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A B S T R A C T

Highly-efficient materials and technologies for environmental pollutant treatment and hydrogen production are
urgently needed in "green" 21st century. Notably, photocatalytic process over carbon nanomaterials (CNMs)-
modified photocatalysts is an effective solution for these crises. CNMs (e.g., fullerenes, carbon nanotubes, gra-
phene, carbon nanofibers, and carbon quantum dots) reveal remarkable morphological, mechanical, electrical
and optical properties, which have been of significantly scientific and technological interest in photocatalysis.
Until now, many efforts have been made to take advantage of these unique size- and surface-dependent prop-
erties of CNMs for photocatalytic process. In this review, we firstly summarize selective preparation of CNMs
that has a great impact on their photocatalytic performance. Then we provide an updated outline of advanced
photocatalytic application of CNMs in addressing both environmental pollution and hydrogen energy crisis. The
difference in the role of various CNMs play in the enhancement of photocatalytic performance is also discussed.
Lastly, we discuss the limitations of CNMs applied in photocatalysis or even wider fields. We hope this review
will project a fast developmental path with providing a wide view of recent preparation methods, applications,
prospects and challenges.

1. Introduction

The importance of efficient pollutant treatment and hydrogen pro-
duction is evident from the aggravation of energy and environmental
crisis [1–7]. Photocatalysis is a low-energy technology for environ-
mental treatment owing to the high efficiency for reduction on highly
toxic contaminants and oxidation degradation on organic pollutants
serving H2O and CO2 as the final products [8–12]. Additionally, since
the photo-generation of hydrogen from water over titanium dioxide
(TiO2) photoanode under light irradiation [13], photocatalytically
splitting water has been considered as a potentially significant strategy
for hydrogen production [14–16]. Thus in recent decades, photo-
catalytic process has attracted enormous interest as an effevtive method
for both environmental pollutant treatment and hydrogen production.
However, most of the photocatalytic processes need to be improved
because of the low quantum conversion efficiency of the absorbed light
to charge carriers and high carrier recombination [17–21]. Therefore,
developing efficient methods for better photocatalytic process is in
demand.

Photocatalysis over carbon nanomaterials (CNMs)-modified mate-
rials is an enabling process to address environmental pollution and
hydrogen energy crisis [22–24]. CNMs are one of the most promising
nanomaterials today, including fullerenes, carbon nanotubes (CNTs),
graphene (GR), carbon quantum dots (CQDs) and so on (Fig. 1). CNMs
are classified based on the number of dimensions that not confined to
the nanoscale range (< 100 nm), including zero-dimensional (0D) na-
noparticles, one-dimensional (1D) nanotubes, and two-dimensional
(2D) nanosheets. Since they were found, CNMs have been applied in
various fields, like supercapacitors [25], batteries [26], hydrogen sto-
rage [27], solar cells [28], and biomedical applications [29]. Moreover,
environmental pollutants, such as heavy metal ions [30–37], organic
dyes [38], colorless organics [39–45], inorganics [46] and co-pollution
[47–49], apt to be effectively treated by using CNMs [50–52]. In par-
ticular, CNMs attracted enormous interest in photocatalysis field owing
to the remarkable π-system formed by sp2 hybridization. And CNMs
show wonderful stability, robustness, biocompatibility, chemical in-
ertness, high photoluminescence (PL) and conductivity [23,53–57].

Up to now, many efforts have been made to take advantage of the
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unique size-, surface- and structure-dependent properties of CNMs ap-
plied in photocatalysis [58–62]. Fantastic progress has been obtained in
promoting the photocatalytic performance of CNMs. CNMs are sig-
nificant for their structural variability, which has a positive effect on
the photocatalytic performance [63]. Further application of CNMs is
initially limited by the complicated and uneconomical processes for
their selective preparation with desired scale [64]. Therefore, simple
and cost-effective methods for selective preparation of CNMs are ra-
pidly in a great demand. On the other hand, application of CNMs in
pollutant treatment and hydrogen production drawn increasing interest
owing to the aggravation of energy and environmental crisis. Pre-
viously, π-π interactions and mechanochemistry of CNMs were dis-
cussed [63,65], Rodrigues and Smith [66] reviewed the application of
carbon-based nanomaterials for removal of chemical and biological
pollutants from water, De Volder et.al [67]. summarized many com-
mercial applications of CNTs, and Miao et.al [68]. elaborated on recent
advances in catalytic application of CNTs catalysts or functionalized
CNTs. However, comprehensive summary on CNMs photocatalytic ap-
plications for environmental pollutant treatment and hydrogen pro-
duction and the role of π-π interactions and mechanochemistry in the
photocatalytic process is still absent.

This review firstly pays attention to the reversible and sustainable
selective preparation process of CNMs. Then recent advanced progress
in CNMs photocatalytic applications are summarized and analyzed,
along with further exploration of the role of π-π interactions and me-
chanochemistry in the photocatalytic process. Finally, challenges and
future directions of CNMs-modified photocatalysts are discussed.

2. Selective preparation of CNMs

It was reported that structural variability positively influenced the
performance of CNMs in photocatalytic process [63,69,70]. In detail,
the photocatalytic properties are affected by the size and structure,
which mainly depend on the preparation process of CNMs [64]. The
primary barrier for the selective preparation is the complicated and
uneconomical production process. Therefore, simple, cost-effective, and
eco-friendly methods for CNMs selective preparation are urgently
needed before CNMs are widely used in photocatalytic process for en-
vironmental pollutant treatment and hydrogen production.

2.1. Zero-dimensional fullerenes

Fullerenes, zero-dimensional (0D) spherical carbon cages, are
simply classified based on the number of carbon atoms [71]. Fullerene
C60 is the smallest and almost abundant fullerene, followed by C70 and
other higher fullerenes (Cn, n> 70). Fullerenes are chemically reactive
owing to the π-system, like combining with semiconductors and

influencing the electron donor-acceptor system [69]. The characteristic
endowed fullerenes with the capacity to be applied in the formation of
novel photocatalytic materials with expected physicochemical proper-
ties [70–73]. Notably, the size of fullerenes has a great impact on
fullerene properties. To further explore their size-dependent properties,
many different methods have been presented to prepare fullerene mo-
lecules with desired size [74–76].

