1

Can biotechnology strategies effectively manage environmental (micro)plastics?

2 Maocai Shen, Guangming Zeng*, Yaxin Zhang*, Xiaofeng Wen, Biao Song, Wangwang Tang

3

4 College of Environmental Science and Engineering, Hunan University and Key Laboratory of

5 Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha,

6 410082, P.R. China

7

8 *Corresponding authors:

- 9 E-mail: <u>zgming@hnu.edu.cn</u> (G. Zeng), Tel: +86-731-8-8822754 (o)
- 10 E-mail: <u>zhang_yx@hnu.edu.cn</u> (Y. Zhang), Tel: +86-731-88822424
- 11

Acerto

12 Abstract

13 With the convenience of plastic products to daily life, the negative sides of the plastic-age have 14 gradually emerged. Like other pollutants, complex environmental factors result in the ubiquitous 15 presence of (micro)plastics worldwide, raising potential risks to the ecological systems. However, 16 due to the limitation of traditional technologies in treating these materials, new strategies should be developed. More recently, researchers have showed that biotechnology strategies could be 17 18 promising approaches to effectively manage and control (micro)plastics in the environment, because some microorganisms have been confirmed to be successfully capable of 19 ng (micro)plastics. Nevertheless, the biotechnology is still in its infancy, and most 20 re carried out under laboratory conditions. The biodegradation process is affe 21 d by many factors: microorganism any, (micro)plastics are highly stable 22 species, carbon sources, material types and sizes oler Pro in the environment, which are difficult to be 23 and as carbon sources for microorganisms. 24 riate conditions, which are not always feasible in Biodegradation of (micro)plastics 25 field conditions. As such, alth ugh t otechnology strategies might be a promising approach to 26 remove environment stics, we believe it is not now at least. mi 27 Keywords: (Micro)plastics; Microorganisms; Biodegradation; Biotechnology strategies

28

29 1. Concerns of (micro)plastics

30 Plastics are inevitable reality in modern society due to their low manufacturing costs and resistance ability (Sharma and Chatterjee, 2017). It is reported that the global annual production of 31 32 plastics has reached 348 million tons in 2017 and will continue to increase (PlasticsEurope., 2018). 33 Massive production and widespread applications of plastics increase their chances of entering the environment. The ideal properties endow them with high flexibility, stability and resistance to 34 35 degradation, resulting in continuous accumulation in the global environment (Barnes et al., 2009). 36 Large plastic wastes can be decomposed into small fragments violet irradiation, weathering and erosion. When the particle size decreases to lea 37 mm, they are called 38 microplastics (Thompson et al., 2004). Many studies have ported the ubiquitous occurrence of microplastics in the environment (Dobaradaran et a 39 kert et al., 2017; Fang et al., 2018; 40 Li et al., 2018; Slootmaekers et al., 2019; Su et al., 2016; Teng et al., 2019; Wen et al., 2018). The lastics not only causes direct landscape problems, 41 widespread presence of plastic waste 42 but also poses potential environmental risks to living organisms, even humans (Diepens and 12; Miranda and Carvalho-Souza, 2016; Shen et al., 2019b). A 43 Koelmans, 2018; I research conducted by then et al. (2017) reported that polystyrene microplastic particles can reduce 44 45 the growth rate and the larval migration behavior of zebrafish (Danio rerio). Kettner et al. (2017) 46 showed that the presence of microplastics (polyethylene (PE) and polystyrene (PS)) in different 47 environments had a certain influence on the composition and diversity of aquatic fungi community. 48 In addition, microplastics can be transferred from lower trophic levels to higher-grade predators 49 along the food chain (Set ä äet al., 2014; Shen et al., 2019a).

50 The plastic pollution and potential risks of microplastics have attracted considerable concerns.

51	Therefore, remediation strategies are needed to manage (micro)plastics in the environment. Source
52	control and clean up from the environment are two important strategies. At present, some countries
53	and organizations, such as America, England, Canada and the United Nations, have already
54	established national laws and regulations in order to reduce the release of (micro)plastics (Hu et al.,
55	2019). These legislative methods aimed at raising the public awareness of the potential risks of
56	(micro)plastics. Another strategy is to develop reliable technologies for direct removal of
57	microplastics from the environment. Now, the removal of (micro)plastics in the environment is just
58	from one phase to another, such as removing microplastics in wastevater matment plants and
59	drinking water treatment plants. So what and how can we do? Bio exhert gy strategy may be a
60	promising approach to meet the demand. Under the action of a crobes (plastic-degrading enzymes),
61	the long chain of polymers can be gradually broken down to form short chain and fatty acids,
62	eventually CO ₂ and H ₂ O (Yoshida et al., 2016). But echnology strategy is environmentally friendly
63	and can be alone or combined with other on a monal treatment methods. Very recently, a review on
64	the management of plastics documenter that biotechnology-based tools will be pivotal approaches for
65	the biodegradation of anyiror menul plastics, leading from waste to wealth (Pa ço et al., 2018).
66	Although biodegratation of (micro)plastics is still in its infancy and most studies are performed
67	under the lab conditions, the biodegradability of (micro)plastics is of great significance for the
68	development in plastic industry and society. Biotechnology strategy requires further research and
69	development at present and in the near future so as to make it reproducible and suitable for real
70	environmental applications. As such, clearly, biotechnology strategies may be one of the most
71	promising methods to control plastic pollution.

