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Abstract

The objective of this study is to summarize the effects of surfactants on anaerobic
digestion of waste activated sludge. The increasing amount of waste activated sludge
has caused serious environmental problems. Anaerobic digestion (AD), as the main
treatment for waste activated sludge containing three stages (i.e., hydrolysis,
acidogenesis and methanogenesis), has been widely investigated. Surfactant addition
has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic
substance, can enhance the efficiency of hydrolysis by separgti rge sludge and
releasing the encapsulated hydrolase, providing more ¢ for subsequent
acidogenesis. Afterwards, the short chain fatty acids (MCFA), as the major product, have
been produced. Previous investigations reve@t at surfactant could affect the
transformation of SCFA. They chan ed&§ types of acidification products by
promoting changes in microbial xewy1 d in the ratio of carbon to nitrogen (C/N),
especially the ratio of acet@ propionic acid, which were applied for either the
removal of nutri r t@}duction of polyhydroxyalkanoate (PHA). In addition, the
activity of microorgyaisms can be affected by surfactant, which mainly leads to the
activity changes of methanogens. Besides, the solubilization of surfactant will promote
the solubility of contaminants in sludge, such as organic contaminants and heavy metals,
by increasing the bioavailability or desorbing of the sludge

Keywords: Surfactant; Sludge; Anaerobic digestion; Contaminants removal
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1. Introduction

Nowadays, more and more contaminants existing in water need to be
remediated adequately. One of the most widely used means for
contaminant removal is activated sludge process [1]. As a kind of
biological wastewater treatment, large amounts of waste activated sludge
(WAS) are produced in wastewater treatment [2]. The amount of WAS
increases with the quantitative dilatation of municipal and industrial
wastewater [3]. The increasing quantity of W, become an
environmental problem which needs to be solved u ]. For example,
the quantity of WAS in China is expected to idgrease to 34 million tons (at
a moisture content of 80%) in 2018, and@e an 75% would be handled
insecurely [5]. Therefore, an effiC sludge treatment technique is
strongly desired for W, iINgtment [6], converting the easily
biodegradable organic @ers into relatively stable substances, and
keeping the refdues\geldw the standard values [7-9].

To solve the problems of sludge over quantification, many techniques
have been used. In developed countries, concentration and anaerobic
digestion are the most common methods for WAS treatment. The
corresponding cost for WAS treatment accounts for 60% of the total
running cost of wastewater treatment plants (WWTPs) [10], which
suggests that the method of concentration and anaerobic digestion cannot

be widely accepted. Other methods such as landfill and ocean dumping
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technology, due to their negative impacts on the environment-spread of
toxic substances in soil and low-cost utilization of land, are being used
rarely [10]. Currently, the re-utilization of sludge resources is generally
expected [11, 12]. Anaerobic digestion, a method consisting of three stages,
1.e., hydrolysis, acidogenesis and methanogenesis, has been widely applied
for sludge stabilization. Pollution control and energy recovery can be
fulfilled at the same time, which is one of the advantages of anaerobic
digestion [13]. In addition, stabilizing organic matt ¢ sludge and
hindering the harmful chemicals into environ n be achieved
concurrently [4]. Moreover, getting biogas opzhort chain fatty acids from
this process can also be achieved [8, » TTe main component of the
biogas 1s methane which can be use the resource, and SCFA can be
applied to generate polyhyd®a noates or used as a preferable carbon
source to remove nutr@)during wastewater treatment [15, 16]. The
characteristics ch.@ production of renewable sources, concepts of
integrated biorh and advanced waste treatment, will make it possible
for anaerobic digestion to be widely used in the future [17]. Therefore,
more and more researchers have studied to improve the efficiency of
anaerobic digestion [18]. However, the disadvantages of long reaction
period and low efficiency limit its development.