The foremost method for fullerene preparation in preparative
quantities is vaporizing graphite with resistive heating in the arc plasma
under low helium pressure [77]. The obtained fullerenes can keep
stable in air for at least a few weeks and be used without special
treatment, but with low efficient production. Soon after, a 3-phase
thermal plasma process was presented for fullerene production, which
realized the independent control of the input carbon rate [78]. And
Churilov et al. [79] presented a method to control the preparation
process in the high-frequency arc plasma by changing the helium
pressure, which illuminated the effects of arc temperature and electron
concentration. Though fullerene production is mature, selective pre-
paration of fullerene with desired size is in the early stage. For this
reason, properties and application of fullerene in photocatalytic field
still remain unclear.

Commonly, there are three methods used for fullerene selective
preparation (Fig. 2): (i) fractional crystallization. The unit operation of
fractional crystallization is divided into three steps - dissolution of
crude fullerene soot extract, heating, and filtration. During the crys-
tallization process, deposits of similar compositions from every proce-
dure can be obtained with higher quality. To date, fractional crystal-
lization has been a mature technology. It is simple, cost-efficient, but
time-consuming because of the multiple crystallization procedures
[80].

(ii) chromatographic process. Traditional chromatographic process
for fullerene selective preparation often use neutral alumina as the
stationary phase, and use hexane or toluene as the mobile phase [81].
The traditional process has some basic drawbacks, such as limited
column loadings, time-consuming operation, and irreversible adsorp-
tion of fullerenes. Researchers in this field have been always trying to
solve these drawbacks. In recent years, using metal-organic framework
as the stationary phase for improving the chromatographic process has
drawn increasing attention [82–84]. Current improved chromato-
graphy possesses facile operations, reversible adsorption-desorption of
fullerene, low-cost and rapid manufacturing process. In addition,
chromatographic technology shows the ability to achieve large-scale
selective fullerene preparation [76].

(iii) selective complexation. Among these methods, selective com-
plexation via designing appropriate molecular receptor for fullerene
shows a high efficiency in selective preparation [85,86]. Com-
plementarity in size, shape, structure, molecular symmetry, and

Fig. 1. Illustration of common used CNMs: fullerenes, carbon nanotubes, graphene and carbon quantum dots.
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electronic donor-accept relying on the host-guest interaction between
receptor and fullerene are crucial factors [87]. Specially, in the design
of coordination metallosupramolecular receptors, different π-extended
systems were utilized as molecular building blocks to improve the se-
lectivity [64]. There are many examples of designed receptors used for
fullerene selective preparation, such as the receptors synthesized by
cyclodextrins [88], cycloparaphenylenes or CNTs [89], and π-extended
derivatives of tetrathiafulvalene (TTF) [90]. Herein, a coordination
metallosupramolecular calixar[3]arenes cage containing π-extended
moieties is discussed at length [91]. It can be used for C60 selective
preparation in a reversible way. This calixar[3]arenes cage can include
C60 to form an adduct with 1:1 stoichiometry. Though the cavity is
suitable to encapsulate C70 due to from the aspect of shape com-
plementary, C70 is scarcely reacted with calixar[3]arenes cage. This is
because the unsuitable complementarity of molecular symmetry be-
tween calixar [3]arenes cage and C70 [92]. Lithium cations bound to
calixar[3]arenes cage can enhance the inclusion of C60 within the cage,
whereas the bigger sodium cations can impede C60 encapsulation via
adjusting an ellipsoidal shape when they are bound to the receptor as a
substitution of lithium cations. This adjustment in the shape and size of
the cage caused by cation binding contributes to fullerene C60 selective
preparation.

There are still some challenges in selective complexation method
before applying in industrial preparation. On the one hand, it is not
easy to determine the extent of reaction without visible phenomenon.
On the other hand, the space of designed molecular receptors may be
blocked by other materials with higher affinity than fullerenes, which
also happens in chromatographic process. In a word, selective com-
plexation, fractional crystallization, and chromatography are available,
meanwhile greener technologies with recyclable process need to be
further explored for selective preparation of fullerenes.

2.2. One-dimensional CNTs

CNTs, one-dimensional (1D) cylinder-shaped macromolecules, were
found during the synthesis of fullerenes by arc discharge [93]. The
diameter of CNT lies on the size of the semi-fullerene located at the end.
Since they were found, CNTs have been the foci of numerous versatile

fields due to their diameter- and helicity-dependent properties [94–96].
They are another one of the most representative examples of CNMs due
to their excellent properties which are similar to fullerenes [97]. CNTs
are classified into multi-walled carbon nanotubes (MWCNTs) and
single-walled carbon nanotubes (SWCNTs), relying on the rolling layers
of GR films.

Wide application of CNTs is reflected in the yield capacity which
exceeds several thousand tons a year [98,99]. Rapid innovations in the
scalable production of CNTs have extended CNT research, like arc-
discharge, laser ablation, and chemical vapor deposition (CVD) (Fig. 3)
[98–100]. Among these methods, low-temperature plasma is a common
used method owing to its multiple benefits, like widely distributed
active species, improved catalyst activation, high-efficiency and sus-
tainability in energy [101]. The low-temperature plasma contains po-
sitively charged ions, non-ionized atoms and free electrons which
causes dissociation, ionization and excitation. Furthermore, this
method can occur on the surface of materials without changing their
main properties [101]. Laser ablation method is similar to low-tem-
perature plasma. The advantage of laser ablation is to form high-purity
CNTs with defined chirality structure. But it is expensive and difficult
for laser ablation to scale up in CNT selective preparation [100]. CVD
method is mainly used for large-scale production of CNTs. CNTs are
formed by the decomposition of CNTs precursor over transition metal
catalyst and deposition. However, the prepared CNTs by CVD method
show poor qualities that contain impurities, which is not suitable for
CNT selective preparation [102].

