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Abstract 

The objective of this study is to summarize the effects of surfactants on anaerobic 

digestion of waste activated sludge. The increasing amount of waste activated sludge 

has caused serious environmental problems. Anaerobic digestion (AD), as the main 

treatment for waste activated sludge containing three stages (i.e., hydrolysis, 

acidogenesis and methanogenesis), has been widely investigated. Surfactant addition 

has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic 

substance, can enhance the efficiency of hydrolysis by separating large sludge and 

releasing the encapsulated hydrolase, providing more substance for subsequent

acidogenesis. Afterwards, the short chain fatty acids (SCFA), as the major product, have 

been produced. Previous investigations revealed that surfactant could affect the

transformation of SCFA. They changed the types of acidification products by 

promoting changes in microbial activity and in the ratio of carbon to nitrogen (C/N),

especially the ratio of acetic and propionic acid, which were applied for either the 

removal of nutrient or the production of polyhydroxyalkanoate (PHA). In addition, the 

activity of microorganisms can be affected by surfactant, which mainly leads to the 

activity changes of methanogens. Besides, the solubilization of surfactant will promote 

the solubility of contaminants in sludge, such as organic contaminants and heavy metals,

by increasing the bioavailability or desorbing of the sludge
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1. Introduction

Nowadays, more and more contaminants existing in water need to be 

remediated adequately. One of the most widely used means for 

contaminant removal is activated sludge process [1]. As a kind of 

biological wastewater treatment, large amounts of waste activated sludge

(WAS) are produced in wastewater treatment [2]. The amount of WAS 

increases with the quantitative dilatation of municipal and industrial 

wastewater [3]. The increasing quantity of WAS has become an

environmental problem which needs to be solved urgently [4]. For example, 

the quantity of WAS in China is expected to increase to 34 million tons (at 

a moisture content of 80%) in 2018, and more than 75% would be handled

insecurely [5]. Therefore, an efficient sludge treatment technique is

strongly desired for WAS treatment [6], converting the easily

biodegradable organic matters into relatively stable substances, and 

keeping the residues below the standard values [7-9].

To solve the problems of sludge over quantification, many techniques 

have been used. In developed countries, concentration and anaerobic 

digestion are the most common methods for WAS treatment. The

corresponding cost for WAS treatment accounts for 60% of the total 

running cost of wastewater treatment plants (WWTPs) [10], which 

suggests that the method of concentration and anaerobic digestion cannot

be widely accepted. Other methods such as landfill and ocean dumping 
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technology, due to their negative impacts on the environment-spread of 

toxic substances in soil and low-cost utilization of land, are being used 

rarely [10]. Currently, the re-utilization of sludge resources is generally

expected [11, 12]. Anaerobic digestion, a method consisting of three stages, 

i.e., hydrolysis, acidogenesis and methanogenesis, has been widely applied 

for sludge stabilization. Pollution control and energy recovery can be 

fulfilled at the same time, which is one of the advantages of anaerobic 

digestion [13]. In addition, stabilizing organic matters of the sludge and 

hindering the harmful chemicals into environment can be achieved

concurrently [4]. Moreover, getting biogas or short chain fatty acids from 

this process can also be achieved [8, 14]. The main component of the 

biogas is methane which can be used as the resource, and SCFA can be 

applied to generate polyhydroxyalkanoates or used as a preferable carbon 

source to remove nutrient during wastewater treatment [15, 16]. The 

characteristics including production of renewable sources, concepts of 

integrated biorefining and advanced waste treatment, will make it possible 

for anaerobic digestion to be widely used in the future [17]. Therefore,

more and more researchers have studied to improve the efficiency of 

anaerobic digestion [18]. However, the disadvantages of long reaction 

period and low efficiency limit its development.

