).
- 224 **3. Results and discussion**

225 **3.1.** Characterization

226 The SEM images of NZVI and SNZVI showed that the morphology and nanoparticle distribution of NZVI in the absence or presence of SA (Fig. 3). The synthesized NZVI 227 in the absence of SA showed that NZVI particles were aggregated into a chain-like 228 229 structure (Fig. 3a), that can lead to a decrease of its surface reactivity (He and Zhao, 2005). Therefore Fe⁰ nanoparticles are usually fixed on support materials such as 230 resins or starch (He and Zhao, 2005; Li et al., 2007), considering it decreased the 231 aggregation of Fe⁰ nanoparticles and improved its mechanical strength. Compared 232 with Fig. 3a, the 0.1 wt% SNZVI presented in Fig. 3b was clearly well-dispersed, and 233 on the surface of the zero-valent iron were spherical particles. The hydrodynamic 234 235 diameter of the NZVI particles produced was less than 100 nm (Supplementary Materials, Fig. S2a), the distribution consisted primarily (35.1%) of particles 43.82 236

237	nm in diameter. Fig. S2b (Supplementary Materials) shows the hydrodynamic
238	diameter and size distribution of the 0.1 wt% SNZVI. The particle size of the SNZVI
239	was mainly distributed in the ranging from 107.67 nm to 110.23 nm. It means the
240	particle size distribution is narrower.
241	Fig. 4 presents the XRD pattern of NZVI (a) and synthesized SNZVI (b). The
242	diffraction peak at 44.9° (2 θ) as shown in Fig. 4b, corresponded to the formation of
243	iron in its zero-valent form (Weng et al., 2013). This indicated that SA was coated
244	onto the NZVI surface. In addition, iron oxides were detected on the surface of the
245	NZVI: Fe ₃ O ₄ / γ -Fe ₂ O ₃ morphology corresponding to 2 θ at 35° and Fe ⁰ at 30° (Zhang
246	et al., 2011b; Kanel et al., 2005) were observed in Fig. 4a. However, Fig. 4b shows
247	that these peaks of iron oxides were reduced or disappeared in SNZVI, where ferrous
248	oxide (FeO) magnetite/maghemite (Fe ₃ O ₄ / γ -Fe ₂ O ₃), and lepidocrocite (γ -FeOOH)
249	were produced in NZVI. These corresponded to the peaks marked as "F", "M", "L" in
250	Fig. 4a (Kim et al., 2013; Zhang et al., 2011b). It is suggested that the SA used in the
251	synthesizing procedure might prevent NZVI particles from air oxidating. The
252	characteristic peak of SA (Gong et al., 2016) has not been detected because of its low
253	concentration. Based on these results, it was concluded that the surface of SNZVI
254	offers more stability, which was consistent with results obtained for NZVI supported
255	on materials such as resin, starch, or surfactant modified zeolite (He and Zhao, 2005;
256	Li et al., 2007; Ponder et al., 2000).
257	FTIR spectra for NZVI and SNZVI were scanned in the range of 4000-400 cm ⁻¹

258 (Fig. 5), where Fig. 5a and Fig. 5b indicate NZVI and 0.1 wt% SNZVI, respectively.

259	Broad bands at 3500-3300 cm ⁻¹ in NZVI and the composite (Fig. 5a and b) resulted
260	from O-H stretching may be attributed to H ₂ O and M-OH, while the band at 1650
261	cm^{-1} can be due to O-H bending (Mohapatra et al., 2010). Strong bands at < 900 cm ⁻¹
262	in the NZVI alone (Fig. 5a), attributable in part to the presence of iron oxidation
263	oxides (Zhang et al., 2011b), were weaker in the composite, indicating less oxidation
264	of SNZVI. The SA support may reduce the generation of iron oxide. In addition, Fe-O
265	stretches of Fe_2O_3 and Fe_3O_4 were observed at 469.00 cm ⁻¹ and 540.60 cm ⁻¹ , which
266	demonstrated much consistency with the NZVI FTIR spectra in Fig. 5a. Combined
267	with the results from FTIR and XRD, it indicated that NZVI had been successfully
268	coated by SA where the surface of the coated NZVI was partially oxidized.
269	3.2. Changes in Cd partitioning
270	The total concentration of Cd in the sediments was 20.90 ± 0.67 (mg/kg). The
271	concentration of Cd in the sediments was much higher than the effects range low
272	
	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et
273	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal
273 274	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the
273 274 275	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the sediment may play a significant role on its bioavailability (Fonti et al., 2015). To
273 274 275 276	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the sediment may play a significant role on its bioavailability (Fonti et al., 2015). To highlight and better understand the effect of nanoparticles on the changes of metal
 273 274 275 276 277 	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the sediment may play a significant role on its bioavailability (Fonti et al., 2015). To highlight and better understand the effect of nanoparticles on the changes of metal distribution and to evaluate the level of their stabilization, fractionation of Cd in the
 273 274 275 276 277 278 	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the sediment may play a significant role on its bioavailability (Fonti et al., 2015). To highlight and better understand the effect of nanoparticles on the changes of metal distribution and to evaluate the level of their stabilization, fractionation of Cd in the sediment was performed. In general, the mobility and availability of Cd increases in
 273 274 275 276 277 278 279 	(ERL) value (1.2 mg/kg) recommended by the sediment quality guideline (Burton et al., 2002). However, total Cd concentrations do not necessarily correspond with metal bioavailability in natural systems (Sun et al., 2016). Speciation of the metal ion in the sediment may play a significant role on its bioavailability (Fonti et al., 2015). To highlight and better understand the effect of nanoparticles on the changes of metal distribution and to evaluate the level of their stabilization, fractionation of Cd in the sediment was performed. In general, the mobility and availability of Cd increases in the order of acid-soluble forms> reducible forms> oxidizable forms> residual forms

