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In this research the combination of neutralization activation and acid activation processes was employed to
improve the physicochemical characters of red mud. In order to better understand the phosphate adsorption
behaviors and further improve the phosphate adsorption performance of acid-activated neutralized red mud
(AaN-RM), for the first time the impact of operational parameters on phosphate adsorption onto AaN-RM was
systematically investigated, and back propagation artificial neural network (ANN) modeling was conducted.
The results demonstrated that phosphate adsorption capacity of AaN-RMdecreasedwith the enhancement of ad-
sorbent dosage and the concentration of the competing ion (carbonate), while it increased with the increase of
initial phosphate concentration and contact time. The optimal adsorption temperature and initial solution pH
for phosphate adsorption onto AaN-RM were 50 °C and 4.0, respectively. Moreover, a 6-10-1 feed forward
ANN structure with trainlm algorithm was successfully constructed for predicting the phosphate removal by
AaN-RM. The RMSE and R2 values for two subsets (training and validation subset, and testing subset) were
3.06 and 2.61, and 0.9932 and 0.9969, respectively. Furthermore, the importance analysis showed that contact
time and initial phosphate concentration were the most influential parameters on phosphate removal by AaN-
RM, the importance of which reached 24.64% and 22.16%, respectively.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Phosphorus is a non-renewable macronutrient for the growth of
plants and other organisms in the ecosystem [1]. However, the exces-
sive discharge of phosphorus into water bodies may cause detrimental
eutrophication, which not only seriously destroy the biodiversity but
also threaten the drinking water safety [2]. Therefore, it is necessary to
explore effective methods to remove and recover phosphate from
municipal and industrial wastewater. Compared with other available
technologies, the adsorption method has incomparable advantages
due to its inexpensiveness, simplicity of design, ease of operation, and
insensitivity to toxic pollutants [3]. Various natural minerals, industrial
by-products and synthetic adsorbents have been used in phosphate
adsorption systems [4]. Among these available materials, red mud is
considered to be a promising alternative [5,6].
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Redmud, awaste tailing generated from the aluminaproducing pro-
cess, is a hazardous solid waste because of its highly alkaline nature [7].
There are three processes commercially applied for alumina refining, in-
cluding the sintering process, the Bayer process, and the combination
process (Bayer-sintering) [8]. Among them, the Bayer process is a key
method used in producing quality alumina worldwide. It was reported
that about 90% of bauxite is processed by Bayer technology [9]. Corre-
spondingly, managing the rapidly expanding Bayer red mud, a hazard-
ous solid waste generated in alumina refining from bauxite with Bayer
technology, has become more and more important. Up to date, Bayer
red mud has got a variety of applications such as adsorbents, catalysts
and coagulants [10], and the application of modified red mud in waste-
water treatment has become an emerging and promising research
field [11–13]. However, most works only employed single activation
technology such as acid activation or heat activation to improve the
physicochemical characters of red mud [14–15]. Our previous study
demonstrated that the combination of neutralization activation and
acid activation technologies effectively improved the phosphate ad-
sorption capacity of red mud [16]. In order to better understand the
phosphate adsorption behaviors and further improve the phosphate
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Table 2
ANN training parameters.

Parameter Value

Maximum number of epochs 1000
Learning rate 0.1
Momentum constant 0.5
Error goal 0.0001
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adsorption performance of acid-activated neutralized red mud (AaN-
RM), the effects of different operational parameters should be systemat-
ically investigated.

Nowadays, the application of artificial neural network (ANN) for
mapping, regression, modeling, clustering, classification and multivari-
ate data analysis has attracted increasing attention [17,18]. The ANN is
a multivariate statistics technique which is commonly used to describe
a variety of mathematical objects and processes [19]. The main advan-
tages of ANN include nonlinearity, allowing better fit to the data;
noise insensitivity, providing accurate prediction in the presence of un-
certain data and measurement errors; high parallelism, which implies
fast processing and hardware failure tolerance; learning and adaptabil-
ity, allowing the system to update (modify) its internal structure in re-
sponse to changing environment and generalization [20]. Feed forward
back propagation network is the most widely used ANN architecture,
which is suitable for modeling thewhole phosphate adsorption process
and evaluating the importance of different operational parameters [21,
22].