Surfactant, possessing both hydrophobic groups and hydrophilic 

groups, is now widely studied and used [19, 20]. The classification of 
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surfactants is generally divided into chemical surfactants (CSF) and 

biological surfactants (BSF); or divided into cationic, anionic, nonionic, 

and zwitterionic surfactants [21, 22]. The chemical surfactants, for instance,

sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), 

linear alkylbenzene sulphonates (LAS), and Triton X-100 etc., are widely 

used in practical applications [23]. However, CSFs are commonly toxic to 

the environment and easily accumulated in the environment [24]. BSFs,

such as rhamnolipid (RL), saponin (SP), surfactin (SF) and glycolipid, 

have advantages such as biodegradability, efficiency at harsh temperature 

or pH, and lower toxicity compared to the chemical counterparts [14, 25].

Surfactant can be adsorbed on the interface, reduce surface tension, or form 

micelles. The insoluble substance gets into the micelles and enhances its

solubility [26-28].

In process of anaerobic digestion, surfactant can enhance solubility of 

organic matter in the sludge in order to improve the efficiency of hydrolysis 

and remediation [29, 30]. Different surfactants can lead to different 

amounts of acetic and propionic acid (short chain fatty acids), and can also 

affect the growth of polyphosphate accumulating organisms (PAO),

glycogen accumulating organisms (GAO) and methanogens. In addition,

surfactant can influence some characteristics of the sludge. For example,

surfactant can change the pH and the structure of the sludge component 

such as proteins and carbohydrates. Moreover, surfactant can alter sludge 
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floc diameter which is closely related to anaerobic digestion of sludge [31, 

32]. Furthermore, surfactants also have a good performance in the removal 

of pollutants during the anaerobic digestion process [33]. Two kinds of 

organic pollutions are discussed generally in the sludge-organic pollution, 

hydrophobic organic compounds and heavy metal pollutants [34]. It is 

concluded that the removal mechanisms about organic contaminants by 

surfactant can be summed up into three aspects: emulsification of liquid 

pollutant, micellar solubilisation, and facilitated transport. All mechanisms 

are designed to increase microbial contact with pollutants and improve the 

efficiency of microbial treatment [27]. In order to promote the removal of 

metal ions from the sludge, surfactant may act in two ways, i.e., ion 

exchange and complexing with metal ions [24].

Recently, some investigations have found the advances in utilization 

of surfactants during the dewatering of sludge. But the process of anaerobic 

digestion has been neglected, which will be summaried in this article. The 

surfactants can work in two aspects: improving anaerobic digestion

effciency and enhancing removal of contaminants, which will be discussed 

in this paper. In addition, this review expounds the theory direction and 

future prospect.

2. Influence of surfactants on properties of WAS

2.1 Effect on physicochemical properties

In the process of anaerobic digestion, pH value is a significant impact 
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factor, and its effect runs through the whole anaerobic digestion process. 

At pH 6.5-7.2, the process of methane production is optimized; while at 

pH 4.0-8.5, it is optimized for fermentative process [8]. Different pH values 

also have different influences on acidification process. When pH is higher

than 8, the products obtained in the process of acidification are gradually 

shifted from acetic and butyric acids to acetic and propionic acids [8]. The 

addition of surfactants can change the pH value of sludge. It was reported

that with an increase of SDS dosage in the sludge from 0 to 50 mg/g SS of 

SDS, the sludge pH increased from 6.1 to 7.1 [3, 35]. The effect of another 

chemical surfactant, SDBS, on the pH of the sludge is different from SDS. 

When 20-50 ppm SDBS was added into WAS, the pH dropped from 7.4 to 

6.0 within 20 days [36, 37]. However, the alkaline condition is better than 

the acid condition to promote the anaerobic digestion process [8].

Generally, the main constituents of sludge are proteins, carbohydrates

and lipids [14]. The chemical surfactants, which are more toxic than 

biological surfactants, may lead to changes in the structure of the sludge. 