Surfactant, possessing both hydrophobic groups and hydrophilic

groups, 1s now widely studied and used [19, 20]. The classification of

4



83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

surfactants is generally divided into chemical surfactants (CSF) and
biological surfactants (BSF); or divided into cationic, anionic, nonionic,
and zwitterionic surfactants [21, 22]. The chemical surfactants, for instance,
sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS),
linear alkylbenzene sulphonates (LAS), and Triton X-100 etc., are widely
used in practical applications [23]. However, CSFs are commonly toxic to
the environment and easily accumulated in the environment [24]. BSFs,
such as rhamnolipid (RL), saponin (SP), surfactin (RE)=agd glycolipid,
have advantages such as biodegradability, efficien rsh temperature
or pH, and lower toxicity compared to the chiuical counterparts [14, 25].
Surfactant can be adsorbed on the interfa@ ce surface tension, or form
micelles. The insoluble substance )&i)lto the micelles and enhances its
solubility [26-28].

In process of anaer@cjligestion, surfactant can enhance solubility of
organic matter fggheWugdge in order to improve the efficiency of hydrolysis
and remediati(h 30]. Different surfactants can lead to different
amounts of acetic and propionic acid (short chain fatty acids), and can also
affect the growth of polyphosphate accumulating organisms (PAO),
glycogen accumulating organisms (GAO) and methanogens. In addition,
surfactant can influence some characteristics of the sludge. For example,
surfactant can change the pH and the structure of the sludge component

such as proteins and carbohydrates. Moreover, surfactant can alter sludge
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floc diameter which is closely related to anaerobic digestion of sludge [31,
32]. Furthermore, surfactants also have a good performance in the removal
of pollutants during the anaerobic digestion process [33]. Two kinds of
organic pollutions are discussed generally in the sludge-organic pollution,
hydrophobic organic compounds and heavy metal pollutants [34]. It is
concluded that the removal mechanisms about organic contaminants by
surfactant can be summed up into three aspects: emulsification of liquid
pollutant, micellar solubilisation, and facilitated tran mechanisms
are designed to increase microbial contact with po nd improve the
efficiency of microbial treatment [27]. In ordd& to promote the removal of
metal ions from the sludge, surfactan@r ct in two ways, 1.e., ion
exchange and complexing with metZgQg)s [24].

Recently, some investi@ ave found the advances in utilization
of surfactants during the@tering of sludge. But the process of anaerobic
digestion has n@gl:ted, which will be summaried in this article. The
surfactants can rk in two aspects: improving anaerobic digestion
effciency and enhancing removal of contaminants, which will be discussed
in this paper. In addition, this review expounds the theory direction and
future prospect.

2. Influence of surfactants on properties of WAS
2.1 Effect on physicochemical properties

In the process of anaerobic digestion, pH value is a significant impact

6
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factor, and its effect runs through the whole anaerobic digestion process.
At pH 6.5-7.2, the process of methane production is optimized; while at
pH 4.0-8.5, it is optimized for fermentative process [8]. Different pH values
also have different influences on acidification process. When pH is higher
than 8, the products obtained in the process of acidification are gradually
shifted from acetic and butyric acids to acetic and propionic acids [8]. The
addition of surfactants can change the pH value of sludge. It was reported
that with an increase of SDS dosage in the sludge frgnm\0 0 mg/g SS of
SDS, the sludge pH increased from 6.1 to 7.1 [3, 3 ffect of another
chemical surfactant, SDBS, on the pH of the Ngdge is different from SDS.
When 20-50 ppm SDBS was added into @, e pH dropped from 7.4 to
6.0 within 20 days [36, 37]. Howev)eg,ﬂ;): alkaline condition is better than
the acid condition to promotg-dye Wgaerobic digestion process [8].
Generally, the mair@tituents of sludge are proteins, carbohydrates
and lipids [1 Tth,ﬁemical surfactants, which are more toxic than
biological surh may lead to changes in the structure of the sludge.
The surfactant can lead to denaturation of proteins via tertiary structure
unfolding in the sub-micellar and chain expansion [38]. The micelle-like
cluster composed of surfactants will form in the presence of proteins. Chen
et al. (2013) found that with the existence of SDBS, the fluorescence peak
intensity of proteins decreased from 5.14x10° to 2.88x10°, indicating that

SDBS was the main contributor to the denaturation of protein. The
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149
monomers of SDS binding to protein by hydrophobic interactions lead to