Therefore, the aims of this study were: (1) investigating the effects
of different operational parameters on phosphate adsorption onto
AaN-RM; (2) evaluating the potential of back propagation artificial
neural network for modeling the phosphate adsorption performance
of AaN-RM with different training algorithms; (3) quantifying the im-
portance of different operational parameters on the phosphate adsorp-
tion process.
2. Materials and methods

2.1. Materials

The Bayer red mud was provided by Shandong Aluminum Industry
Corporation (Zibo, China), and the preparation method of AaN-RM can
be found in [16]. The phosphate and carbonate solutions were prepared
by potassium dihydrogen phosphate and sodium carbonate, respectively.
All chemicals were of analytical grade (Merck Co., Germany).
2.2. Characterization of AaN-RM

The surface micro-morphology of AaN-RM was analyzed with
electron dispersive X-ray analysis (Oxford X-Max, Oxford Instruments,
UK), which was coupled with an electronic detector (LEO 1530, LEO,
Germany). With N2 adsorption/desorption isotherms at 77 K, the
Brunauer–Emmett–Teller (BET) surface area and total pore volume of
the samples were determined (ASAP 2020 V3.04 H, Micromeritics,
USA). The chemical composition of AaN-RM was determined by X-ray
fluorescence spectrometer (S4 Explorer, Bruker, Germany). The XRD
patterns of AaN-RM were detected using an X-ray diffractometer
(XRD-6000, Shimadzu, Japan) with Cu Kα radiation at 40 kV and
30 mA, and recorded in a 2θ range of 10–70° at a scan speed range of
0.02°/s. The point of zero charge (pHpzc) of AaN-RM was estimated by
batch equilibrium techniques described by Chutia et al. [23].
Table 1
Choice of operational parameters for optimization and ANN analysis.

ANN structure Operational parameters Range

Input parameters

Adsorbent dosage (mg/g) 0.3–0.8
Initial solution pH 2.0–6.0
Adsorption temperature (°C) 20–70
Initial phosphate concentration (mg/L) 20–200
Contact time (min) 0–20
Competing ion (carbonate) (mg/L) 0–206.8

Output parameters Phosphate adsorption capacity (mg/g) 31.34–192.62
Total number of data points 33
2.3. Adsorption studies

A series of phosphate solutions with different pH values were
prepared with 1 mol/L and 0.1 mol/L HCl or NaOH solution. As shown
in Table 1, the influences of different operational parameters on the
phosphate adsorption performance of AaN-RM were investigated
in beaker flasks. The parameters included adsorbent dosage, initial
solution pH, adsorption temperature, initial phosphate concentration,
contact time and competing ion. The beaker flasks were shaken at
100 rmp for 20 min. The samples were taken at predetermined time in-
tervals, centrifuged at 3000 rmp for 1 min, and then the supernatant
was taken to analyze the phosphate concentration.

The phosphate adsorbed by per unit of adsorbent was calculated by
Eq. (1):

q ¼ Ci � C f
� �

∙V
m

ð1Þ

where q is the phosphate adsorption capacity per unit of AaN-RM (mg/
g, as PO4

3−), Ci and Cf are the initial and final phosphate concentration
(mg/L), respectively, V is the solution volume (L), and m is the mass of
adsorbent (g).

The pH valuewasmeasured with a multimeter (model Multiline P4,
WTW, Germany). The phosphate concentrationwas determined via the
spectrophotometric method DIN-EN-ISO-15681-1 with a QuikChem
8500 flow injection analysis system (Lachat Instruments, USA). All
experiments were conducted in triplicate and the average values were
used for data analysis.

2.4. ANN modeling

In this research a three-layer feed-forward neural network with
back propagation learning was constructed for the modeling of phos-
phate adsorption onto AaN-RM with MATLAB 10.0. A tangent sigmoid
transfer function (tansig) at the hidden layer and a linear transfer
function (purelin) at the output layer were selected. Meanwhile, three
kinds of training algorithms including training BFGS quasi-Newton
Fig. 1. SEM image of AaN-RM.



Fig. 3. Effect of adsorbent dosage on phosphate adsorption performance of AaN-RM
(adsorption temperature: 20 °C; initial solution pH: 7.0; initial phosphate concentration:
200 mg/L; contact time: 20 min).Fig. 2. XRD patterns of AaN-RM.
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backpropagation algorithm (trainbfg), scaled conjugate gradient algo-
rithm (trainscg) and Levenberg–Marquardt algorithm (trainlm) were
implemented. The optimum ANN training parameters for three differ-
ent training algorithms were shown in Table 2. As shown in Table 1,
six parameters including adsorbent dosage, initial solution pH, adsorp-
tion temperature, initial phosphate concentration, contact time and
competing ion were chosen as input layers.