The surfactant can lead to denaturation of proteins via tertiary structure 

unfolding in the sub-micellar and chain expansion [38]. The micelle-like 

cluster composed of surfactants will form in the presence of proteins. Chen 

et al. (2013) found that with the existence of SDBS, the fluorescence peak 

intensity of proteins decreased from 5.14×106 to 2.88×106, indicating that 

SDBS was the main contributor to the denaturation of protein. The 
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monomers of SDS binding to protein by hydrophobic interactions lead to 

unfold of the tertiary structure at the sub-CMC concentration. However,

when SDS concentration is above CMC, the micelles nucleate on the 

hydrophobic patches of the protein chain cause it to expand [38]. The most 

important conclusion obtained from the experiment is that when a variety 

of interactions between proteins and surfactants are compared, specific ion

interactions are greater than nonspecific hydrophobic interactions, 

indicating that the details of the process depend on the type of surfactant

[39, 40]. The anionic surfactants, such as SDS and SDBS, owning to longer 

alkyl chain, having more strongly protein fluorescence. The different head 

groups of different anionic surfactants do not show distinct difference. 

However, the nonionic surfactants, such as TX-100, surfactin and saponin, 

show less interaction with protein because of non-mainstream type of 

reaction [40, 41].

Morphology is the characterization parameter investigated generally 

for sludge. Generally, the addition of surfactant is accompanied by the 

occurrence of saponification [42, 43], which would cause the fast reduction 

of mean projected area, diameters and alter the flocs shape expressed as 

circularity index. In consideration of the influence of morphology by SDS

addition, two ranges of concentrations can be discriminated: 0.0025–0.025 

g/L and 0.25–2.5 g/L. It was increased by 8% for mean projected area after 

24 h without SDS addition. However, this parameter was reduced about 30% 
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in the run containing SDS at concentrations 0.0025-0.025 g/L and >55% at

concentrations of 0.25-2.5 g/L. In addition, other factors including 

diameter, convex perimeter, ferret diameter and perimeter were also

enhanced about 8-9% after 24 h in the control run; while decreased in the 

run with SDS about 10-15% for concentrations at 0.0025-0.025 g/L, and 

30-40% for concentrations at 0.25-2.5 g/L [42]. At present, this 

phenomenon has not been systematically elaborated and the mechanism 

has not been fully expounded, which also provides a reference for future 

research.

However, there is few papers clearly indicating that the BSF has any 

observed effects on the pH and its constituents as well as morphology,

which suggests that the direction is worth studying in depth.

2.2 Impact on biological properties

The microbial elements of sludge play very important role in the 

anaerobic digestion process, and thus the microbiological factors should be 

focused [44]. The microorganisms contained several groups are

complicated and delicate in the process of anaerobic digestion. The whole 

microbe-process requires the design of the optimal method because the 

optimal operation conditions of different microbes cannot be completely 

overlapped [8]. The complex microbial community usually consists of a

large number of bacteria and archaea populations, which are usually related 

to hydrolysis, acidification, biogas production and pollutant removal [45].
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The core groups of bacteria in anaerobic digesters consist of Chloroflexi,

Betaproteobacteria, Bacteroidetes, and Synergistetes. However, 

Methanosarcinales, Methanomicrobiales, and Arc I phylogenetic groups

are mainly archaeal community [14, 46]. The effects of surfactant on the 

characteristics and structure of microbes deserve the attention of 

researchers [47].

Generally, surfactant can transform cell structure of microorganism 

via making materials on cell surface depart from the attached site and 

dissolved in aqueous solution [4]. Specifically, as amphipathic surfactant 

combines the proteins with hydrophilic groups, surfactants could impair 

the function and integrity of biological membranes, thereby causing native 

structure disturbing [48]. Whereas the hydrophobic groups combine with 

lipids, causing the liquefaction of membranes and impairment of their 

barrier properties [49]. In the comparison between chemical surfactants 

and biological surfactants, the biological surfactants show better 

biocompatibility. With the addition of the same dosage of 40 mg/g TSS of 

SDS, SDBS, and RL to the sludge, the percentage of Proteobacteria 

decreased to 46.1% in control, 35.6% with SDBS, 34.7% with SDS, and 

43.2% with RL after 8 days, respectively, and the same tendency was also 

found for Bacteroidetes and Chloroflexi [50]. However, for Firmicutes, a 

critical participant in hydrolysis and acidification, the percentage was the 

highest (in relative abundance) in SDS about 26.9%, higher than that in RL 
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about 24.4%, and were found to be lower in SDBS about 6.7% and the 