0 unfold of the tertiary structure at the sub-CMC concentration. However,
o when SDS concentration is above CMC, the micelles nucleate on the
e hydrophobic patches of the protein chain cause it to expand [38]. The most
e important conclusion obtained from the experiment is that when a variety
e of interactions between proteins and surfactants are compared, specific ion
o interactions are greater than nonspecific hydrophobic interactions,
e indicating that the details of the process depend on of surfactant
! [39, 40]. The anionic surfactants, such as SDS and Wewning to longer
e alkyl chain, having more strongly protein fludsgscence. The different head
P groups of different anionic surfactants @10 show distinct difference.
160

However, the nonionic surfactants su s TX-100, surfactin and saponin,

161

show less interaction with Qbecause of non-mainstream type of
162 @

reaction [40, 41]. ‘ )

163 Morphol% e Lharacterization parameter investigated generally

164  for sludge. Geneiylly, the addition of surfactant is accompanied by the
165  occurrence of saponification [42, 43], which would cause the fast reduction
166  of mean projected area, diameters and alter the flocs shape expressed as
167  circularity index. In consideration of the influence of morphology by SDS
168  addition, two ranges of concentrations can be discriminated: 0.0025-0.025
169 g/Land 0.25-2.5 g/L. It was increased by 8% for mean projected area after

170 24 h without SDS addition. However, this parameter was reduced about 30%

8



171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

in the run containing SDS at concentrations 0.0025-0.025 g/L and >55% at
concentrations of 0.25-2.5 g/L. In addition, other factors including
diameter, convex perimeter, ferret diameter and perimeter were also
enhanced about 8-9% after 24 h in the control run; while decreased in the
run with SDS about 10-15% for concentrations at 0.0025-0.025 g/L, and
30-40% for concentrations at 0.25-2.5 g/L [42]. At present, this
phenomenon has not been systematically elaborated and the mechanism
has not been fully expounded, which also provides %nce for future
research.

However, there is few papers clearly ingdgating that the BSF has any
observed effects on the pH and its cm@e s as well as morphology,
which suggests that the direction is%(tﬁ studying in depth.

2.2 Impact on biological pr

The microbial ele@ of sludge play very important role in the
anaerobic digefgQn Qg}ss, and thus the microbiological factors should be
focused [44].% microorganisms contained several groups are
complicated and delicate in the process of anaerobic digestion. The whole
microbe-process requires the design of the optimal method because the
optimal operation conditions of different microbes cannot be completely
overlapped [8]. The complex microbial community usually consists of a
large number of bacteria and archaea populations, which are usually related

to hydrolysis, acidification, biogas production and pollutant removal [45].
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The core groups of bacteria in anaerobic digesters consist of Chloroflexi,
Betaproteobacteria, Bacteroidetes, and Synergistetes. However,
Methanosarcinales, Methanomicrobiales, and Arc I phylogenetic groups
are mainly archaeal community [14, 46]. The effects of surfactant on the
characteristics and structure of microbes deserve the attention of
researchers [47].

Generally, surfactant can transform cell structure of microorganism

via making materials on cell surface depart from hed site and
dissolved in aqueous solution [4]. Specifically, as yathic surfactant
combines the proteins with hydrophilic grogg, surfactants could impair

the function and integrity of biological '@3. nes, thereby causing native
structure disturbing [48]. Whereas ?l&mrdrophobic groups combine with
lipids, causing the liquefacj embranes and impairment of their
barrier properties [49]. @e comparison between chemical surfactants
and biologic suQcﬁnts, the biological surfactants show better
biocompatibilm the addition of the same dosage of 40 mg/g TSS of
SDS, SDBS, and RL to the sludge, the percentage of Proteobacteria
decreased to 46.1% in control, 35.6% with SDBS, 34.7% with SDS, and
43.2% with RL after 8 days, respectively, and the same tendency was also
found for Bacteroidetes and Chlorofiexi [50]. However, for Firmicutes, a
critical participant in hydrolysis and acidification, the percentage was the