The results were expressed in one neuron as phosphate adsorption
capacity in the output layer. All the experimental data were normalized
in the range of 0–1. Data (xi) are converted to normalized value (xnormal)
as follows [24]:

xnormal ¼
0:8 xi � xminð Þ
xmax � xmin

þ 0:1 ð2Þ

where xmax and xmin are the maximum and minimum actual experi-
mental data, respectively.

The performance of ANN with different algorithms was determined
based on the values of root mean squared error (RMSE) and coefficient
of determination (R2). They were respectively calculated by Eqs. (3, 4)
[25]:

RMSE ¼ 1
n
∑
n

i¼1
yi � ydið Þ2

� �1=2

ð3Þ

R2 ¼
Xn

i¼1
ydi−ydi 0
� �

yi−yi 0
� �� �2

Xn

i¼1
ydi−ydi 0
� �2 yi−yi 0

� ��2 ð4Þ

where the symbol ′ represents the average of related values, n is the
number of points, yi is the predicted value and ydi is themeasured value.
Table 3
Chemical composition of AaN-RM.

Constituent Fe2O3 Al2O3 SiO2 TiO2 Na2O

(wt.%) 33.88 30.96 15.52 14.69 3.83
The importance of each input variable in the ANN model in this
study was calculated by Eq. (5) [26]:

Ii ¼
Xnh

j¼1
ABS wji

� �
Xnv

k¼1

Xnh
j¼1

ABS wji
� �� �

k

ð5Þ

where nh is the number of hidden nodes, nv is the number of input
variables, wji is the connection weight from the ith input node to the
jth hidden node, and ABS denotes the absolute value of function.

3. Results and discussion

3.1. Characterization of the adsorbents

The SEM image of AaN-RM is shown in Fig. 1, which clearly revealed
the rough and porous surface of AaN-RM. With BET N2 adsorption–
desorption analysis, it was found that the BET surface area and total
pore volume of AaN-RM reached 80.63 m2/g and 0.064 cm3/g, respec-
tively. X-ray diffraction patterns of AaN-RM in Fig. 2 presented specific
chemical composition diffraction peaks at different 2θ (°), indicating the
presence of ferric chloride hydrate (FeCl3·2H2O), gibbsite (Al(OH)3),
anatase (TiO2) and quartz (SiO2). The chemical composition of AaN-
RM is listed in Table 3, which showed that Fe and Al oxides were the
main components.

3.2. Effect of operational parameters on phosphate adsorption performance
of AaN-RM

3.2.1. Effect of adsorbent dosage
Adsorbent dosage could influence the phosphate removal from

aqueous solutions. An increase in the adsorbent dosage could result in
more reactive sites, which in turn improves the removal efficiency
[27]. However, it should be pointed out that the increasing adsorbent
dosage for a given amount of adsorbates would lead to unsaturation of
adsorption sites, and then result in the decrease of adsorption capacity.
CaO Cr2O3 MgO K2O MnO NiO CuO

0.54 0.22 0.17 0.10 0.06 0.02 0.01



Fig. 6. The effect of initial phosphate concentration and contact time on phosphate
adsorption performance of AaN-RM (adsorbent dosage: 0.5 g/L; adsorption
temperature: 50 °C; initial solution pH: 4.0).

Fig. 4. Effect of adsorption temperature on phosphate adsorption performance of AaN-RM
(adsorbent dosage: 0.5 g/L; initial solution pH: 7.0; initial phosphate concentration:
200 mg/L; contact time: 20 min).
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This would influence the cost and practicability of the adsorption sys-
tem [28]. The influence of adsorbent dosage on phosphate adsorption
capacity of AaN-RM is shown in Fig. 3. When the adsorbent dosage
increased from 0.3 g/L to 0.8 g/L, the phosphate adsorption capacity of
AaN-RM decreased from 121.56 mg/g to 99.75 mg/g, which demon-
strated that phosphate adsorption capacity had negative correlation
with adsorbent dosage. Babatunde et al. [29] found a similar conclusion,
and attributed the main results to the increase of collision probability
between different adsorbent particles with increasing adsorbent dos-
age. It reduced the efficient utilization of functional groups on adsorbent
surface, and then influenced the adsorption performance.