lowest in Control about 4.2% [31, 51, 52]. However, the exact mechanism 

of SDS enhancing the abundance of Firmicutes is still unknown. In 

addition, RL shows better biocompatibility, which allows highly active 

hydrolysis and is favorable to functional microbe for further interaction in

anaerobic digestion [51]. The effects of different biosurfactants are 

different. Previous experiments showed that the negative effects of SF and 

RL on diversity of metabolic and species were conforming. However, SP 

showed much fewer block on diversity of metabolic and species than RL

and SF, and exhibited better biocompatibility, even if possessed inferior

surface activity than SF and RL [45, 46, 53]. The reasons may be related 

to the difference of characteristic between anionic surfactants (SP and RL) 

and nonionic surfactants (SP). The influences of the addition of surfactants 

on microbes are shown in Fig. 1.

In general, microorganisms and enzymes are always complementary 

to the biological characteristics of the sludge [54]. In this complex enzyme 

system, the various processes in which the enzymes involved are protease 

and α-glucosidase during hydrolysis, acetatekinase during acidification, 

coenzyme F420 during methanation, and dehydrogenase about 

microorganisms [15]. Among them, the composition of the hydrolase is 

more complex. Four kinds of hydrolases, i.e., a-glucosidase, alanine-

aminopeptidase, esterase, and dehydrogenase, play important roles in
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hydrolysis [55]. A-glucosidase can degrade starch, while alanine-

aminopeptidase is responsible for the degradation of proteins. For esterase 

activity, measuring as hydrolysis fluorescein diacetate (FDA), does not 

produce information about specific substances degradation. Whereas, 

dehydrogenase activity has been found to correlate with substrate removal 

in sludge [56-59]. These enzymes organically form an important part of the 

enzyme system, which can promote the disintegration of large particles and 

produce more surface for attaching of microbes, leading to a high 

efficiency degradation [11].

The effects of surfactants on enzyme activity have also been 

investigated. SDS suppresses the ATPase activity of P-glycoprotein at low 

concentrations [60]. However, it stimulates protease and amylase activities.

The increased amount can be attributed to destruction of the sludge matrix

and release of the enzymes immobilized on the floc structure [3, 26, 35].

When the dose increases to a certain level, it will have a hindrance. Another 

chemical anionic surfactant, SDBS, has the analogous effects on enzymes. 

It can enhance the activity of protease and a-glucosidase, but the exact 

reasons for this phenomenon are still unclear [2]. When the dose of 

additional SF, RL, and SP was 50, 50, 100 mg/g DS, respectively, the 

biosurfactant RL was the most powerful one compared to others which 

gained the activities of neutral protease and α-glucosidase to 4.07 and 5.73

times, respectively. SF and SP had the same effects, but the increase was
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less than that of RL. Furthermore, the addition of RL made the activity of 

coenzyme F420 decrease by 40%. RL also possessed a violent negative 

impact on the dehydrogenase and acetate kinase activities. SF also had a

wicked effect on the activity of the coenzyme F420, dehydrogenase and 

acetate kinase, but the effects were weaker than that of RL. For example, 

the activity of acetate kinase was 73% after SF addition, but it was 26% 

after RL addition. When it came to methane production, SF addition 

slightly reduced with the increase of dose in the original period, but the 

throughput gradually raising and outstripping the control test after 6 d. In 

contrast, RL invariably showed powerful inhibition of methanogenesis 

which was probably attributed to the decrease of coenzyme F420 activity 

[15]. SP addition had not shown any inhibition, methane yield in the test 

with each dose of SP remaining the same to the control test which indicated

that methanogenesis was not influenced by SP addition [15]. In general, 

researches have summed up that the influence of enhancing or inhibiting 

by surfactants may depend on the length of alkyl chain, but there is no 

specific experiment to prove it, which could be an in-depth point [26, 61, 

62].

3. Impact on anaerobic digestion 

Anaerobic digestion, containing hydrolysis, acidification, and 

methanogenesis, is a complex biochemical process. Surfactant, owing to
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special characteristics, may have some effects on sludge during anaerobic 

digestion. Hence, the effect of surfactants on the three stages of anaerobic 

digestion will be discussed, respectively.