For greener preparation of CNTs, cost-effective and eco-friendly
approaches were reported to produce high quality MWCNTs. A recent
preparation process used polymer waste like high-density polyethylene
(HDPE) as the carbon source [103]. The conversion from polymer waste
to MWCNTs happens in a closed environment via thermal dissociation
with autogenic pressure and chemical catalysts. The first step is to add
used HDPE which contains 20 wt% C4H6CoO4 and cobalt acetate
(CoAc) catalyst into a 5 cc autoclave. In the autoclave, the state and
structure of HDPE change with the increase of reaction temperature in
nitrogen atmosphere. Polymer waste begins to decompose at about
573 K and the outcomes containing water vapor, CO2, and molecules
with several carbon atoms can be recorded by Mass measurement.

Fig. 2. Reported strategies of fullerene selective preparation: (a) fractional crystallization, (b) chromatographic method, (c) selective complexation with molecular
receptor. Reprinted from Ref. [64] with permission from Elsevier.
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When temperature reaches above 873 K, the products include hy-
drogen, water vapor, and hydrocarbons. As the temperature up to
973 K, all the bonds of C–H and CeC start to get break, and the products
consist of hydrocarbons and solid carbon coupled with hydrogen gas
(Fig. 3d). This controlled dissociation of polymer waste is a re-
producible technology for MWCNTs production, providing an oppor-
tunity for sustainable development and achieving a significant addition
in industrial value.

2.3. Two-dimensional GR

GR, the thinnest known material, is a two-dimensional (2D) carbon-
based nanomaterial consisting of sp2 bonded carbon atoms [104]. Since
Geim and Novoselov seminal report on monolayer GR electronic
properties [105], studies on its special properties, synthesis and various
application have escalated sharply. Owing to the unique extended
honeycomb network, GR can be used as the basic building block for
other members of CNMs like 0D fullerene and 1D CNT [106]. GR re-
veals zero effective mass, giant intrinsic mobility in charge carriers,
record thermal conductivity and stiffness [107–109]. And the electrons
in GR show a linear dispersion and behave like massless relativistic
particles, showing optical transparency, ambipolar electric field effect,
transport via relativistic Dirac fermions and the quantum Hall effect
[110,111]. Because of these unique properties, GR shows the potential
to promote the transfer of charge carriers along its planar surface.
Hence, GR has been regarded as a promising candidate to be applied in
photocatalysis [112–114].

Usually, there are four main methods for mass manufacture of
pristine GR:

(i) Extended GR. It contains CVD growth on epitaxial bound to the
surface of metal substrates. May et.al. [115] first explained about ex-
tended GR without rationalizing the low-energy electron diffraction
modes of a graphite monolayer.

(ii) Micromechanical exfoliation. Several studies elaborated on mi-
cromechanical exfoliation and outlined the great value for GR, inspiring
continuous exploration in their potential science and applications
[116–118].

(iii) Exfoliation of graphite. This typical method is making graphite
powders exposed in organic solvents with high intensity ultrasound
[119].

(iv) Other methods, such as bottom-up synthesis [120], growth on
substrates [121], and arc discharge [122]. Issues of control in GR layers
and minimization in folds have been solved via these methods.

Now the effort is made to achieve large-scale preparation of GR
sheets with ideal thickness, because their unique properties are almost
only bound up with individual sheet [123]. However, GR sheets show
the tendency to agglomerate irreversibly and even restack to form
graphite in the presence of strong van der Waals forces and π-π
stacking. Compared with other methods, chemical reduction process
was more suitable for high-quality GR sheet preparation. Chua et al.
[124] summarized the state-of-the-art in GR preparation via reduction
process, including more than fifty types of reducing agent. For mass
manufacture, it is encouraged to prepare GR from graphite crystals via
reduction of graphene oxide (GO) [125–127]. The reduction process is
shown in Fig. 4a. Graphite crystal possesses strong van der Waals forces
between GR sheets (Fig. 4b). If using graphite crystal as the initial
material, the powerful van der Waals forces are required to be broken at
first. Graphite oxide is the oxidized form of graphite with oxygen
functionalities mainly containing carbonyl, carboxyl, epoxide and hy-
droxyl. These oxygen functionalities enlarge the interlayer spacing
which can weaken the forces between GR sheets for easier exfoliation.
GO (Fig. 4c) is an intermediate, which can be gained from graphite
oxide via ultrasonication or mechanical stirring. GO mainly exists in the
state of mono-, bi- or few-layer sheets. Lastly, GR (Fig. 4d) with defects
can be obtained from GO reduction through thermal treatment, elec-
trochemical technology or chemical reduction [126–128]. The reduc-
tion of oxygen functionalities on GO follows the mechanism exhibited
in Fig. 5. The reduction of epoxide begins from a ring opening by re-
ducing agents (e.g. iodides and hydrazine) and then elimination from
the benzene ring (Fig. 5a). The first step of carbonyl group reduction is
to form hydroxyl groups, and next is dehydration which affords olefins
(Fig. 5b). The reduction of carboxyl starts from the protonation at α-
position of C]C bond combined with C]O bond, and then decarbox-
ylation to regenerate C]C bond (Fig. 5c) [129].

Fig. 3. Selective preparation of CNTs: (a, b) arc discharge technique, (c) CVD, (d) thermal dissociation of high-density polyethylene (HDPE). Reprinted from Ref
[100] with permission from The Royal Society of Chemistry.
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2.4. Three-dimensional CNMs-based networks

With the development of 0D fullerenes, 1D CNTs and 2D GR, mac-
roscopic three-dimensional (3D) superlattices networks based on CNMs
has received a huge amount of attention [130]. CNMs, constructed by
sp2 hybridized carbon atoms, can be used as building blocks for 3D
networks fabrication (Fig. 6) [131]. Hexagonal carbon rings were not
employed in the covalently interconnection with CNMs at multi term-
inal nodes. The mechanical properties of 3D networks for axial com-
pression was unprecedented because of the covalent interconnections.
On the other hand, 3D superlattices revealed porosity properties,
minimized agglomeration and re-stacking, remarkable surface and
electrical properties. These significant properties endows the 3D net-
works with the potential to be used for the fabrication of novel

promising materials applied in catalytic process, environmental pollu-
tion treatment (e.g. adsorption and filtration), and molecular storage.
Previously, Nardecchia, Chabot, and Dasgupta et.al [130–132]. elabo-
rated on the synthesis of 3D networks, containing GR-, GO- CNT-based
structures, and GR/CNT hybrid structures. Therefore, this section just
make a brief summarization and focus on the potential properties that
can be utilized in addressing environmental pollution and energy crisis.