281	already confirmed after 30 d of incubation (Fig. 6a), and significant changes on
282	distribution of metal forms in the sediment was noted. In all cases, a general increase
283	in the residual fraction was observed with adding SNZVI (NZVI modified with SA of
284	various concentrations from 0, 0.05, 0.1, 0.15, 0.2 wt%). The residual fractions in the
285	sediment were of durable solid phase and not easy to be extracted and residual metal
286	complexes (metals within the structure of the sediment and minerals) have been
287	considered as inert and inaccessible to biota (Obst and Steinbüchel, 2004). It was
288	found that the presence of NZVI, 0.05 wt% SNZVI, 0.1 wt% SNZVI ,0.15 wt%
289	SNZVI, 0.2 wt% SNZVI increased the residual fraction of Cd from initial 5.26, 3.74,
290	5.0, 4.75, 4.33 mg/kg to 10.84, 11.47, 11.97, 11.46, 11.08 mg/kg and the
291	corresponding residual fraction percentages of Cd increased from 25.17%, 17.90%,
292	23.99%, 22.76%, 20.72% to 51.89%, 54.90%, 57.28%, 54.87%, 53.02% after 30 days
293	of incubation, respectively (Fig. 6b). Compared to no-amended sediment, the residual
294	fraction percentage of Cd after applying different concentrations of SNZVI was
295	increased from 36.42% to 41.80%. With an increasing concentration of SA from 0.1
296	wt% to 0.2 wt%, it did not increase further but decreased to some degree. It was
297	presumed that the decrease in negative surface charge with an increasing
298	concentration of SA might be ascribed to the entanglement or cross-linking of the SA
299	molecules on the surface of SNZVI (Dong et al., 2016; Lin et al., 2010). In addition,
300	we tested the fractions of Cd after 90 d incubating. It was found that the
301	corresponding residual fraction percentages of Cd decreased from 51.89%, 54.90%,
302	57.28%, 54.87%, 53.02% to 49.03%, 50.83%, 53.92%, 51.80%, 50.05% after 90 days

303	of incubation, respectively (Supplementary Materials, Fig. S3). Few metals were
304	desorbed from Cd in fraction i, ii, iii in sediments treated with SNZVI even after 90
305	days (Wen et al., 2016). The findings showed that the stabilization of SNZVI was
306	quite durable and using the modified NZVI is a possible solution to alleviate the
307	hazards likely posed to the river and the surrounding environment. Wen et al. (2016)
308	used modified zeolite to immobilize Cd in sediment, and reported that the residual
309	fraction of Cd was significantly increased by 8.3%. Zhang et al. (2010) reported that
310	nano-hydroxyapatite can immobilize Cd in sediment effectively, and the residual
311	fraction of Cd increased from 29.1 (0% addition) to 41.8 (10% addition) after 14 days
312	of remediation. It can greatly weaken the release of metals to the environment by
313	decreasing the active Cd fractions in spite of the unable removal of metals from
314	sediments, the same as the accepted application of zeolites or other materials to the
315	remediation of metal contaminated sediments (Wen et al., 2016; Zhang et al., 2010).
316	The reasons that can be accounted for metal stabilization in sediment using
317	modified NZVI: Firstly, during NZVI preparation, iron oxidation produces surface
318	hydroxides in proximity to FeOOH (Sun et al., 2006). The immobilization of Cd^{2+} by
319	SNZVI appears to involve a diffusion of metal ions to SNZVI particles and surface
320	complexation of Cd ²⁺ with iron hydroxides. The surface reactions of Cd
321	immobilization by NZVI may be described by the following equations (Zhang et al.,
322	2014):

323 $\operatorname{FeOH} + \operatorname{Cd}^{2+} + \operatorname{H}_2 O \to \operatorname{FeOCdOH} + 2\operatorname{H}^+$ (2)