3.1 Hydrolysis 

The mechanisms of the increment of hydrolysis by surfactant can be 

summed up in two aspects: sludge components and enzyme activity (Fig.

2). The sludge blocks will be dispersed, and the hydrolase will be released 

from the sludge, which increase the efficiency of hydrolysis. And the latter 

has been discussed in the second chapter. Extracellular polymeric 

substances (EPS) is the main part of sludge components [44]. The main 

fractions of EPS are proteins and carbohydrates [63]. Surfactant can cause 

the break-up of sludge substance, especially the EPS, which releases more 

proteins and carbohydrates [16, 64]. The existence of the electrostatic 

interaction between enzymes and extracellular polymer substances leads to

the complexes of extracellular polymer substance-enzyme, which traps 

enzymes in substrate. Therefore, the activity of enzymes have increased

due to the release of enzymes by surfactant addition [65, 66]. In addition, 

surfactants enhance solubility of material particles by reducing surface 

tension or forming micelles, which can also improve the hydrolysis 

efficiency [14]. As one of the most widely used chemical surfactant, the 

impact of SDS was discussed previously. With the addition of SDS, the

thicknesses of protein and carbohydrate all increased. In a fermentation 
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experiment, the thicknesses of protein and carbohydrate reached 0.3418 

and 0.5159 g/L in the control test, 0.8277 and 0.1576 g/L with 100 mg/g 

SDS, and 1.3729 and 0.2209 g/L with 300 mg/g SDS dosage, respectively, 

in the sixth day of fermentation [1]. Ji et al. (2010) found that by adding 20

mg/g of SDBS in fermentation system, the maximal proteins and 

carbohydrates released were 1.7 and 1.9 times of those from the control in

the sixth day of fermentation, respectively. As for biosurfactant, alkyl poly

glycosides (APG), a kind of widely used surfactant, its influence has been 

investigated. In previous experiments, the maximal concentrations of 

proteins and carbohydrates were 3.3020 and 0.6580 g/L in WAS+SDS 

system with SDS dose of 200 mg/g TSS, respectively, whereas the 

corresponding concentrations were 1.6870 and 1.2060 g/L in WAS+APG 

system with APG dose of 200 mg/g TSS, respectively, indicating that SDS 

enhanced the protein production, and APG enhanced the carbohydrate 

production [26]. This appearance can be attributed to the hindrance of 

composing of the enzymes involved in protein hydrolysis [67]. For the 

other biosurfactants, it has been confirmed that the concentration of 

proteins increased with the addition of RL, SF and SP during the initial 60

mins, which was related to the dose. Comparing with SP, however, SF as 

well as RL had a preferable impact on the solubilization of EPS [68]. The 

essence of this phenomenon is partly because of the weaker surface activity 

of SP than RL and SF; and the other part is because of the degradation of 
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SP, and this degradation is not observed for RL and SF [15, 69, 70].

3.2 Acidification 

Generally, SCFAs, the products of acidification, are the designation 

of a series of acids, including acetic acid, propionic acid, and butyric acid, 

etc. [71]. Wherein, acetic acid and propionic acid are the two kinds of acids 

with the largest amount, and their proportion has a profound effect on the 

properties of SCFAs. For different purposes of production, there are 

different requirements for the intermediate products. The ultimate purpose 

of acidification is promoting more methane production. Therefore, a higher 

proportion of acetate is required, which is attributed to the direct 

degradation of acetic acid by methanogens [72] and other SCFAs should 

be converted into acetic acid before being used to produce methane [73].