There are many methods for the synthesis of 3D CNMs-based net-
works, such as hydro-/solvo-thermal process, template directed ap-
proaches, reduction, self-assembly, CVD, free standing direct dry and so
on [133–136]. 3D networks fabricated via template directed ap-
proaches showed superhydrophobicity, high organic solvent and oil
capacity. 3D networks constructed through free standing direct dry
possessed scalable size, high strength and rigidity. Self-assembled 3D

Fig. 4. (a) The process from graphite to GR; (b) Pristine mono-layer sheet of graphite; (c) Mono-layer sheet of graphite oxide or GO; (d) Synthesized mono GR from
reduction of GO.

Fig. 5. (a) Reduction mechanism of epoxide on GR; (b) Reduction mechanism of carbonyl on GO; (c) Reduction mechanism of carboxyl on GO.
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networks revealed benign elongation, high adsorption with reversible
characteristic, and rapid compression recovery. All the synthesized 3D
CNMs-based networks were found to behave high conductivity and
chemical stability, which showed the potential application in the fab-
rication of novel CNMs-based materials for advanced photocatalytic
application in environmental pollutant treatment and hydrogen pro-
duction.

3. Advanced photocatalytic application of CNMs

CNMs, revealing remarkable conductivity, thermostability, ad-
sorptivity and controllability with delocalized conjugated structures,
have a great impact on electron transfer process [40,126,137]. And
specially, the surface properties of CNMs can be adjusted through
chemical modification, which provides many opportunities for func-
tionalized composites [121,138]. To date, CNMs have gained extensive
attention in photocatalysis field. Generally, the enhanced photo-
catalytic performance caused by the introduction of CNMs was ascribed
to two aspects: (i) higher absorption capability in light due to their
black body properties, (ii) longer life span of electron-hole pairs be-
cause CNMs play as an electron reservoir to trap photogenerated elec-
trons [70,73,139,140]. Since CNMs have similar structure and elec-
tronic properties in common, there is a question that whether all the
CNMs play similar roles in the improvement of photocatalytic activity.

3.1. Environmental pollutant treatment

In photocatalytic process, CB electrons (e−) and valence band holes
(VB h+) are produced when CNMs-modified photocatalysts are irra-
diated with light [141]. Electrons can directly reduce environmental
pollutants like bromate, or be transferred to electron acceptors (i.e.
CNMs) to react with molecular oxygen to produce superoxide radical
species for oxidation of organic pollutants [142,143]. Holes with strong
oxidizing property plays a direct role in photocatalytic oxidation pro-
cess, or react with adsorbed hydroxyl ions to produce hydroxyl radicals
[144]. The photocatalytic application of CNMs in degradation of or-
ganic dyes was shown in Table 1, and the application in treatment of
colorless organic and inorganic pollutants was shown in Table 2.

3.1.1. Degradation of organic dyes
A large scale of organic dyes from dye manufacturing and textile

industries have been released into water environment over the past
decades. Many of these dyes, such as Rhodamine B (RhB), methylene
blue (MB) and methyl orange (MO), are toxic and carcinogenic. RhB
and MB are dissolved in cationic, while MO are dissolved in anionic.
Different from other organics and inorganics, colorful dyes can be

photodegraded via three possible reaction: photosensitization, photo-
lysis, and photocatalysis [145]. In photosensitization process, light ir-
radiation can stimulate the dye to produce photo-electrons to transfer to
conduction band of photocatalyst, then react with oxygen to form •O2

−.
In photolysis process, electrons induced from the dye react with oxygen
to form singlet oxygen atom for the oxidative degradation of dye.

CNMs-modified photocatalysts revealed high photocatalytic activity
on the degradation of organic dyes owing to the introduction of π-
system or the formation of heterojunctions [146]. For example, 0D C60

modified Bi2TiO4F2 hierarchical microspheres showed strong photo-
catalytic performance for RhB degradation [70], and 1D TiO2@
MWCNTs composite show high degradation performance on MB and
RhB [147]. Compared with 0D and 1D CNMs, 2D CNMs (e.g. GR, GO,
and reduced GO) reveal better interaction with photocatalysts. Reduced
GO (rGO)/bismuth tungstate (BWO) composite, prepared in the pre-
sence of GO, showed high photocatalytic performance on the de-
gradation of RhB (Fig. 7) [148]. The presence of GO promoted the in-
teraction with the cations and provided reactive sites for the growth of
nanoparticles. Introduction of rGO led to the negative shift of the Fermi
level and the decrease in CB potential of BWO, promoting the migration
of photoinduced electrons [149]. And owing to the excellent charge-
carrier mobility of GR, separation of photogenerated electron-hole pairs
on BWO was improved. GO reduction level has a positive impact on the
photocatalytic performance of rGO/BWO.

3.1.2. Oxidation of organic pollutants
Disposal and management of organic pollutants existing in air,

water, and soil mediums is of great environmental concern [150].
CNMs are a nice choice to be applied in photocatalytic degradation of
organic pollutants [126,127]. For example, C60-modified ZnAlTi-LDO
showed high photocatalytic performance on the degradation of Bi-
sphenol A (BPA) [151]. Besides, MWCNT-doped TiO2 films were pre-
sented as efficient materials for photocatalytic degradation of PNP
(Fig. 8) [152]. The electrical connection between MWCNTs and TiO2

allows an easy transfer of photoinduced electrons from TiO2 to con-
ductive MWCNTs, leading to higher photocatalytic activity. The
amount of MWCNTs introdcued to TiO2 was limited under 4 wt%. Too
high MWCNTs content would change the transparency of the film and
isolate TiO2 from touching light, then reduce the photocatalytic activity
[152].