3.2.2. Effect of adsorption temperature
Fig. 4 shows the phosphate adsorption capacity of AaN-RM as a

function of different adsorption temperatures. It was found that the
phosphate adsorption capacity of AaN-RM increased with the increase
of adsorption temperature. However, when adsorption temperature
was higher than 50 °C, the phosphate adsorption capacity of AaN-RM
decreased slightly. This might be because the stability of AaN-RM
was influenced by the higher temperature, which would further result
in the decrease of phosphate adsorption capacity. The influence of
Fig. 5. Effect of initial solution pH on phosphate adsorption performance of AaN-RM
(adsorbent dosage: 0.5 g/L; adsorption temperature: 50 °C; initial phosphate
concentration: 200 mg/L; contact time: 20 min).
adsorption temperature on the performances of various adsorbents
was different. Liu et al. [30] found that adsorption temperature showed
positive influence on the phosphate adsorption capacity of lanthanum-
doped activated carbon fiber within the temperature range of 20–50 °C.
Yang et al. [31] also demonstrated that the phosphate adsorption pro-
cess by lake sediments amended with zirconium-modified zeolites
was favored at higher reaction temperature. However, Riebe et al. [32]
illustrated that with an adsorption temperature of 20–60 °C, the iodide
adsorption performance of organo-clay minerals decreased slightly
with increasing temperature. This phenomenon could be explained by
the thermodynamic and entropic effects of different adsorption pro-
cesses [33].

3.2.3. Effect of initial solution pH
Initial solution pH could significantly influence the phosphate ad-

sorption capacity of AaN-RM. As shown in Fig. 5, with the increase of so-
lution pH, the phosphate adsorption capacity of AaN-RM increased
firstly, and then decreased.When pHwas 4.0, themaximum phosphate
adsorption capacity of AaN-RM reached 192.62mg/g. It is similar to that
reported for the chromium (VI), arsenic (III) and arsenic (V) adsorption
from an aqueous solution onto the activated redmud [34,35]. The point
of zero charge (pHpzc) for AaN-RM was about 5.9. When pH value
Fig. 7. Effect of competing ion (carbonate) on phosphate adsorption performance of AaN-
RM (dosage: 0.5 g/L; adsorption temperature: 50 °C; initial solution pH: 8.0; contact time:
20 min).



Table 4
The performance of ANN with different training algorithms.

Training algorithms Data category Date sample RMSE R2

Trainbfg Training and validation 25 19.86 0.8134
Testing 8 17.10 0.9170

Trainscg Training and validation 25 19.36 0.8264
Testing 8 18.90 0.8369

Trainlm Training and validation 25 3.06 0.9932
Testing 8 2.61 0.9969

Fig. 8. Rootmean square error (RMSE) for the different number of hiddenneurons inANN.
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was lower than pHpzc, the surface of AaN-RMwas protonated, which ef-
fectively facilitated electrostatic attraction between the positive
charged surface group and phosphate. However, if pH was too low,
phosphoric acid (H3PO4) was the main existence form, which was not
as active as H2PO4

− and HPO4
2− to the adsorption sites, and then the

phosphate adsorption performance would be restricted [36].
3.2.4. Effect of initial phosphate concentration and contact time
The effect of initial phosphate concentration and contact time on the

phosphate adsorption capacity of AaN-RM is shown in Fig. 6. The results
demonstrated that the phosphate adsorption capacity of AaN-RM
increased dramatically from 31.34 mg/g to 192.62 mg/g with an in-
crease in initial phosphate concentration from 20 mg/L to 200 mg/L. A
higher concentration gradient acting as a driving force overcame the
mass transfer resistance between the solution and adsorbent surface
[30]. Meanwhile, as shown in Fig. 6, with different initial phosphate
concentrations, the phosphate adsorption process always occurred
very rapidly firstly, and then followed a slow process until adsorption
equilibrium. When initial phosphate concentrations were 20, 50, 100
and 200mg/L, the phosphate adsorption capacity of AaN-RM accounted
for 86.60%, 91.01%, 88.57% and 91.63% of the total phosphate adsorption
capacity within 5 min, respectively. This could be explained by the rea-
son that the sufficient adsorption sites on the AaN-RM surface and the
Fig. 9. Schematic representation of a (6-10-1) ANN (with six neurons in the inpu
available driving force for mass transfer were provided at the initial
stage of adsorption [37].