324 In addition, each monomeric unit of SA contains one carboxylate and two hydroxyl

325	groups. And the hydroxyl and Cd combine to form $Cd(OH)^+$, which is		
326	adsorbed onto SNZVI or the structure of FeOOH (Zhang et al., 2014). Previous		
327	studies showed that Cd was stoichiometrically coprecipitated with Fe(III)		
328	(oxyhydr)oxides (Muehe et al., 2013).		
329	3.3. Enzyme activities		
330	Fig. 7a ₁ shows the changes of urease activities with different SNZVI concentrations in		
331	sediments during incubation time. It increased with SNZVI (0, 0.05, 0.1, 0.15, 0.2		
332	wt%) and varied as the incubation proceeded. After 30 d of incubation, this enzyme		
333	activity increased 3.80, 4.03, 4.73, 4.42, 4.34 times higher than that of the unamended		
334	sediment with NZVI, 0.05 wt% SNZVI, 0.1 wt% SNZVI, 0.15 wt% SNZVI, 0.2 wt%		
335	SNZVI treatments, respectively. It was observed that the urease activities in the		
336	sediment increased significantly after 10 days' of incubation. Moreover, urease		
337	activity was higher in various SA treatments than in the control of no adding SA. The		
338	aging phenomenon was observed, because the adsorption of Cd to SNZVI changed		
339	the fraction of Cd into residual forms, and thus decreased the bioavailability of Cd.		
340	Previous research has shown that enzyme activity increased with available contents of		
341	heavy metals decreasing (Wang et al., 2007).		
342	The sensitivities of catalase to different levels of SNZVI in sediments were		
343	shown in Fig. $7b_1$. The catalase activity increased slightly with the increasing of		
344	incubation periods. This enzyme was higher in various SNZVI treatments compared		
345	to the control. In the presence of 0.1 wt% SNZVI, the enzymes activities were slightly		
346	higher than those in other concentrations on day 30, and the catalase activity was 1.78		

347 times higher than that of the unamended sediment.

348	Dehydrogenase activity decreased significantly with SNZVI of different
349	concentrations in the amended samples in Fig. $7c_1$. This enzyme activity of the control
350	group was significantly lower than in treatments and the image of control was not
351	shown in Fig. $7c_1$, because it is not visible beside the other results. The inhibition of
352	dehydrogenase by SNZVI indicated that it may not be very useful for the evaluation
353	of sediments recovery under Cd pollution. Although it showed a downward trend, the
354	dehydrogenase activity was still higher than that of the original sediment. Exclusive
355	of dehydrogenase, the activities of the other two enzymes tested were enhanced with
356	the increase of incubation time. For this reason, according to several previous studies
357	(Menon et al., 2005; Stêpniewski et al., 2000), we concluded that dehydrogenase
358	might be inhibited by ferric ions formed from SNZVI whereas no obvious inhibition
359	was found against other enzymes. Generally, applications of SNZVI increased
360	sediment enzymatic activities. Compared with unamended sediment, urease, catalase,
361	and dehydrogenase activities under SNZVI treatments were enhanced by 3.8-4.73,
362	1.29-1.78 and 134.32-297.51 times, respectively. It was clearly observed from Fig. $7a_2$,
363	Fig. 7b ₂ , and Fig. 7c ₂ that the activities of the enzymes tested increased multiples
364	compared with the control sediment after 30 d incubation, respectively. Statistical
365	analysis of data by one-way ANOVA and two-way ANOVA showed urease, catalase,
366	dehydrogenase that indicated significant differences (P < 0.05 or P < 0.01) in
367	incubation time and different SNZVI concentrations (Table 2). Significant interaction
368	effects of both time and concentrations on the activities of the enzymes tested were

369 observed statistically (Table 2).

370 3.4. PCR-DGGE for bacterial community structure

371	PCR-DGGE was used to investigate the structural diversity of bacterial communities
372	under SNZVI treatments of different concentrations on day 30. DNA was extracted
373	from the Cd-contaminated samples and the DGGE patterns of PCR-amplified 16S
374	rRNA were shown in Fig. 8. In these samples, the PCR-DGGE patterns indicated a
375	greater complexity of banding pattern about bacterial community structure at 0.1% wt
376	SA than at other concentrations, resulting in a high number of different bacterial taxa
377	emerging. While the bacterial DGGE profiles of 16S rRNA gene fragments from
378	different SA-treated sediments were generally similar, indicating that the microbes
379	with those bands were stable and little influenced by SA. However, there were a few
380	bands emerged after SNZVI treatments. The DGGE profile showed that the structure
381	of bacterial community was changed after 30 d of incubation, particularly at 0.1% wt
382	SA concentration. Similarity dendrograms and phylogenetic analysis showed by the
383	image analysis of DGGE combined with the Dice similarity coefficient indicated that
384	PCR-DGGE patterns of SNZVI treated samples could be well distinguished from the
385	control group (Fig. 8), indicating that many common microbial members were still
386	presented in each treatment. The DGGE gel profiles were further visualized by the
387	Shannon-Wiener diversity index (H), which provided a direct indication of the
388	apparent diversity of a microbial community (Fig. 9). The experimental groups
389	showed more abundance and diversity of bacteria. The Shannon diversity of the
390	bacteria reached the peak in sample 4.

391	In an attempt to explain the effects of different concentrations of SNZVI on the
392	indigenous microorganisms, we performed a principal component analysis (PCA) of
393	the results from the sediment samples. The results were shown in Fig. 10. The sample
394	(1, 2, 3, 4, 5, 6) represents the different concentrations of SA (0, 0.05, 0.1, 0.15, 0.2
395	wt%). The cumulative contribution rate of the two principal components (52.1 and
396	28.1 % for PC1 and PC2, respectively) reached 80.2%. The PCA results clearly
397	indicated that the bacterial community structure has changed obviously in the
398	sediment after the SNZVI application, and the change was determined by the SA
399	concentrations. On one hand, it was noticed that the sediment samples were divided
400	into 4 groups. PC1 exhibited positive correlation with the sample 1, 2 and 5 and PC2
401	exhibited positive correlation with the sample 1 and 3. But PC1 and PC2 had
402	exhibited negative correlation with the sample 4 and 6. On the other hand, the bands
403	were mostly concentrated in the 2^{nd} and 3^{rd} quadrant and the sample 3, 4 and 6 were
404	also in these two quadrants, indicating the high correlation between these samples and
405	these bands, and showing that these bands represented the bacterial species were main
406	species in these samples.
407	Microbial populations have complex interactions, such as association and
408	competition (Diao and Yao., 2009). Effects of heavy metals were not only observed
409	on the microbial species, but also on the microbial populations in the sediment
410	(Němeček et al., 2014). SA was such a biodegradable polymer that certain bacteria
411	were able to hydrolyze it (Obst and Steinbüchel, 2004), improving the bioavailability