Recently, we synthesized a 0D CQDs modified 2D BWO nanosheets
hybrid material (CBW) for MO and BPA degradation [139]. CQDs are a
new 0D member with size below 10 nm in the family of CNMs. Since the
original report of CQDs in 2006 [153], they have attracted enormous
attention because of their remarkable physical and chemical properties,
like biocompatibility, robustness, stability, and chemical inertness

Fig. 6. 0D, 1D, and 2D CNMs used as building blocks for 3D networks fabrication. Reprinted from Ref. [131] with permission from Elsevier.
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[154,155]. CQDs show unique both up- and down-PL, and that make
CQDs-modified photocatalysts become near-infrared light driven ma-
terials [156–158]. And ultrathin 2D BWO are excellent photocatalysts
owing to their large specific surface area and special surface structure
[159]. CBW composites with 0D/2D unique nanostructure possess four
benefits: (i) well-structured accessible area between CQDs and m-BWO
and the channels of bulk-to-surface for electrons transfer; (ii) the ability
to utilize full spectrum of solar energy; (iii) improved adsorption ca-
pacity for pollutants (especially the hydrophobic pollutants) because of
the CQDs sp2 carbon clusters; (iv) enhanced interfacial charge transfer
process owing to the efficient contact with pollutants caused by the
ultra-small nanostructure (Fig. 9) [139].

Many other CNMs have also been used in photocatalytic process for
organic pollutant treatment. For example, kim et.al. [160] explored an
improved method for the preparation of 1D carbon nanofiber (CNF)-
titanate nanotube (TiNT) composite with a core-shell structure, and
CNF-TiNT showed wonderful photocatalytic performance for the

oxidation of gaseous acetaldehy. In addition, Zhao et al. [161] recently
reported a N-wrapping/bridging melamine-GR-TiO2 capsule after H2

treatment (H-TiO2/MG-D) for efficient photocatalytic degradation of
gaseous formaldehyde (HCHO). The introduction of GR improved the
electrical conductivity of photocatalyst and the separation of charge
carriers [161].

3.1.3. Treatment of inorganic pollutants
Inorganic pollutants caused a worldwide environmental concern

due to their non-biodegradability, which will accumulate in biological
bodies and lead to high-toxicity [131,162]. Photocatalytic reduction
over CNMs-modified materials has been proven to be an efficient
method for inorganic pollutant treatment [112,142]. For example,
BWO/GR composites showed high photocatalytic performance on the
oxidation of NO owing to the positive shift of the Fermi level cuased by
GR [163], which is contrary to the negative shift caused by rGO [148].

GO and F co-doped TiO2 (FGT) was presented to show high

Table 1
Photocatalytic application of CNMs in dye degradation.

Composites Preparation process Dye Efficiency Ref

C60/g-C3N4 (i) ball-mill C60 and dicyandiamide;
(ii) heat at 550 °C for 4 h.

MB 99.9% [69]

C60/Bi2TiO4F2 (i) dissolve TiF4 into tert-butyl alchol;
(ii) add Bi(NO3)-ethylene glycol solution;
(iii) add C60-toluenen solution, and heat at 160 °C for 24 h.

RhB 93.0% [70]

GR-CQDs/g-C3N4 (i) CQDs was loaded on g-C3N4 through hydrothermal process;
(ii) GO was reduced and combined with CQDs/g-C3N4 thorough a second hydrothermal process.

MO 91.1% [146]

TiO2@MWCNTs (i) add MWCNTs into ethanol to make suspension;
(ii) add TiCl4 ethanol solution with sonication;
(iii) heat at 150 °C for 3 h, and calcine at 600 °C for 5 h.

MB
RhB

99.9%
99.9%

[147]

GR/BWO (i) add GO to Bi(NO3)3∙5H2O solution;
(ii) add Na2WO4∙2H2O, and adjust pH to about 7;
(iii) heat at 180 °C for 16 h to obtain GO-BWO;
(iv) mix GO-BWO with ethylene glycol, heat at 140 °C for 2 h.

RhB 99.9% [148]

Table 2
Photocatalytic application of CNMs in treatment of colorless organic pollutants and inorganics.

Composites Preparation process Pollutant Treatment Efficiency Ref

rGO/BWO (i) electrostatic self-assembly of positively charged BWO and negatively charged GO sheets;
(ii) hydrothermal treatment.

Oxidation of benzyl alcohol 93.0% [149]

C60-modified ZnAlTi-
LDO

(i) combine ZnAlTi layered double hydroxide (ZnAlTi-LDH) with C60 via the urea method;
(ii) calcine under vacuum atmosphere to obtain C60-modified ZnAlTi layered double oxide (ZnAlTi-
LDO).

Degradation of BPA 87.1% [151]

MWCNT-doped TiO2 (i) synthesize from two-step sol-gel routes: alcoholic and aqueous;
(ii) deposited by dip-coating on glass.

Degradation of PNP 57% [152]

CBW (i) add Na2WO4∙2H2O, Bi(NO3)3∙5H2O, and cetyltrimethylammonium bromide into deionized water;
(ii) add CQDs and stirring for 1 h;
(iii) heat at 120 °C for 24 h.

Degradation of BPA 99.5% [139]

CNF-TiNT (i) mix nanosized TiO2 and PAN to obtain TiO2/PAN;
(ii) carbonization to obtain TiOx/CNFs;
(iii) add TiOx/CNFs to NaOH solution, heat at 150 °C for 24 h.

Oxidation of gaseous
acetaldehy

95.4% [160]

H-TiO2/MG-D (i) sonication: melamine and GO aqueous solution;
(ii) TiO2/MG synthesis: add the mixture of tetrabutyl titanate and absolute ethanol to above solution,
heat at 180 °C for 10 h;
(iii) TiO2/MG-D synthesis: mixed TiO2/MG, hexamethyl tetramine, and dopamine hydrochloride
solution, heat at 90 °C for 3 h, followed by H2 treatment.

Degradation of gaseous
HCHO

92.0% [161]

BWO/GR (i) synthesize BWO through a hydrothermal method;
(ii) mix GR and BWO, stir for 24 h.

Oxidation of NO 59.0% [163]

FGT (i) introduce GO, TiO2 and hydrofluoric acid to ethyl alcohol;
(ii) heat at 180 °C for 24 h.

Reduction of bromate 99.9% [112]

Ag@BiVO4@rGO (i) BiVO4 were synthesized by maintaining the mixture of Bi(NO3)3·H2O, NH4VO3 and CO(NH2)2 at
80 °C for 24 h;
(ii) BiVO4@rGO was synthesized by rGO chemical deposition;
(iii) Ag@BiVO4@rGO was gained by AgNO3 photoreduction.