highest (in relative abundance) in SDS about 26.9%, higher than that in RL
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about 24.4%, and were found to be lower in SDBS about 6.7% and the
lowest in Control about 4.2% [31, 51, 52]. However, the exact mechanism
of SDS enhancing the abundance of Firmicutes is still unknown. In
addition, RL shows better biocompatibility, which allows highly active
hydrolysis and is favorable to functional microbe for further interaction in
anaerobic digestion [51]. The effects of different biosurfactants are
different. Previous experiments showed that the negative effects of SF and
RL on diversity of metabolic and species were confoiuigan However, SP
showed much fewer block on diversity of metabo pecies than RL
and SF, and exhibited better biocompatibilif even if possessed inferior
surface activity than SF and RL [45, 46 . The reasons may be related
to the difference of characteristic bca)tstgw)l anionic surfactants (SP and RL)

and nonionic surfactants (SP@h fluences of the addition of surfactants

on microbes are shown @ 1.
In genera%go_ukanisms and enzymes are always complementary

to the biological cyaracteristics of the sludge [54]. In this complex enzyme
system, the various processes in which the enzymes involved are protease
and a-glucosidase during hydrolysis, acetatekinase during acidification,
coenzyme Fgo during methanation, and dehydrogenase about
microorganisms [15]. Among them, the composition of the hydrolase is
more complex. Four kinds of hydrolases, i.e., a-glucosidase, alanine-

aminopeptidase, esterase, and dehydrogenase, play important roles in
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hydrolysis [55]. A-glucosidase can degrade starch, while alanine-
aminopeptidase is responsible for the degradation of proteins. For esterase
activity, measuring as hydrolysis fluorescein diacetate (FDA), does not
produce information about specific substances degradation. Whereas,
dehydrogenase activity has been found to correlate with substrate removal
in sludge [56-59]. These enzymes organically form an important part of the
enzyme system, which can promote the disintegration of large particles and
produce more surface for attaching of microbes %g to a high
efficiency degradation [11].

The effects of surfactants on enzy activity have also been
investigated. SDS suppresses the ATPas@v y of P-glycoprotein at low
concentrations [60]. However, it stirg&t)s protease and amylase activities.
The increased amount can bg-mtriwgted to destruction of the sludge matrix
and release of the enzy@mmobilized on the floc structure [3, 26, 35].
When the dose® regeasko a certain level, it will have a hindrance. Another
chemical anion&mfactant, SDBS, has the analogous effects on enzymes.
It can enhance the activity of protease and a-glucosidase, but the exact
reasons for this phenomenon are still unclear [2]. When the dose of
additional SF, RL, and SP was 50, 50, 100 mg/g DS, respectively, the
biosurfactant RL was the most powerful one compared to others which
gained the activities of neutral protease and a-glucosidase to 4.07 and 5.73

times, respectively. SF and SP had the same effects, but the increase was
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less than that of RL. Furthermore, the addition of RL made the activity of
coenzyme F4p0 decrease by 40%. RL also possessed a violent negative
impact on the dehydrogenase and acetate kinase activities. SF also had a
wicked effect on the activity of the coenzyme Fiy, dehydrogenase and
acetate kinase, but the effects were weaker than that of RL. For example,
the activity of acetate kinase was 73% after SF addition, but it was 26%
after RL addition. When it came to methane production, SF addition
slightly reduced with the increase of dose in the orggy riod, but the

throughput gradually raising and outstripping the est after 6 d. In

contrast, RL invariably showed powerful iNgbition of methanogenesis

which was probably attributed to the d s€ of coenzyme F4, activity
[15]. SP addition had not shown an)y<'nhibiti0n, methane yield in the test
with each dose of SP remain@ me to the control test which indicated
that methanogenesis wag nof influenced by SP addition [15]. In general,
researches ha uere) up that the influence of enhancing or inhibiting
by surfactant&epend on the length of alkyl chain, but there is no

specific experiment to prove it, which could be an in-depth point [26, 61,

62].