3.2.5. Effect of competing ion
A variety of different anions in natural environments could affect the

phosphate adsorption capacity of the adsorbent [38]. It has been report-
ed that the phosphate adsorption capacity of ammonium-functionalized
mobil composite material no. 48 increased slightly in the presence
of carbonate ion [39], whereas some researchers reported that the
coexisting anions had an adverse effect on phosphorus adsorption of
various adsorbents [40]. In our preliminary experiments, carbonate rela-
tively significantly influenced the phosphate adsorption onto AaN-RM,
so it was chosen as the competing ion.

As shown in Fig. 7, carbonate presenting in phosphate solution had a
negative effect on the adsorption process. The phosphate adsorption
capacity of AaN-RMdecreasedwith the increasing carbonate concentra-
tion. When initial carbonate concentration was 206.80 mg/L, the phos-
phate adsorption capacity decreased by 40.85% compared with that
without the existence of carbonate. This is because carbonate occupied
the effective adsorption sites on the AaN-RM surface, and increased
electrostatic repulsion between the functional group and phosphate,
leading to the decrease in phosphate adsorption capacity.

3.3. ANN modeling

The data sets of 33 samples were randomly divided into two
groups: training and validation subset (25 samples), and testing subset
(8 samples). The number of hidden neurons is crucial in ANNmodeling,
because toomany neuronswill result in over-fitting, however, a smaller
number of neuronsmay not capture the information adequately [41]. In
this paper, the performance of an artificial neural network with varying
number of neurons (4–13) in the hidden layer with trainlm algorithm
t layer, ten neurons in the hidden layer and one neuron in the output layer).
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was investigated, and the root mean square error (RMSE) values for the
two subsets are shown in Fig. 8. Theminimum values of RMSEwere ob-
tained when the number of hidden neurons in the hidden layer was 10.
Therefore, a 6-10-1 feed forward ANN structure was proposed in this
study (Fig. 9).
Fig. 10. Comparison between experimental and calculated values of the adsorption
capacity using ANN with different algorithms (a: trainbfg algorithm; b: trainscg
algorithm; c: trainlm algorithm).
Table 4 shows the performance of ANN with different training algo-
rithms. It was found that the trainlm algorithm presented the best solu-
tion for the ANN structure of 6-10-1 compared with the trainbfg and
trainscg algorithms. In the ANN structure with trainlm algorithm, the
RMSE and R2 values for two subsets were 3.06 and 2.61, and 0.9932
and 0.9969, respectively. Fig. 10 illustrated the high correlation between
the experimental and predicted values of phosphate adsorption capaci-
ty, which apparently confirmed the applicability of ANNwith trainlm al-
gorithm to predict the phosphate adsorption performance by AaN-RM.

The importance of each input parameter in the ANN model with
trainlm algorithm, which was calculated using Eq. (5), is illustrated in
Fig. 11. Among these parameters, contact time and initial phosphate
concentration were the most influential parameters on phosphate ad-
sorption by AaN-RM, the importance of which reached 24.64% and
22.16%, respectively. The other parameters also had significant effects
on the adsorption process.
4. Conclusions

■ The phosphate adsorption capacity of AaN-RM decreased with the
enhancement of adsorbent dosage, while it increased with the in-
crease of initial phosphate concentration and contact time. The opti-
mal adsorption temperature and initial solution pH for phosphate
adsorption onto AaN-RM were 50 °C and 4.0, respectively. Mean-
while, carbonate as the competing ion could greatly increase electro-
static repulsion between the functional group and phosphate,
leading to the decrease in phosphate adsorption capacity.

■ A 6-10-1 feed forward ANN structure with trainlm algorithm pre-
sented the best performance for predicting the phosphate removal
by AaN-RM. The RMSE and R2 values for two subsets (training and
validation subset, and testing subset) were 3.06 and 2.61, and
0.9932 and 0.9969, respectively.

■ The contact time and initial phosphate concentration were themost
influential parameters on phosphate removal by AaN-RM according
to the importance of different operational parameters in the ANN
model with trainlm algorithm, and the importance of which reached
24.64% and 22.16%, respectively.
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