Reduction of bromate 99.1% [165]

CuS/rGO (i) mix GO and CuSO4·5H2O into deionized water with stir;
(ii) treat at 160 °C with microwave irradiation.

Reduction of Cr(VI) 95.0% [168]

CDs-TiO2 (i) citric acid monohydrate were used as carbon source, NH3∙H2O were used as base, then mixed with
TiO2;
(ii) heat at 160 °C for 4 h.

Reduction of Cr(VI) 99.2% [171]
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photocatalytic activity in the reduction of bromate (Fig. 10) [112].
Bromate, a common inorganic pollutant from the by-products of oxi-
dation process for water purification, has been found to be strongly
carcinogenic [164,165]. The co-doping of GO and F enhanced the
transportation of photogenerated e− and the separation of charge
carriers. In the photocatalytic process, a lower pH was beneficial for
bromate reduction owing to the positive effect on bromate adsorption
on FGT [112].

Like NO and bromate, the existence of heavy metal ions in water
and soil has been known to cause pollution problems. Photoreduction
process is an efficient method to eliminate the toxicity of heavy metal
ions by generating low toxic analogue ions [166]. For example, chro-
mium (Cr), one of the most dangerous heavy metals, mainly consists of
high-toxic Cr(VI) and low-toxic Cr(III) [167]. CNMs-modified compo-
sites show high photocatalytic performance on the removal of Cr(VI)
[168–170].

Recently, a synthesized carbon dots (CDs)-TiO2 nanosheets ex-
hibited high photoactivity in the reduction of Cr(VI) (Fig. 11) [171].
The result of photocatalytic experiment over CDs-TiO2 show that 99.2%
Cr(VI) was reduced after 2 h irradiation [171]. CDs work as electron
reservoir and donor, and they can play a favorable role in improving the
photocatalytic performance by harvesting light and separating charge
carriers.

3.1.4. Photocatalytic disinfection
Bacteria exist almost everywhere. Several kinds of bacteria are

harmful for human, such as Escherichia coli (E. coli), staphylococcus
aureus (S. aureus), Fusarium oxysporum (F. oxysporum), and pneumo-
coccus aeruginosa (P. aeruginosa). These harmful bacteria can enter
human body via eating and breathing, and then cause diseases.
Photocatalysis has been proven to be an efficient method for disinfec-
tion owing to the great oxidation ability [172–174]. Generally, photo-
catalytic disinfection contains two main sequential processes: (i) gen-
eration of reactive oxygen species (ROS) after light irradiation and (ii)
the attack of ROS on bacterial cells. To fully understand the mechanism
of photocatalytic disinfection, it is necessary to first identify the de-
tailed effect of ROS (e.g. singlet oxygen, •O2

−, •OH, and H2O2) on the
disinfection performance of photocatalysts.

Until today, many CNMs-modified photocatalysts have been syn-
thesized and applied in disinfection [175–177]. CNMs in composite
photocatalysts can boost the electron reduction of oxygen to generate
more ROS. For example, rGO in TiO2/rGO composite photocatalyst can
boost the production of H2O2 [178]. Moreover, CNMs can react with
photocatalysts to form chemical bonds to enhance the activity, such as
the formed Ti-O-C and Ti-OH in MnOx quantum dots decorated rGO/
TiO2 [179]. Recently, Zhang et.al [175]. presented a CDs and TiO2 co-
decorated rGO (CTR) ternary composite photocatalyst for E. coli in-
activation (Fig. 12). The result showed that CTR slurry system reached
1.03 log inactivation of E. coli after 60min of light irradiation. CDs play

Fig. 7. (a) TEM image of GR/BWO composite; (b) Photocatalytic mechanism of organics degradation over GR/BWO composite. Reprinted from Ref. [148] with
permission from The Royal Society of Chemistry.

Fig. 8. Preparation of MWCNT-doped TiO2 films and photocatalytic performance of as-prepared samples. Reprinted from Ref. [152] with permission from Springer.
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as both electron acceptor and donor and GR work as a scaffold, also
enhancing the single electron transfer for O2 reduction to form %O2

−.
Besides, Cruz-Ortiz et al. [176] explored the mechanism of photo-
catalytic disinfection using TiO2-GR composite photocatalysts under UV
and visible irradiation. In this study, the generated ROS under light
irradiation were investigated. It was found that H2O2 worked as a
dominant ROS in the inactivation of E. coli under UV light, but singlet
oxygen played a dominant role under visible light [176]. And chloride
was presented to have an effect on the disinfection performance of
photocatalysts. Chloride can react with ROS in photocatalytic process to
form chlorine, which then consume H2O2 to form singlet oxygen [176].
In addition, our previous study found that humic acid might limit the
physical contact between bacterial cells and photocatalysts [177].

In conclusion, CNMs played three important roles in the enhanced
photocatalytic disinfection. Firstly, CNMs worked as a scaffold to avoid
the aggregation of photocatalysts in the CNMs-based composite pho-
tocatalysts. Secondly, conductive CNMs worked as an electron acceptor
or donor to improve the separation of charge carriers and promote
electron reduction of oxygen to form H2O2. Thirdly, chemical bonds
formed between CNMs and photocatalysts can improve the perfor-
mance in photocatalytic disinfection.

3.2. Hydrogen production

Photocatalytic water-splitting technology over CNMs-modified ma-
terials has shown great potential for hydrogen production owing to the
low cost and high sustainability [180–182]. Water-splitting includes
two half reactions: (i) hydrogen evolution reaction and (ii) oxygen
evolution reaction. Photogenerated e− are the main substances in hy-
drogen evolution reaction via reduction process, and CB level of CNMs-
modified photocatalysts should be more negative than hydrogen pro-
duction level. The efficiency of photocatalytic hydrogen production
depends on the quantum conversion of the absorbed light to photo-
generated e- - h+ pairs and the separation efficiency of charge carriers.
The photocatalytic application of CNMs in hydrogen production was
shown in Table 3.