3. Impact on anaerobic digestion
Anaerobic digestion, containing hydrolysis, acidification, and

methanogenesis, is a complex biochemical process. Surfactant, owing to
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special characteristics, may have some effects on sludge during anaerobic
digestion. Hence, the effect of surfactants on the three stages of anaerobic
digestion will be discussed, respectively.
3.1 Hydrolysis

The mechanisms of the increment of hydrolysis by surfactant can be
summed up in two aspects: sludge components and enzyme activity (Fig.
2). The sludge blocks will be dispersed, and the hydrolase will be released
from the sludge, which increase the efficiency of hy wnAnd the latter
has been discussed in the second chapter. ular polymeric
substances (EPS) is the main part of sludge Xpmponents [44]. The main
fractions of EPS are proteins and carboh@te [63]. Surfactant can cause
the break-up of sludge substance, es);SQﬂﬁlly the EPS, which releases more
proteins and carbohydrates A9, \&&4|. The existence of the electrostatic
interaction between enz;@eﬁ and extracellular polymer substances leads to
the complexe e@ellular polymer substance-enzyme, which traps
enzymes in Sljk Therefore, the activity of enzymes have increased
due to the release of enzymes by surfactant addition [65, 66]. In addition,
surfactants enhance solubility of material particles by reducing surface
tension or forming micelles, which can also improve the hydrolysis
efficiency [14]. As one of the most widely used chemical surfactant, the
impact of SDS was discussed previously. With the addition of SDS, the

thicknesses of protein and carbohydrate all increased. In a fermentation
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experiment, the thicknesses of protein and carbohydrate reached 0.3418
and 0.5159 g/L in the control test, 0.8277 and 0.1576 g/L with 100 mg/g
SDS, and 1.3729 and 0.2209 g/L with 300 mg/g SDS dosage, respectively,
in the sixth day of fermentation [1]. Ji et al. (2010) found that by adding 20
mg/g of SDBS in fermentation system, the maximal proteins and
carbohydrates released were 1.7 and 1.9 times of those from the control in
the sixth day of fermentation, respectively. As for biosurfactant, alkyl poly
glycosides (APQG), a kind of widely used surfactant, jt{g nce has been
investigated. In previous experiments, the maxt ncentrations of
proteins and carbohydrates were 3.3020 NSSO g/L in WAS+SDS
system with SDS dose of 200 mg/g @, respectively, whereas the
corresponding concentrations were” ' Y0 and 1.2060 g/L in WAS+APG
system with APG dose of 200wgW1'SS, respectively, indicating that SDS
enhanced the protein pfoduction, and APG enhanced the carbohydrate
production [2ERTh pearance can be attributed to the hindrance of
composing ofkymes involved in protein hydrolysis [67]. For the
other biosurfactants, it has been confirmed that the concentration of
proteins increased with the addition of RL, SF and SP during the initial 60
mins, which was related to the dose. Comparing with SP, however, SF as
well as RL had a preferable impact on the solubilization of EPS [68]. The
essence of this phenomenon is partly because of the weaker surface activity

of SP than RL and SF; and the other part is because of the degradation of
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SP, and this degradation is not observed for RL and SF [15, 69, 70].
3.2 Acidification

Generally, SCFAs, the products of acidification, are the designation
of a series of acids, including acetic acid, propionic acid, and butyric acid,
etc. [71]. Wherein, acetic acid and propionic acid are the two kinds of acids
with the largest amount, and their proportion has a profound effect on the

properties of SCFAs. For different purposes of production, there are

different requirements for the intermediate products. {mate purpose
of acidification is promoting more methane product refore, a higher
proportion of acetate is required, which N attributed to the direct

degradation of acetic acid by methanog@ and other SCFAs should
be converted into acetic acid before Biyg used to produce methane [73].
However, if the purpose of@ ation is to enhance the efficiency of
biological nutrient remogal gBNR), one feasible means of supplying PAO
with a selecti ad@jﬁge over GAO 1is through operating the carbon
source compok.lnvestigation has suggested that PAO activity with
propionate is greater as compared to acetate, so it is required that obtaining
higher proportion of propionic [74]. The increasing efficiency of BNR by
propionic could be attributed to the different characteristics between PAOs
and GAOs [75]. Both PAO and GAO can consume SCFA to obtain energy,
but only PAO can hydrolyze polyphosphate. Therefore it is necessary to