However, if the purpose of acidification is to enhance the efficiency of 

biological nutrient removal (BNR), one feasible means of supplying PAO 

with a selective advantage over GAO is through operating the carbon 

source composition. Investigation has suggested that PAO activity with 

propionate is greater as compared to acetate, so it is required that obtaining 

higher proportion of propionic [74]. The increasing efficiency of BNR by 

propionic could be attributed to the different characteristics between PAOs 

and GAOs [75]. Both PAO and GAO can consume SCFA to obtain energy, 

but only PAO can hydrolyze polyphosphate. Therefore it is necessary to 

inhibit the activity of GAO, and then promote the polyphosphate 



17

hydrolysis by enhancing PAO activity [76, 77]. Acetate, as a kind of SCFA, 

can easily be adsorbed and consumed by GAO and PAO. However, the 

consumption of propionic acid is distinct. The rate of propionic 

consumption by GAO is slower than that by PAO. Moreover, PAO has been 

proven to be more accommodable when carbon source changes as 

compared to GAO [78, 79]. Therefore, more proportion of propionic can 

enhance the activity of PAO and baffle the activity of GAO, leading to the 

enhancement of biological nutrient removal efficiency.

The most influential factor in the composition of short chain fatty 

acids is pH. With the increase of pH value, the amount of acetate, butyrate,

and iso-butyrate all increased, and the same trend has been observed for 

amount of higher weight molecular, such as valerate, iso-valerate, and 

caproate [80, 81]. However, the optimal amount interval of propionate is 

between 6.0-9.0 and its optimal proportion can up to 50% [74]. In addition, 

the C/N also has definite impact on product of SCFA. Generally, both 

carbon and nitrogen originate from the product of hydrolysis-protein and 

carbohydrate. The improvement of C/N of digestive matrix was favorable

to the production of propionate [82]. Hence, with a high content of protein, 

the enhancement of nitrogen elements content has been caused. Therefore,

the C/N of digestive matrix becomes excessively small and the production 

of propionic is limited, and the addition of carbohydrate matter is 

indispensable [74]. Nevertheless, excessively large C/N also results in 



18

some negative phenomenon. The production of PHA requires the nitrogen-

limited condition, whereas high C/N prevent the merisis of active biomass 

for close connection between nutrition and cell merisis. Nevertheless, Jiang 

et al. (2009) have found that enhancing feed degree or optimizing process 

factors can achieve high production of PHA even without nitrogen-removal

[83]. The maximum permissible value of C/N is 50, and this value 

exceeding 50 may cause the cessation of process [84, 85].

The addition of surfactant may improve acidification efficiency. 

SCFA yield was enhanced by SDS [86]. Jiang et al. (2007) found that, in

the sixth day of zymolysis, the concentration of SCFA was 2243.04 mg 

COD/L with 100 mg/g SDS, whereas it was merely 191.10 mg COD/L in 

the control. However, with higher concentration of SDS being added, less 

SCFA was produced during the original stage of zymolysis, which could 

be ascribed to the negative influence of SDS. For instance, the destruction 

of microbial protein structure and accumulation in the environment to

produce toxic byproducts [87]. The rank of the composition SCFAs was in

the order of acetic > propionic > iso-valeric in the control. However, the 

addition of SDS changed the array to acetic >iso-valeric> propionic. The 

results showed that the production of SCFA was enhanced remarkably in 

the presence of SDBS. At 6 days of fermentation time, the maximum SCFA 

was 2599.1 mg COD/L with 20 mg/g SDBS addition, whereas it was 339.1

mg COD/L in the control test without sodium dodecyl benzene sulfonate
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addition [2]. The same situation was observed when the dose of sodium 

dodecyl benzene sulfonate was higher than 200 mg/g. After all, the 

inhibition of microorganism caused by SDS and SDBS cannot be 

neglectable. However, the rank of all kinds of SCFAs was different from 

that with SDS addition. During the original 6-day fermentation, there was

no doubt that acetic acid was the most universal component, but the 

propionic acid was the sub major products, their percentages were acetic 

acid about 27.1%, and propionic acid about 22.8%, respectively. The 

maximum SCFA concentration reached 800 mg COD/L in the fifth day in 

the control without biosurfactants. Its production enhanced with the 

increasing dose of SF or RL (ranging from 23 to 50 mg/g DS), and the 

maximum concentration was nearly 3.3 g COD/L. However, SCFA 

production was distinctly improved when the dose of SP varied from 20 to

100 mg/g DS, and the maximum concentration of SCFA was 3.1 g COD/L. 