For example, 3D CoSe2-CNT microspheres was presented for hy-
drogen production, and it was prepared via combined spray pyrolysis
and selenization process (Fig. 13) [56]. This CoSe2-CNT composites
showed remarkable catalytic activity with an overpotential of
∼174mV at 10mA cm−2 and excellent durability in an acidic medium.
The backbone of CNTs provided a porous way for the acidic liquid
medium to go through the microspheres. Hence, the contact area of

Fig. 9. (a) Schematic diagram for up converted PL of 0D CQDs modified 2D ultrathin BWO nanosheets heterojunctions; (b) proposed photocatalytic mechanism of
CBW under full spectrum light irradiation. Reprinted from Ref. [139] with permission from Elsevier.

Fig. 10. Photocatalytic reduction of bromate by FGT: (a) cuboid morphologies with (001) and (101) facets; (b) spherical particles. Reprinted from Ref. [112] with
permission from Elsevier.

Fig. 11. Photoreduction process of Cr(VI) over CDs-TiO2 nanosheets. Reprinted from Ref. [171] with permission from Elsevier.
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CoSe2 active sites with the reaction medium was improved, which
leading to the enhancement of the electrocatalytic activity for more
efficient hydrogen evolution.

Additionally, 2D rGO with a suitable reduction degree was utilized
to prepare rGO-BWO photocatalyst for hydrogen production [57]. CB of
rGO, composed of antibonding π* orbitals, is more negative than the
standard redox potential of H2O/H2. Therefore, efficient H2 production
over rGO-BWO was contributed to the more negative reduction po-
tential caused by the introduction of rGO. And in the process of H2

generation, lactic acid was added as a sacrificial reagent into aqueous
methanol solution to promote the photocatalytic performance. More-
over, photocatalytic process over rGO-BWO can also be used for O2

generation with adding Fe3+ ions as electron acceptor. EVB of rGO-BWO
is more positive than the standard redox potential of O2−/O2, which
ensures the conversion of H2O to O2. The higher O2 production was
ascribed to the strong chemical bonding between rGO and BWO, which
promoted the electron collection, transportation and the separation of
photoinduced charge carriers (Fig. 14). Very recently, Marcelo et.al.
[183] explored the photo-proton effect of GR, and did an experiment of
shining a light on GR decorated with Pt, which revealed high perfor-
mance on hydrogen production. Liu et.al [184]. reported that an syn-
thesized MoS2QDs@ZnIn2S4@RGO showed high photocatalytic

performance on hydrogen production with simultaneous water pur-
ification.

Emerging 0D CQDs has also been used to enhance the photocatalytic
performance in hydrogen production [185–188]. For example, CQDs/
MoS2 (Fig. 15) prepared through hydrothermal process showed high
reduction activity for hydrogen evolution under visible light irradiation
[189]. CQDs modified on the surface of MoS2 makes the electrocatalytic
activity more efficient with an overpotential of ∼0.125 V at 10mA
cm−2 and show good stability in sulphuric acid. The enhanced per-
formance is ascribed to the high charge transfer efficiency caused by the
introduction of CQDs, and the decrease of S4+ and the increase of
disulfides S22- and apical S2- [185]. Disulfides S22- and apical S2- are the
active sites for hydrogen evolution reduction after visible light irra-
diation [185]. The preparation of this CQDs/MoS2 composite provides a
potential alternative approach for the design of cost-efficient electro-
catalysts with enhanced catalytic performance, instead of introducing
other heteroatom doped carbons.

Besides, CNMs-modified photocatalysts prepared with designed
structure were reported to be efficient for hydrogen production, like
hierarchical core-shell CNF@ZnIn2S4 (Fig. 16) [190]. ZnIn2S4, a metal
sulfide, has been widely studied owing to the suitable band gap and
visible-light driven photocatalytic functions. In CNF@ZnIn2S4, CNF

Fig. 12. Synthesis of CTR nanocomposite and application in photocatalytic disinfection. Reprinted from Ref. [175] with permission from Elsevier.

Table 3
Photocatalytic application of CNMs in hydrogen production.

Materials Preparation process Clean-energy Ref

CoSe2-CNT (i) dry droplet formed by Co(NO3)2•6H2O, CNTs and polystyrene nanobeads;
(ii) decomposition, partial reduction, then selenization.

Hydrogen [56]

TiO2@MWCNTs (i) mix MWCNTs ethanol solution and TiCl4 ethanol solution;
(ii) heat at 150 °C for 3 h, and calcine at 600 °C for 5 h.

Hydrogen [147]

MWCNT-doped TiO2 (i) synthesize from two-step sol-gel routes: alcoholic and aqueous;
(ii) deposited by dip-coating on glass.

Hydrogen [152]

GR-BWO (i) dissolve Bi(NO3)3∙5H2O in 6.5% HNO3 solution and then add GO;
(ii) add (NH4)10W12O14 solution, adjust pH to 7 and stir at 50 °C for 2 h;
(iii) 3 h of sonication with a high-intensity ultrasonic probe.

H2 and O2 [57]

MoS2QDs@ZnIn2S4@RGO (i) disperse GO in mixed dimethylformamide and ethylene glycol;
(ii) add thioacetamide, InCl3·4H2O and Zn(Ac)2·2H2O;
(iii) heat at 180 °C for 12 h.

Hydrogen [184]

CQDs/MoS2 (i) synthesize CQDs via an electrochemical etching method;
(ii) add CQDs to Na2MoO4 and L-cysteine mixed water solution;
(iii) heat to 180 °C and maintain for 24 h.

H2 and O2 [189]

CNF@ZnIn2S4 (i) synthesize CNFs through an electrospinning apparatus;
(ii) add glycerol, In(NO3)3·4.5H2O, Zn(AC)2·6H2O, and L-cysteine hydrochloride monohydrate into CNFs ethanol solution;
(iv) heat to 180 °C and maintain for 24 h.