inhibit the activity of GAO, and then promote the polyphosphate
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hydrolysis by enhancing PAO activity [76, 77]. Acetate, as a kind of SCFA,
can easily be adsorbed and consumed by GAO and PAO. However, the
consumption of propionic acid is distinct. The rate of propionic
consumption by GAO is slower than that by PAO. Moreover, PAO has been
proven to be more accommodable when carbon source changes as
compared to GAO [78, 79]. Therefore, more proportion of propionic can
enhance the activity of PAO and baffle the activity of GAO, leading to the
enhancement of biological nutrient removal efficien

The most influential factor in the compositi ort chain fatty
acids 1s pH. With the increase of pH value, thgh\gmount of acetate, butyrate,
and iso-butyrate all increased, and the end has been observed for
amount of higher weight molecular, h as valerate, 1so-valerate, and
caproate [80, 81]. However. mal amount interval of propionate is
between 6.0-9.0 and its @al proportion can up to 50% [74]. In addition,

the C/N also ngﬁe impact on product of SCFA. Generally, both
carbon and nit&)riginate from the product of hydrolysis-protein and
carbohydrate. The improvement of C/N of digestive matrix was favorable
to the production of propionate [82]. Hence, with a high content of protein,
the enhancement of nitrogen elements content has been caused. Therefore,
the C/N of digestive matrix becomes excessively small and the production

of propionic is limited, and the addition of carbohydrate matter is

indispensable [74]. Nevertheless, excessively large C/N also results in
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some negative phenomenon. The production of PHA requires the nitrogen-
limited condition, whereas high C/N prevent the merisis of active biomass
for close connection between nutrition and cell merisis. Nevertheless, Jiang
et al. (2009) have found that enhancing feed degree or optimizing process
factors can achieve high production of PHA even without nitrogen-removal
[83]. The maximum permissible value of C/N is 50, and this value
exceeding 50 may cause the cessation of process [84, 85].

The addition of surfactant may improve acydi{iggdign efficiency.
SCFA yield was enhanced by SDS [86]. Jiang et @ found that, in
the sixth day of zymolysis, the concentratioghof SCFA was 2243.04 mg
COD/L with 100 mg/g SDS, whereas it@ rely 191.10 mg COD/L in
the control. However, with higher c%&a)ltration of SDS being added, less
SCFA was produced during inal stage of zymolysis, which could
be ascribed to the negati@ﬂuence of SDS. For instance, the destruction
of microbial eier)Jcture and accumulation in the environment to
produce toxic L‘t&%lucts [87]. The rank of the composition SCFAs was in
the order of acetic > propionic > iso-valeric in the control. However, the
addition of SDS changed the array to acetic >iso-valeric> propionic. The
results showed that the production of SCFA was enhanced remarkably in
the presence of SDBS. At 6 days of fermentation time, the maximum SCFA
was 2599.1 mg COD/L with 20 mg/g SDBS addition, whereas it was 339.1

mg COD/L in the control test without sodium dodecyl benzene sulfonate
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412

addition [2]. The same situation was observed when the dose of sodium
dodecyl benzene sulfonate was higher than 200 mg/g. After all, the
inhibition of microorganism caused by SDS and SDBS cannot be
neglectable. However, the rank of all kinds of SCFAs was different from
that with SDS addition. During the original 6-day fermentation, there was
no doubt that acetic acid was the most universal component, but the
propionic acid was the sub major products, their percentages were acetic
acid about 27.1%, and propionic acid about 22.82 ectively. The
maximum SCFA concentration reached 800 mg C Yy the fifth day in
the control without biosurfactants. Its proMyction enhanced with the
increasing dose of SF or RL (ranging to 50 mg/g DS), and the
maximum concentration was near .3 g COD/L. However, SCFA
production was distinctly i \% hen the dose of SP varied from 20 to
100 mg/g DS, and the mgximum concentration of SCFA was 3.1 g COD/L.
There was no iﬁ%ﬁenhancement for higher dosage of SP, RL, and SF
[2]. In the asp%ansformation of SCFA components, the emphasis is
on the changes in the content of acetic and propionic acid. With SP, RL and
SF addition, the percentage of acetic, propionic and n-butyric acid were
enhanced in pace with the augmenting dose of the biosurfactants. However,
the proportion of acetic acid to propionic acid in reactors with SF or RL
addition was higher than that with SP and in the control [16]. In fact, the