There was no significant enhancement for higher dosage of SP, RL, and SF

[2]. In the aspect of transformation of SCFA components, the emphasis is 

on the changes in the content of acetic and propionic acid. With SP, RL and 

SF addition, the percentage of acetic, propionic and n-butyric acid were 

enhanced in pace with the augmenting dose of the biosurfactants. However, 

the proportion of acetic acid to propionic acid in reactors with SF or RL

addition was higher than that with SP and in the control [16]. In fact, the 

propionic acid was the main product during the acidification of glucose, 
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whereas the ratio of acetic acid was high when protein was degraded [88],

which was probably correlated to the influence of surfactant addition. 

However, the effect of surfactant degradation on the production of SCFA 

is also worthy to discuss. There are two mechanisms to enhance SCFA 

generation, i.e., biological effect and chemical effect. The latter particularly

depended on the degradation of surfactant itself. However, in terms of 

some surfactants that have been discussed, SP possessed a analogical

enhancement of SCFA production by its degradation, although its surface 

ability was lower than SF and RL [15]. Whereas in the case of SDS, SDBS, 

RL, and SF, the improved yield of SCFA was primarily caused by 

biological impact rather than chemical impact [26].

3.3 Methanogenesis 

Methanogenesis, the last step of anaerobic digestion, is defined as the 

process of converting acetate and hydrogen from acidification to methane 

and carbon dioxide by methanogenic bacterial [89, 90]. Generally, a 

significant SCFA consumption was observed in the fermentation of WAS, 

assumably be attributed to the consumers participation, for instance,

methanogens [26]. The order of SCFA consuming is acetate, butyrate, and 

propionate during the methanogenesis [64], which indicates that a higher 

proportion of acetic acid is accompanied by a larger amounts of methane 

production. Two parameters are of great significance in the process of 

methane production, i.e., pH and activities of methanogenic bacteria.
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During the whole period of fermentation, the methane yield enhanced with 

pH increasing from 4.0 to 6.0, and declined when pH further increased to

10.0 [91]. Apparently, the highest methane production was achieved at pH 

7.0 during fermentation time, which indicated that both the higher and 

lower pH could decrease the activity of methanogenic bacteria [92].

Previous investigation showed that the production rate of biogas general 

tended to accord with sigmoid function (S curve), indicating that the 

methane production can be split into three stages: lag phase, decomposition 

phase, and flattening phase [3]. Methane production is lentitude at the start

and end of curve, suggesting that the methane generated in reactor 

corresponds to specific growth rate of methanogenic microbe [93]. To 

enhance the methanation efficiency and biogas production, various efforts 

have been made. Preatment efforts contains physical, chemical, and 

biological treatment. However, different purposes lead to different 

consequences. Supposing that the purposes were SCFA accumulation and 

PHA production, the methods reducing methane production had to be 

adopted.

In specific surfactants, SDS was observed to affiliate with the 

inhibition of methanogens activity during the sludge fermentation [26]. It 

has been reported that the SDS would inhibit the methanogens acitivities 

in the period of sludge fermentation. With the dose of SDS raised from 20

to 300 mg/g, the hindrance ratio of methane yield augmented definitely 
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from 3% to 100% [94]. Another anionic surfactant SDBS also prevented 

the process of methanogenesis. Total gas yields and methanogenesis from 

glucose were decreased to half maximal rates at 20 to 50 ppm SDBS during 

the original period of fermentation [36]. It has shown that the surfactants 

with aromatic and cyclic, such as SDBS, were found to be the most 

hazardous compounds for anaerobic acetoclastic methanogenesis [49].

However, SDS is one of the few surfactants with minimal toxicity to 

methanogens [49]. The inhibition of methane production by saponins is the 

smallest, which is attributed to the negligible effects of methanogenic 

bacteria activity after saponins addition. Actually, RL possessed serious 

antibacterial activity to methanogenic bacteria and some related enzymes. 

As mentioned above, the addition of RL made the activity of coenzyme 

F420, a methane related enzyme, decreased by 40%. In addition, it was 

confirmed that the RL not only prevent the methanogenesis, but also retard 

the metabolism of other microbes, which might cause the destruction of 

biological activity of sludge [94].