2. Biodegradation of microplastics

73	Global plastic waste has become one of the most serious solid waste pollution problems at
74	present. How to deal with plastic waste has become an important issue. A number of studies have
75	demonstrated that microorganisms have the ability to degrade microplastics, principally because
76	they can produce plastic-degrading bioenzymes, such as laccase from Staphylococcus epidermis
77	(Chatterjee et al., 2010), and PETase from Ideonella sakaiensis (Yoshida et al., 2016). Currently,
78	dozens of strains, mainly fungi (mold), have been screened to degrade polyoleins and polyester
79	plastics. Known microorganisms for microplastic biodegradation mainly include the bacterial
80	species Enterobacter asburiae, Bacillus sp. (Jun et al., 2014; Yu et al., 2015a) Exiguobacterium sp.
81	(Yu et al., 2015b), Ideonella sakaiensis (Yoshida et al., 2016), Rhodo overs Nodochrous, Nocardia
82	asteroids (Bonhomme et al., 2003), Streptomyces badius, Chamonas acidovorans, Rhodococcus
83	ruber, and Clostridium thermocellum (Paço et al 2018), and fungal species Phanerochaete
84	chrysosporium, Engyodontium album (Jeyakuma et al., 2013), Cladosporium cladosporoides
85	(Bonhomme et al., 2003), Pycnoporus ciunciarinusand and Mucor rouxii (Pathak and Navneet,
86	2017). These species have been obtained and isolated from field-collected soil, landfill, dumping
87	sites, etc. Microorganisms can atilize microplastics as an energy source and carbon source to
88	decompose microplastics, thereby increasing the mineralization of microplastics and biomass
89	(Weber et al., 2018). Taking the biodegradation of polyethylene terephthalate (PET) by Ideonella
90	sakaiensis as an example, as described in Fig.1, the biodegradation can be divided into four
91	processes: 1) biosorption and erosion of plastic matrices; 2) the long chain being decomposed into
92	short chain through biological oxidation or enzymatic hydrolysis; 3) the short chain being broken
93	down to form fatty acids; and 4) microorganisms feeding on fatty acids and finally, and these
94	products being transformed into CO ₂ (or CH ₄) and H ₂ O (Yoshida et al., 2016). Due to high molecular

95 weight, strong hydrophobicity, low surface energy and other factors, the biodegradation process of 96 PET is complex, and the degradation rate is low (approximately 6 weeks). Despite this, this may 97 imply that it is realistic to improve the performance of enzymes to strengthen the biodegradability 98 of microplastics. Biodegradation technology can be used alone or as a complement to the already 99 existing traditional schemes for plastic waste treatment, thereby enhancing the management of plastic wastes. As such, many scientists and researchers believe that biodegradation may be a 100 101 feasible alternative for bioremediation strategies to solve the increasingly serious plastic waste problem in the future, as described by Yoshida et al. (2016) and Pag 102 3. Factors of microplastic biodegradation by microorganisms 103 104 Evidence from biodegradation studies of microplastics ows that microorganisms can lead to the degradation of microplastics, which is of great 105 hee to combat microplastic pollution. 106 However, unfortunately, there are still many challenges to eliminate microplastics by microorganisms in practical applicati ustrates the different factors that directly affect the 107 Michbial species, initial biomass, hydrophobicity of plastic, and 108 biodegradation of microplastic the 109 plastic particle size biodegradation process (Fig. 2A). For instance, the basidiomycete luen Zalerion maritimum has shown high removal efficiencies of PE microplastics; however, other 110 111 basidiomycetes, such as Nia vibrissa shows lower biodegradation efficiencies under the same 112 conditions (Pa to et al., 2018). Another example is a research done by Hadad et al. (2005), which 113 described the degradation of PE by Brevibacillus borstelensis in detail. The authors reported that 114 approximately 11% weight loss of PE films was observed in a month, however, the PE films with 115 low density have previously been exposed to ultraviolet radiation. Additionally, microplastics are unsavory carbon source for microorganisms (Fig. 2C). For PE, polypropylene (PP), polyvinyl 116