propionic acid was the main product during the acidification of glucose,
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whereas the ratio of acetic acid was high when protein was degraded [88],
which was probably correlated to the influence of surfactant addition.
However, the effect of surfactant degradation on the production of SCFA
is also worthy to discuss. There are two mechanisms to enhance SCFA
generation, 1.¢., biological effect and chemical effect. The latter particularly
depended on the degradation of surfactant itself. However, in terms of
some surfactants that have been discussed, SP possessed a analogical
enhancement of SCFA production by its degradatiog, gl h its surface
ability was lower than SF and RL [15]. Whereas in of SDS, SDBS,
RL, and SF, the improved yield of SCEMAwas primarily caused by
biological impact rather than chemical in@t 6].

3.3 Methanogenesis K)

Methanogenesis, the la Qanaerobic digestion, is defined as the
process of converting a@tj and hydrogen from acidification to methane
and carbon di 'deQﬁ methanogenic bacterial [89, 90]. Generally, a
significant SC&msumption was observed in the fermentation of WAS,
assumably be attributed to the consumers participation, for instance,
methanogens [26]. The order of SCFA consuming is acetate, butyrate, and
propionate during the methanogenesis [64], which indicates that a higher
proportion of acetic acid is accompanied by a larger amounts of methane
production. Two parameters are of great significance in the process of

methane production, i.e., pH and activities of methanogenic bacteria.
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During the whole period of fermentation, the methane yield enhanced with
pH increasing from 4.0 to 6.0, and declined when pH further increased to
10.0 [91]. Apparently, the highest methane production was achieved at pH
7.0 during fermentation time, which indicated that both the higher and
lower pH could decrease the activity of methanogenic bacteria [92].
Previous investigation showed that the production rate of biogas general
tended to accord with sigmoid function (S curve), indicating that the
methane production can be split into three stages: lag ecomposition
phase, and flattening phase [3]. Methane productiotN 1tude at the start
and end of curve, suggesting that the mg&ane generated in reactor
corresponds to specific growth rate of(mR®thdnogenic microbe [93]. To
enhance the methanation efficienc )aﬁdj)iogas production, various efforts
have been made. Preatme s contains physical, chemical, and
biological treatment. @VGI‘, different purposes lead to different
consequences. p@g& that the purposes were SCFA accumulation and
PHA productich methods reducing methane production had to be
adopted.

In specific surfactants, SDS was observed to affiliate with the
inhibition of methanogens activity during the sludge fermentation [26]. It
has been reported that the SDS would inhibit the methanogens acitivities
in the period of sludge fermentation. With the dose of SDS raised from 20

to 300 mg/g, the hindrance ratio of methane yield augmented definitely
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from 3% to 100% [94]. Another anionic surfactant SDBS also prevented
the process of methanogenesis. Total gas yields and methanogenesis from
glucose were decreased to half maximal rates at 20 to 50 ppm SDBS during
the original period of fermentation [36]. It has shown that the surfactants
with aromatic and cyclic, such as SDBS, were found to be the most
hazardous compounds for anaerobic acetoclastic methanogenesis [49].
However, SDS is one of the few surfactants with minimal toxicity to
methanogens [49]. The inhibition of methane producyi aponins is the
smallest, which 1is attributed to the negligible e methanogenic
bacteria activity after saponins addition. A@y, RL possessed serious
antibacterial activity to methanogenic b@a and some related enzymes.
As mentioned above, the addition ‘0 made the activity of coenzyme
F40, a methane related enz ,\gcreased by 40%. In addition, it was
confirmed that the RL n¢t onJy prevent the methanogenesis, but also retard

the metabolisragf (@:})microbes, which might cause the destruction of
1vit

biological act f sludge [94].
4. Effects of surfactant addition on contaminant removal