412 of carbon and nitrogen. Increase in bacterial abundance shows that the

413	microorganisms can use SA as a nutrient source since the system was carbon or
414	nitrogen limited. But the degradation of polymers by bacteria often requires the
415	molecule to be drawn into the cell membrane (Kawai, 2010). Since nanoparticles
416	larger than 10 nm may not be internalized by bacteria with intact membranes (Neal,
417	2008), it is not probable that biodegradable polymers can be transformed when
418	covalently bound to a nanoparticle. Although polymers are biodegradable (Kaplan et
419	al., 1979), the time scales are particularly slow (on the order of 1% degradation over
420	80 days). Previous studies have shown that addition of polyaspartate coated NZVI did
421	not decrease the count of total bacteria and also found that the polymer coating can be
422	bioavailable when bonded to a nanoparticle (Kirschling et al., 2011).

423 **4.** Conclusions

424 In this study, characterization with SEM, DLS, FTIR and XRD analyses demonstrated that the presence of SA led to a decrease in aggregation of iron nanoparticles and a 425 small number of iron oxides formed on the surface of SNZVI. The findings have 426 shown that the addition of SNZVI was effective in immobilizing Cd in polluted 427 sediments, resulting in an increased (or a bigger) residual fraction of Cd and a 428 decrease of the bioavailability of Cd. Moreover, the increase of enzymes activities 429 430 (urease, catalase, and dehydrogenase) and bacterial community diversity indicated the recovery of metabolic function to some extent by adding SNZVI of different 431 concentrations. Additionally, these results could probably provide a reference for risk 432 assessments of using NZVI particles for sediment remediation and of using surface 433 coatings on these nanoparticles. 434

435	However, as noted in our study, this nanotechnology still has its limitations. It is			
436	possible that Cd become remobilized due to long-term processes or changes of the			
437	environmental conditions change (Calderon and Fullana, 2015). And the heavy metals			
438	existing in inactive form still remain in sediment. In addition, further studies are			
439	needed to reveal the potential effects of SNZVI application on other metals in			
440	contaminated sediments.			
441	Acknowledgements			
442	This study was financially supported by the Program for the National Natural Science			
443	Foundation of China (51378190, 51278176, 51408206, 51579098, 51521006), the			
444	National Program for Support of Top-Notch Young Professionals of China (2014), the			
445	Fundamental Research Funds for the Central Universities, the Program for New			
446	Century Excellent Talents in University (NCET-13-0186), the Program for			
447	Changjiang Scholars and Innovative Research Team in University (IRT-13R17),			
448	Scientific Research Fund of Hunan Provincial Education Department			
449	(No.521293050).			
450	Supplementary data			
451	This file contains additional Fig. S1-S3 and Table S1.			
452	References			
453	Akcay, H., Oguz, A., Karapire, C., 2003. Study of heavy metal pollution and			
454	speciation in Buyak Menderes and Gediz river sediments. Water Research 37 (4),			
455	813-822.			
456	Aydin, S., Shahi, A., Ozbayram, E.G., Ince, B. and Ince, O., 2015. Use of PCR-DGGE			

457	based molecular methods to assessment of microbial diversity during anaerobic
458	treatment of antibiotic combinations. Bioresource Technology 192, 735-740.
459	Bao, S.D., 2000. Soil and Agricultural Chemistry Analysis, third ed. Press of China
460	Agricultural, Beijing.
461	Borba, P.A.A., Pinotti, M., de Campos, C.E.M., Pezzini, B.R., Stulzer, H.K., 2016.
462	Sodium alginate as a potential carrier in solid dispersion formulations to enhance
463	dissolution rate and apparent water solubility of BCS II drugs. Carbohydrate
464	Polymers 137, 350-359.
465	Burton Jr, G.A., 2002. Sediment quality criteria in use around the world. Limnology 3
466	(2), 65-76.
467	Casida Jr, L., Klein, D. and Santoro, T., 1964. Soil dehydrogenase activity. Soil
468	Science 98 (6), 371-376.
469	Calderon, B. and Fullana, A., 2015. Heavy metal release due to aging effect during
470	zero valent iron nanoparticles remediation. Water Research 83, 1-9.
471	Cumbal, L., Greenleaf, J., Leun, D. and SenGupta, A.K., 2003. Polymer supported
472	inorganic nanoparticles: characterization and environmental applications.
473	Reactive and Functional Polymers 54 (1), 167-180.
474	De Jonge, M., Teuchies, J., Meire, P., Blust, R., Bervoets, L., 2012. The impact of
475	increased oxygen conditions on metal-contaminated sediments part I: Effects on
476	redox status, sediment geochemistry and metal bioavailability. Water Research
477	46 (7), 2205-2214.
478	Diao, M. and Yao, M., 2009. Use of zero-valent iron nanoparticles in inactivating