Hydrogen [190]
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acted as the electron acceptor that transported the photogenerated
electrons in CB of ZnIn2S4 along the cylindrical nanostructure. The
hierarchical core-shell configuration structure was beneficial for the
formation of an intimate contact between CNF core and ZnIn2S4 sheets,
which accelerated the interfacial charge transfer of ZnIn2S4. And to
ensure the efficiency of charge transfer and the separation of photo-
excited electron-hole pairs, sacrificial reagent was added to comple-
ment the electrons to combine with the holes in VB of ZnIn2S4. CNF
content has an impact on the photocatalytic performance, and the op-
timum content is located at 15 wt % [190]. Low CNF content will lead
to the formation of ZnIn2S4 microspheres separated from CNF, while
high content will hinder the generation of photoinduced electrons and
holes on ZnIn2S4.

4. Limitation on wider application of CNMs

(i) The first limitation for wider industrial application of CNMs is
the high cost of CNMs. Though the market price of CNMs is coming
down all the time, it is still too expensive to be applied in industry
(Table 4). To bring the price down, cheaper selective preparation for

high quality CNMs is needed.
(ii) For environmental pollutant treatment over CNMs-modified

photocatalysts, many studies focused on single pollutant or confined to
aqueous pollutants [131,144,147,184]. However, there are numerous
pollutants containing organics, heavy metal ions, inorganic salt ions
and so on not only in water but also in air and soil environment.
Therefore, to achieve efficient treatment on actual pollutions, further
exploration on more efficient treatments for more complex water ma-
trix and even whole environment matrix over CNMs-modified photo-
catalysts is required.

(iii) As for hydrogen production, there are also some challenges in
practical operations. One main barrier for practical application is the
difficulty in H2 separation when H2 and O2 generated simultaneously
from photocatalytic water splitting. Though the separation can be
achieved by adding h+ scavenger or O2 trapping agent, the cost of the
whole process would increase greatly [191]. Besides, today's reactors
for hydrogen evolution are small and the yield fall far short of the
needed quantity [192,193]. Therefore, to develop a large-scale hy-
drogen production process is the other challenge.

Fig. 13. Proposed mechanism of CoSe2-CNT composite microspheres through spray pyrolysis process and one-step post treatment. Reprinted from Ref. [56] with
permission from Wiley.

Fig. 14. Proposed mechanism of the photocatalytic activity of GR-BWO composite. Reprinted from Ref. [57] with permission from The Royal Society of Chemistry.
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5. Summary and outlook

The importance of efficient pollutant treatment and hydrogen pro-
duction is evident from the aggravation of environmental and energy
crisis in "green" 21st century. Photocatalytic process over CNMs-mod-
ified photocatalysts is a highly-effective solution for the crisis owing to
the remarkable morphological, mechanical, electrical and optical
properties. Notably, CNMs show size- and structure-dependent prop-
erties in photocatalytic process. For example, C60 has been used in
photocatalytic process more frequently than other higher fullerenes
because of the smallest size, GR shows better performance in

Fig. 15. Characterization of the CQDs/MoS2 composite: (a) Low magnification TEM image; (b) High magnification TEM image; (c) High resolution of TEM image; (d)
SEM image. Reprinted from Ref. [189] with permission from Elsevier.

Fig. 16. (a) Formation process of the hierarchical core− shell CNFs@ZnIn2S4 composites; (b) proposed photocatalytic mechanism of hydrogen evolution over the
hierarchical core shell CNFs@ZnIn2S4 composites. Reprinted from Ref. [190] with permission from American Chemical Society.

Table 4
Cost of several CNMs searched in CheapTubes.com (USA).

CNMs Price (US/$ g−1)

Fullerene C60 (99.9%) 225.00
Carbon fullerene C60 35.00
SWCNT >24.48
WMCNT >0.6
GR >2.5
rGO 400.00
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photocatalytic system comparing with 0D fullerene and 1D CNT owing
to the 2D structure, and GR or CNT can contribute to constructing firm
network structures with superior integrated performance due to the
anisotropic structures. To date, many efforts have been made to take
advantage of these unique size- and structure-dependent properties of
CNMs. But researches on the optimization of structure-dependent
properties are still in their infancy. A further exploration on the accu-
rate relationship between structure and property need to be addressed.
Besides, the selective preparation for desired structure and morphology
in a sustainable and reversible way is a significant challenge for CNMs.
Reducing costs, emissions and improving security of supply are sup-
posed to be taken into account while locating the "sustainable energy
trilemma" during the preparation process.

Therefore, in this review, we firstly summarize selective preparation
of CNMs that has a great impact on their photocatalytic performance.
Then we provide an updated outline of advanced photocatalytic ap-
plication of CNMs in addressing both environmental pollution and hy-
drogen energy crisis. The difference in the role of various CNMs play in
the enhancement of photocatalytic performance is also discussed.
Lastly, we discuss the limitations of CNMs applied in photocatalysis or
even wider fields.

CNMs-modified photocatalysts with different nanostructures ran-
ging from 1D to 3D structures can been prepared through various
methods, such as electrospinning, sol-gel process, deposition process,
hydro- or solvo-thermal process, and sonochemical process. The opti-
mization of operational parameters is significant for the preparation of
CNMs-modified photocatalysts with revealing desirable charge carrier
transport in photocatalytic process. Moreover, introduction of CNMs
can enhance the photocatalytic performance owing to the enhanced
absorption capability in light and efficient transport of photogenerated
electrons. Commonly, CNMs act as absorbent, photostabilizer, co-cat-
alyst, and photosensitizer. Besides, CNMs can play as can play as a
template [194], surfactant or powerful plasmonic material [195],
structure-directing and morphology-controlling agent [196], and even
hole-extraction layers for the preparation of photocatalytic materials
[197–199]. To maximize the effect of CNMs in improving the photo-
catalytic performance, all these functions are supposed to be studied at
length, and other possible roles of CNMs playing in the composite
photocatalysts are needed to be further explored. On the other hand,
the exploration and optimization of synthesis process for large-scale
high-quality CNMs-modified photocatalysts should proceed simulta-
neously. And greater efforts ought to be made in the combination of
theoretical calculation and experimental evidence to investigate un-
clear mechanism for enhanced photoactivity of CNMs-modified mate-
rials. These mentioned aspects are critical factors for improving the
photoactivity of CNMs-modified composites. We hope this review can
promote the more objective understanding on the analogy, and
strengthen the efforts towards the advanced photocatalytic application
of these CNMs (including fullerenes, CQDs, CNFs, CNTs, and GR) in
energy and environmental field.
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