During waste water treatment, activated sludge process produces a
large number of waste activated sludge, which contains a lot of pollutants
[95, 96]. They might shift to the different compartments involving

atmosphere, soli, and surface water via pinpoint or diffuse inputs [97]. The
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most discussed contaminants, including hydrophobic organic matter (HOC)
and heavy metals [98, 99]. The removal of these pollutants has always been
a hot issue. The influences of surfactant on representative HOC
contaminants have been summarized in Table 1.

Surfactants have a great potential of solubilization. Generally, there
are three influence mechanisms for the advancement of HOC
biodegradation by surfactants addition (Fig. 3). The first mechanism is
forming micelle shaped by surfactant and encasing, tRe C. Therefore
microorganisms are able to adsorb the contaminant ¢ micelles core.
In the second mechanism, surfactants enipnce the mass transfer of
contaminants to the aqueous phase for ﬁ@ cgrade by microorganisms,
which is attributed to the reduced SI?&@ tension by surfactant [100]. And
for the third mechanism, thecejl Wgrophobicity has been changed by the
addition of surfactants, @ting in the direct contact between cells and
contaminants [l - In addition, there is another mechanism that has
been conjectu;& which surfactants promote microorganisms to be
adsorbed to sludge surface sites occupied by contaminants [104].

Because of the application of various kinds of metals in industry, there
are also various heavy metal ions in the wastewater, which causes the
sludge filled with heavy metal ions [105, 106]. Heavy metals cannot be
biodegraded. On the contrary, they can only be transformed from one

configuration to another, which can change their mobility and toxicity
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[107]. Some forms of heavy metals can be transformed by process of redox
or by alkylation. There were two main mechanisms for desorption of heavy
metals from sludge by surfactant addition (Fig. 4). Firstly, the cationic
surfactant can permute the same charged metal ions by rivalry for some but
not all negatively charged surface, because of the interaction of repulsion
between cationic surfactant and heavy metals. Secondly, the anionic
surfactants form nonionic complexes with heavy metal by ionic bonds
which are stronger than the bonds of metal with slydge L&Q8, 109] . The
metal-surfactant complexes are desorbed from slud ance to aqueous
due to the decrease of the surface tension @IZ]. In general, the two

mechanisms can be concluded in ion ex@e and counterion binding.

5. Conclusion and future pro .

This review summarlze@ lization of surfactant in the process of
anaerobic digestionCn) ng the influences on sludge properties, and
conversion pr%f hydrolysis, acidification and methanogenesis. In
addition, due to the excellent solubilization of surfactant, the removal of
organic pollution and heavy metals might also be affected by surfactant
addition. Surfactants, as an amphiprotic compound, have characteristic of
solubilization via reducing interface tension or forming micelles, when the
concentration of surfactant is under or above CMC, respectively. In the

process of anaerobic digestion, due to the rate-limiting influence of
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hydrolysis, enhancing its efficiency will lead to the increment of
acidification substrate. Therefore, the increased SCFA production can be
applied to remove nutrient and produce PHAs. Surfactant can not only
affect the proportion of various SCFA, but also influence the activities of
certain microorganisms, which have significant roles in anaerobic
digestion.

Notably, future investigations can be paid attention to the following
aspects: 1) Establishing technological process fq roduction of
biosurfactant for industrial production. Although tCity and risk of
biosurfactant are smaller than those of cheg¥gal surfactant, the price of
biosurfactant is higher than chemical s@ fits, which limits its wide
application. 11) Establishment of modeNtp describe the influence surfactant
addition on different microo® s. Due to the complex constitution of
microorganism involve@ anaerobic digestion, as well as the dual
character of s ctgt)the quantify effects of surfactant need specific
model. ii1) Proceys improvement of producing PHAs from SCFA. The
production of PHAs is in the theoretical stage. In order to achieve the
consummate craft of waste resources re-utilization, it is worth investigating

how to establish a systematic process for PHAs production.
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