479	microbes. Water Research 43 (20), 5243-5251.
480	Dong, H. and Lo, I.M., 2013. Influence of humic acid on the colloidal stability of
481	surface-modified nano zero-valent iron. Water Research 47 (1), 419-427.
482	Dong, H., Xie, Y., Zeng, G., Tang, L., Liang, J., He, Q., Zhao, F., Zeng, Y., Wu, Y.,
483	2016. The dual effects of carboxymethyl cellulose on the colloidal stability and
484	toxicity of nanoscale zero-valent iron. Chemosphere 144, 1682-1689.
485	Dror, I., Jacov, O.M., Cortis, A., Berkowitz, B., 2012. Catalytic transformation of
486	persistent contaminants using a new composite material based on nanosized
487	zero-valent iron. ACS Applied Materials & Interfaces 4 (7), 3416-3423.
488	Fassett, D.W., 1975. Cadmium: Biological effects and occurrence in the environment.
489	Annual review of Pharmacology 15 (1), 425-435.
490	Feng, Y., Gong, J., Zeng, G., Niu, Q., Zhang, H., Niu, C., Deng, J., Yan, M., 2010.
491	Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic
492	hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal 162
493	(2), 487-494.
494	Fonti, V., Beolchini, F., Rocchetti, L. and Dell'Anno, A., 2015. Bioremediation of
495	contaminated marine sediments can enhance metal mobility due to changes of
496	bacterial diversity. Water Research 68, 637-650.
497	Gong, X., Branford-White, C., Tao, L., Li, S., Quan, J., Nie, H. and Zhu, L., 2016.
498	Preparation and characterization of a novel sodium alginate incorporated
499	self-assembled Fmoc-FF composite hydrogel. Materials Science and Engineering:
500	C 58, 478-486.

501	Hakanson, L., 1980. An ecological risk index for aquatic pollution control. A			
502	sedimentological approach. Water Research 14 (8), 975-1001.			
503	He, F. and Zhao, D., 2005. Preparation and characterization of a new class of			
504	starch-stabilized bimetallic nanoparticles for degradation of chlorinated			
505	hydrocarbons in water. Environmental Science & Technology 39 (9), 3314-3320.			
506	He, F. and Zhao, D., 2007. Manipulating the size and dispersibility of zerovalent iron			
507	nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental			
508	Science & Technology 41 (17), 6216-6221.			
509	Huang, D., Wang, R., Liu, Y., Zeng, G., Lai, C., Xu, P., Lu, B., Xu, J., Wang, C.,			
510	Huang, C., 2015. Application of molecularly imprinted polymers in wastewater			
511	treatment: a review. Environmental Science and Pollution Research 22 (2),			
512	963-977.			
513	Hu, B., Liang, D., Liu, J., Lei, L. and Yu, D., 2014. Transformation of heavy metal			
514	fractions on soil urease and nitrate reductase activities in copper and selenium			
515	co-contaminated soil. Ecotoxicology and Environmental Safety 110, 41-48.			
516	Jain, C., 2004. Metal fractionation study on bed sediments of River Yamuna, India.			
517	Water Research 38 (3), 569-578.			
518	Kanel, S.R., Manning, B., Charlet, L. and Choi, H., 2005. Removal of arsenic (III)			
519	from groundwater by nanoscale zero-valent iron. Environmental Science &			
520	Technology 39 (5), 1291-1298.			
521	Kaplan, D., Hartenstein, R. and Sutter, J., 1979. Biodegradation of polystyrene, poly			
522	(metnyl methacrylate), and phenol formaldehyde. Applied and environmental			

523	microbiology	38 (3),	551-553.
		· · · · ·	

- 524 Kawai, F., 2010. The biochemistry and molecular biology of xenobiotic polymer
- 525 degradation by microorganisms. Bioscience, biotechnology, and biochemistry 74
- 526 (9), 1743-1759.
- 527 Kharisov, B.I., Dias, H.R., Kharissova, O.V., Jiménez-Pérez, V.M., Perez, B.O.,
- 528 Flores, B.M., 2012. Iron-containing nanomaterials: synthesis, properties, and
- environmental applications. RSC Advances 2 (25), 9325-9358.
- 530 Kim, S.A., Kamala-Kannan, S., Lee, K.-J., Park, Y.-J., Shea, P.J., Lee, W.-H., Kim,
- 531 H.-M., Oh, B.-T., 2013. Removal of Pb (II) from aqueous solution by a zeolite –
- 532 nanoscale zero-valent iron composite. Chemical Engineering Journal 217, 54-60.
- 533 Kim, H.-J., Phenrat, T., Tilton, R.D. and Lowry, G.V., 2009. Fe⁰ nanoparticles remain
- 534 mobile in porous media after aging due to slow desorption of polymeric surface

535 modifiers. Environmental Science & Technology 43 (10), 3824-3830.

- 536 Kirschling, T.L., Golas, P.L., Unrine, J.M., Matyjaszewski, K., Gregory, K.B., Lowry,
- 537 G.V., Tilton, R., D., 2011. Microbial bioavailability of covalently bound polymer

538 coatings on model engineered nanomaterials. Environmental Science &

539 Technology 45 (12), 5253-5259.

540 Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., Maurice, C., 2006.

- Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic
 in soil. Environmental pollution 144 (1), 62-69.
- 543 Lin, Y., Tseng, H., Wey, M., Lin, M., 2010. Characteristics of two types of stabilized
- 544 nano zero-valent iron and transport in porous media. Science of the Total

- 545 Environment 408 (10), 2260-2267.
- 546 Liu, R., Xiao, N., Wei, S., Zhao, L., An, J., 2014. Rhizosphere effects of
- 547 PAH-contaminated soil phytoremediation using a special plant named Fire
- 548 Phoenix. Science of the Total Environment 473, 350-358.
- 549 Li, Z., Jones, H.K., Zhang, P. and Bowman, R.S., 2007. Chromate transport through
- 550 columns packed with surfactant-modified zeolite/zero valent iron pellets.
- 551 Chemosphere 68 (10), 1861-1866.
- 552 Luna, G.M., Dell'Anno, A. and Danovaro, R., 2006. DNA extraction procedure: a
- 553 critical issue for bacterial diversity assessment in marine sediments.
- 554 Environmental Microbiology 8 (2), 308-320.
- 555 Menon, P., Gopal, M., Parsad, R., 2005. Effects of chlorpyrifos and quinalphos on
- 556 dehydrogenase activities and reduction of Fe^{3+} in the soils of two semi-arid fields
- of tropical India. Agriculture, Ecosystems & Environment 108 (1), 73-83.
- 558 Mohapatra, M., Mohapatra, L., Singh, P., Anand, S. and Mishra, B.K., 2010. A
- 559 comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and
- 560 binary aqueous solutions on additive assisted nano-structured goethite.

561 International Journal of Engineering Science & Technology 2 (8).

- 562 Muehe, E.M., Adaktylou, I.J., Obst, M., Zeitvogel, F., Behrens, S., Planer-Friedrich,
- 563 B., Kraemer, U. and Kappler, A., 2013. Organic carbon and reducing conditions
- lead to cadmium immobilization by secondary Fe mineral formation in a
- 565 pH-neutral soil. Environmental Science & Technology 47 (23), 13430-13439.
- 566 Neal, A.L., 2008. What can be inferred from bacterium-nanoparticle interactions

about the potential consequences of environmental exposure to nanoparticles?

567

568	Ecotoxicology 17 (5), 362-371.
569	Němeček, J., Lhotský, O. and Cajthaml, T., 2014. Nanoscale zero-valent iron
570	application for in situ reduction of hexavalent chromium and its effects on
571	indigenous microorganism populations. Science of the Total Environment
572	485-486 (1), 739-747.
573	Obst, M. and Steinbüchel, A., 2004. Microbial degradation of poly (amino acid) s.
574	Biomacromolecules 5 (4), 1166-1176.
575	Olivares-Rieumont, S., De la Rosa, D., Lima, L., Graham, D.W., Katia, D., Borroto, J.,
576	Martínez, F., Sánchez, J., 2005. Assessment of heavy metal levels in Almendares
577	River sediments—Havana City, Cuba. Water Research 39 (16), 3945-3953.
578	Ovreås, L., Forney, L., Daae, F.L. and Torsvik, V., 1997. Distribution of
579	bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing
580	gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S
581	rRNA. Applied and environmental microbiology 63 (9), 3367-3373.
582	Peng, J.F., Song, Y.H., Yuan, P., Cui, X.Y. and Qiu, G.L., 2009. The remediation of
583	heavy metals contaminated sediment. Journal of hazardous materials 161 (2-3),
584	633-640.
585	Ponder, S.M., Darab, J.G., Mallouk, T.E., 2000. Remediation of Cr(VI) and Pb(II)
586	aqueous solutions using nanoscale zerovalent iron. Environmental Science &
587	Technology 34 (12), 2564-2569
588	Prica, M., Dalmacija, B., Dalmacija, M., Agbaba, J., Krcmar, D., Trickovic, J.,

589	Karlovic, E., 2010. Changes in metal availability during sediment oxidation and
590	the correlation with the immobilization potential. Ecotoxicology and
591	Environmental Safety 73 (6), 1370-1377.
592	Ruttens, A., Adriaensen, K., Meers, E., De Vocht, A., Geebelen, W., Carleer, R.,
593	Mench, M., Vangronsveld, J., 2010. Long-term sustainability of metal
594	immobilization by soil amendments: cyclonic ashes versus lime addition.
595	Environmental pollution 158 (5), 1428-1434.
596	Salomons, W., 2006. Adoption of common schemes for single and sequential
597	extractions of trace metal in soils and sediments.International journal of
598	environmental analytical chemistry 51 (51), 3-4.
599	Sirk, K.M., Saleh, N.B., Phenrat, T., Kim, HJ., Dufour, B., Ok, J., Golas, P.L.,
600	Matyjaszewski, K., Lowry, G.V. and Tilton, R.D., 2009. Effect of adsorbed
601	polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface
602	models. Environmental Science & Technology 43 (10), 3803-3808.
603	Stêpniewski, W., Stêpniewska, Z., Gliñski, J., Brzeziñska, M., Wlodarczyk, T.,
604	Przywara, G., Varallyay, G., Rajkai, K., 2000. Dehydrogenase activity of some
605	Hungarian soils as related to their water and aeration status. International
606	Agrophysics 14 (1), 17-31.
607	Soylak, M., 2015. Characterization of Heavy Metal Fractions in Agricultural Soils by
608	Sequential Extraction Procedure: The Relationship Between Soil Properties and
609	Heavy Metal Fractions. Soil & Sediment Contamination 24 (1), 1-15.
610	Su, Y., Adeleye, A.S., Huang, Y., Sun, X., Dai, C., Zhou, X., Zhang, Y. and Keller,