4. Effects of surfactant addition on contaminant removal 

During waste water treatment, activated sludge process produces a 

large number of waste activated sludge, which contains a lot of pollutants

[95, 96]. They might shift to the different compartments involving 

atmosphere, soli, and surface water via pinpoint or diffuse inputs [97]. The 
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most discussed contaminants, including hydrophobic organic matter (HOC)

and heavy metals [98, 99]. The removal of these pollutants has always been 

a hot issue. The influences of surfactant on representative HOC

contaminants have been summarized in Table 1.

Surfactants have a great potential of solubilization. Generally, there 

are three influence mechanisms for the advancement of HOC 

biodegradation by surfactants addition (Fig. 3). The first mechanism is

forming micelle shaped by surfactant and encasing the HOC. Therefore 

microorganisms are able to adsorb the contaminant from the micelles core. 

In the second mechanism, surfactants enhance the mass transfer of 

contaminants to the aqueous phase for further degrade by microorganisms, 

which is attributed to the reduced surface tension by surfactant [100]. And 

for the third mechanism, the cell hydrophobicity has been changed by the 

addition of surfactants, resulting in the direct contact between cells and 

contaminants [101-103]. In addition, there is another mechanism that has 

been conjectured, in which surfactants promote microorganisms to be 

adsorbed to sludge surface sites occupied by contaminants [104].

Because of the application of various kinds of metals in industry, there 

are also various heavy metal ions in the wastewater, which causes the 

sludge filled with heavy metal ions [105, 106]. Heavy metals cannot be 

biodegraded. On the contrary, they can only be transformed from one 

configuration to another, which can change their mobility and toxicity
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[107]. Some forms of heavy metals can be transformed by process of redox 

or by alkylation. There were two main mechanisms for desorption of heavy 

metals from sludge by surfactant addition (Fig. 4). Firstly, the cationic 

surfactant can permute the same charged metal ions by rivalry for some but 

not all negatively charged surface, because of the interaction of repulsion 

between cationic surfactant and heavy metals. Secondly, the anionic 

surfactants form nonionic complexes with heavy metal by ionic bonds 

which are stronger than the bonds of metal with sludge [108, 109] . The 

metal-surfactant complexes are desorbed from sludge substance to aqueous 

due to the decrease of the surface tension [110-112]. In general, the two

mechanisms can be concluded in ion exchange and counterion binding.

5. Conclusion and future prospects 

This review summarized the utilization of surfactant in the process of 

anaerobic digestion, including the influences on sludge properties, and 

conversion process of hydrolysis, acidification and methanogenesis. In 

addition, due to the excellent solubilization of surfactant, the removal of 

organic pollution and heavy metals might also be affected by surfactant 

addition. Surfactants, as an amphiprotic compound, have characteristic of 

solubilization via reducing interface tension or forming micelles, when the 

concentration of surfactant is under or above CMC, respectively. In the 

process of anaerobic digestion, due to the rate-limiting influence of 
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hydrolysis, enhancing its efficiency will lead to the increment of 

acidification substrate. Therefore, the increased SCFA production can be 

applied to remove nutrient and produce PHAs. Surfactant can not only 

affect the proportion of various SCFA, but also influence the activities of 

certain microorganisms, which have significant roles in anaerobic 

digestion.

Notably, future investigations can be paid attention to the following 

aspects: i) Establishing technological process for the production of 

biosurfactant for industrial production. Although the toxicity and risk of 

biosurfactant are smaller than those of chemical surfactant, the price of 

biosurfactant is higher than chemical surfactants, which limits its wide 

application. ii) Establishment of models to describe the influence surfactant 

addition on different microorganisms. Due to the complex constitution of 

microorganism involved in anaerobic digestion, as well as the dual 

character of surfactant, the quantify effects of surfactant need specific 

model. iii) Process improvement of producing PHAs from SCFA. The 

production of PHAs is in the theoretical stage. In order to achieve the 

consummate craft of waste resources re-utilization, it is worth investigating 

how to establish a systematic process for PHAs production.
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