- A.A., 2014. Simultaneous removal of cadmium and nitrate in aqueous media by
 nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Research
 63, 102-111.
- 614 Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X. and Zhang, Y., 2015.
- 615 Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved

616 metal ion removal. Water Research 74, 47-57.

- 617 Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X. and Wang, H.P., 2006. Characterization of
- 618 zero-valent iron nanoparticles. Advances in Colloid & Interface Science 120 (1-3),

619 47-56.

- 620 Sun, Y., Sun, G., Xu, Y., Wang, L., Lin, D., Liang, X. and Shi, X., 2012. In situ
- 621 stabilization remediation of cadmium contaminated soils of wastewater irrigation
- region using sepiolite. Journal of Environmental Sciences 24 (10), 1799-1805.
- 623 Sun, Y., Xu, Y., Xu, Y., Wang, L., Liang, X. and Li, Y., 2016. Reliability and stability
- of immobilization remediation of Cd polluted soils using sepiolite under pot and
- 625 field trials. Environmental pollution 208, 739-746.
- 626 US EPA. 3050B., 1996. Acid Digestion of Sediments, Sludges, and Soils.
- 627 Vinodhini, R., Narayanan, M., 2008. Bioaccumulation of heavy metals in organs of
- 628 fresh water fish Cyprinus carpio (Common carp). International Journal of
- Environmental Science & Technology 5 (2), 179-182.
- 630 Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X. and Chen, Y., 2007. The influence of
- 631 soil heavy metals pollution on soil microbial biomass, enzyme activity, and
- 632 community composition near a copper smelter. Ecotoxicology and

- 633 Environmental Safety 67 (1), 75-81.
- Weng, X., Lin, S., Zhong, Y. and Chen, Z., 2013. Chitosan stabilized bimetallic Fe/Ni
- 635 nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from
- aqueous solutions. Chemical Engineering Journal 229, 27-34.
- 637 Wen, J., Yi, Y. and Zeng, G., 2016. Effects of modified zeolite on the removal and
- 638 stabilization of heavy metals in contaminated lake sediment using BCR
- 639 sequential extraction. Journal of environmental management 178, 63-69.
- 640 Xu, P., Zeng, G., Huang, D., Feng, C., Hu, S., Zhao, M., Lai, C., Wei, Z., Huang, C.,
- 641Xie, G., 2012. Use of iron oxide nanomaterials in wastewater treatment: a review.
- 642 Science of the Total Environment 424, 1-10.
- 643 Zeng, G., Zhang, C., Huang, G., Yu, J., Wang, Q., Li, J., Xi, B. and Liu, H., 2006.
- 644 Adsorption behavior of bisphenol A on sediments in Xiangjiang River,
- 645 Central-south China. Chemosphere 65 (9), 1490-1499.
- 646 Zhang, C., Lai, C., Zeng, G., Huang, D., Tang, L., Yang, C., Zhou, Y., Qin, L., Cheng,
- 647 M., 2016a. Nanoporous Au-based chronocoulometric aptasensor for amplified
- $detection of Pb^{2+}$ using DNAzyme modified with Au nanoparticles. Biosensors
- and Bioelectronics 81, 61-67.
- 650 Zhang, C., Lai, C., Zeng, G., Huang, D., Yang, C., Wang, Y., Zhou, Y. and Cheng, M.,
- 651 2016b. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic
 652 sulfamethazine from aqueous solution. Water Research 95, 103-112.
- ⁶⁵³ Zhang, Z., Li, M., Chen, W., Zhu, S., Liu, N. and Zhu, L., 2010. Immobilization of
- lead and cadmium from aqueous solution and contaminated sediment using

655	nano-hydroxyapatite. Environmental pollution 158 (2), 514-519.
656	Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., Yu, Y., Huang, H., 2011a. Effects
657	of physico-chemical parameters on the bacterial and fungal communities during
658	agricultural waste composting. Bioresource Technology 102 (3), 2950-2956.
659	Zhang, Y., Li, Y., Dai, C., Zhou, X. and Zhang, W., 2014. Sequestration of Cd (II)
660	with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage
661	system. Chemical Engineering Journal 244 (244), 218 - 226.
662	Zhang, X., Lin, S., Chen, Z., Megharaj, M., Naidu, R., 2011b. Kaolinite-supported
663	nanoscale zero-valent iron for removal of Pb ²⁺ from aqueous solution: reactivity,
664	characterization and mechanism. Water Research 45 (11), 3481-3488.
665	Zhang S, Dong WJ, Zhang LC, Chen XB., 1989. Geochemical characteristics of
666	heavy metals in the Xiangjiang River, China. Hydrobiologia 176 (177): 253–262
667	Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q., Wang, Y. and Ye, F., 2009.
668	Assessment of surface water quality using multivariate statistical techniques in
669	red soil hilly region: a case study of Xiangjiang watershed, China.
670	Environmental monitoring and assessment 152 (1-4), 123-131.
671	Zhou, Q., Wu, Z., Cheng, S., He, F. and Fu, G., 2005. Enzymatic activities in
672	constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil
673	Biology and Biochemistry 37 (8), 1454-1459.
674	Zia, K.M., Zia, F., Zuber, M., Rehman, S., Ahmad, M.N., 2015. Alginate based
675	polyurethanes: A review of recent advances and perspective. International
676	Journal of Biological Macromolecules 79, 377-387.

- Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T. and Wang, X.,
- 678 2016. Environmental Remediation and Application of Nanoscale Zero-Valent
- 679 Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.
- 680 Environmental Science & Technology 50 (14), 7290-7304.

Chillip Marker

Depth (cn	n) 0-20 cm	Mean \pm standard deviation (n=3)				
pН		7.79 ± 0.03				
Organic c	arbon (g/kg)	7.88 ± 0.90				
Organic n	natter (g/kg)	13.57 ± 1.54				
Water (%))	55.75 ± 0.55				
CEC (cm	ol/kg)	13.62 ± 3.58				
Moisture	content (%)	58.72 ± 0.79				
Total nitro	ogen (g/kg)	2.16 ± 0.04				
Total phosphoeus (g/kg)			0.17 ± 0.20			
Element	Total content (mg/kg)	Acid-soluble	Reducible	Oxidizable	Residual	
Pb	167.10 ± 1.33	4.11%	15.41%	9.45%	71.03%	
Cu	69.35 ± 1.60	5.20%	6.39%	19.69%	68.72%	
Cr	159.90 ± 0.92	13.09%	4.17%	10.33%	72.41%	
Cd	20.90 ± 0.67	49.23%	27.07%	8.21%	15.49%	

Table 1 - The main characteristics of the sediment.

Table 2 - ANOVA analysis of enzyme activities in Cd polluted sediment with

	4 4	1. 1.4.	. .	· • • • •
different NN777	concontrotione o	nd manhatia	n tima ac	two moin ottoote
	CONCENT ALIONS A	нни нисирацю	н шис аз	LWU HIAIII CHICUIS.

One-way ANOVA			Two-way ANOVA			
Facor	Urease	Catalase	Dehydrogenase	Urease	Catalase	Dehydrogenase
Concentration	0.033*	0.004**	0.01**	0.00**	0.00**	0.00**
incubation time	0.00**	0.00**	0.00**			

* Significant differences at the 0.05 level (p < 0.05).

** Significant differences at the 0.01 level (p < 0.01).

Fig. 1 - Molecular structures of sodium alginate (SA) and the schematic diagram

of SA modified NZVI.

Fig. 2 - Schematics of the preparation of sodium alginate (SA) modified NZVI and their application for adsorption of Cd^{2+} .

Fig. 3 - SEM images of laboratory synthesized iron particles with and without a modify material. a. NZVI; b. 0.1 wt% SNZVI.

Ċ

Fig. 4 - XRD patterns of samples. a. NZVI; b. 0.1 wt% SNZVI. F = ferrous oxide,

M = magnetite/maghemite, L = lepidocrocite.

Fig. 5 - FTIR spectra of sample. a. NZVI; b. 0.1 wt% SNZVI.

Fig. 6 - Fractioning of Cd in sediment with the addition of SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%) and varied as the incubation proceeded. (Concentration of NZVI or SNZVI: 0.5 g/L). a. SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%); b. SNZVI (0.1 wt%).

Fig. 7 - Enzyme activities under different treatments of SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%) and enzyme activities increased multiples at 30 days. a_1 . Urease; a_2 . Urease increased multiples (0.1 wt% SNZVI); b_1 . Catalase; b_2 . Catalase increased multiples (0.1 wt% SNZVI); c_1 . Dehydrogenase; c_2 . Dehydrogenase increased multiples (0.1 wt% SNZVI). Error bars indicate standard deviation (n = 3).

Fig. 8 - Similarity dendrograms and cluster analysis of banding patterns generated by PCR-DGGE of 16S rRNA fragments from SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%) treated samples. a. similarity dendrograms; b. cluster analysis.

Fig. 9 - The diversity index H rooted in DGGE profiles of amplified bacterial 16S rRNA genes. The sample (2, 3, 4, 5, 6) represents the different concentrations of SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%), the sample 1 as control group.

Fig. 10 - Loading plot. Eigenvectors calculated by PCA using the response variables i) relative abundance of microbial population and ii) different samples: SNZVI (0, 0.05, 0.1, 0.15, 0.2 wt%) and control group. Color circular represented 6 samples taken from two systems. The angles between arrows indicate correlations between two variables.

Highlights

- SNZVI applied to the remediation of Cd contaminated river sediments can affect Cd mobility.
- We investigated the relativity between Cd mobility and changes in enzyme activities as well as bacterial community diversity.
- The maximum residual percentage of Cd increases from 15.49% to 57.28% after 30 days of incubation at 0.1 wt% SA.
- SNZVI and NZVI could increase bacterial taxa and improve bacterial abundance.