117 chloride (PVC), these synthetic materials possess a main chain composed of C-C bonds and have no other active functional groups. The carbons from these polymers are highly stable. Above 118 119 mentioned tests were performed under laboratory conditions. There is a quite big difference between 120 laboratory conditions and those of field environment. More fantastic carbon sources for microorganisms are existed under real environmental conditions. Microorganisms prefer various 121 available carbon sources to microplastics (Fig. 2C). As a matter of fact, microplastics are difficult 122 123 to be biodegraded under field conditions. For instance, a research reported that the weights of LDPE, HDPE, PP and polycarbonate submerged in the ocean waters got loss in appr 124 ately 1.9%, 1.6%, 0.69% and 0.65%, respectively, within a 12 month period (Arthan 125 009). The increase of biomass and mineralization of organic compounds are key st for biodegradation of microplastics 126 by microorganisms (Weber et al., 2018). The main cl ain 127 heroplastics breaks and the molecular 128 weight gradually deceases, thereby finally bec ning a utilized monomer via enzymolysis, hydrolysis or synergistic effect by isms (Fig. 2B). Consequently, considering the 129 130 different microorganisms, char cteristics and types of microplastics and available nutrients, it is bial 131 necessary to improve opulations and increase contacts with each other. For example, nici Syranidou et al. (2017) eported that the biodegradation degree of PS was improved from 0.19% – 132 2.3% within a period of 6 months via successive inoculations of the indigenous marine community. 133 134 But, such degradation efficiency is still considerably low. Tribedi and Alok (2013) showed that the 135 degradation of microplastics can also be enhanced by promoting the interaction between polymers and microplastic-degrading microbes. The authors reported that the presence of mineral oil 136 137 promoted the hydrophobicity and strengthened adhesion of polymer surface, thereby improving the biodegradation efficiency of PE. Evidence has been demonstrated that the formation of biofilms 138

plays a vital role on the biodegradation of microplastics, in part, reasonably, the use of biotechnology strategies enhanced biofilm formation could ameliorate biodegradation status of microplastics (Pathak and Navneet, 2017). In addition, the development and reproduction of microorganisms are related to their specific natural environment (**Fig. 2**). Microorganisms screened to degrade microplastics may be not necessarily dominant species in real environment. Enhancement of the adaptability of microorganisms to the specific environment is conducive to their survival and speeding up the utilization and degradation of microplastics.

146 **4. Ways forward**

147 (Micro)plastics are everywhere. The ubiquitous presence of astics needs removal strategies after they are released into the environment 148 to its potential toxic effects and 149 bioaccumulation on many organisms, even humans. meir disposal has become a matter of 150 great concern, especially in view of the growing ev lence that they are harmful to the environment. Although microplastics are difficult ed, from the aforementioned descriptions, they are 151 still degradable. Although the biode radation efficiency of microplastics is low, the degrading 152 153 ability of microorgan be further enhanced. Microorganisms and surrounding conditions are ms d 154 most crucial during bio egradation. Therefore, screening suitable microorganisms and adapting to 155 environmental conditions are the challenges for biodegradable plastics in the current and the future. 156 Efficient strains with high performance of degrading plastics may be screened by high strength and 157 nixed cultures. In addition, bioengineering can also be used to enhance the biodegradable ability 158 though cultivation of new microorganisms or enzymes. The in-situ biodegradation for 159 (micro)plastics may be achieved adding microbes or extracellular enzymes or utilizing natural microbial communities through related bioengineering. Therefore, biotechnology strategies are 160

183	reproducible, inexpensive and suitable for large-scale applications. A circular plastic economy is
184	required in the current and the future, and biotechnology strategies are interesting and will help us
185	move towards a more sustainable and closed-loop development of plastics economy.
186	
187	Acknowledgements
188	The study is financially supported by the Program for the National Natural Science Foundation of
189	China (51521006) and the Program for Changjiang Scholars and Innovative Research Team in University
190	(IRT-13R17).
191	
192	Declaration of interest
193	The authors have no conflict of interest to declare eganing mis article.
194	
	~QX
	\mathbf{V}

and quitable incompanying and quitable for large coale applications. A givenlar plastic economy is

195 Reference

- Artham T., Sudhakar M., Venkatesan R., Nair C.M., Murty K.V.G.K., Doble M., 2009. Biofouling and
 stability of synthetic polymers in sea water. Int. Biodeter. Biodegr. 63, 884-890.
- Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M., 2009. Accumulation and fragmentation of plastic
 debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985-1998.
- Bonhomme S., Cuer A., Delort A.M., Lemaire J., Sancelme M., Scott G., 2003. Environmental
 biodegradation of polyethylene. Polym. Degrad. Stabil. 81, 441-452.
- Chatterjee S., Roy B., Roy D., Banerjee R., 2010. Enzyme-mediated biodegradation of heat treated
 commercial polyethylene by Staphylococcal species. Polym. Degrad. Stabil. 95, 195-200.
- Chen Q., Gundlach M., Yang S., Jiang J., Velki M., Yin D., 2017. Quantitative investigation of the
 mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci.
 Total Environ. s584–585, 1022-1031.
- 207 Diepens N.J., Koelmans A.A., 2018. Accumulation of Plastic Debris and Associated Contaminants in
 208 Aquatic Food Webs. Environ. Sci. Technol. 52, 8510-8520.
- 209 Dobaradaran S., Schmidt T.C., Nabipour I., Khajeahmadi N., Tajukhsh S., Saeedi R., 2018.
 210 Characterization of plastic debris and association of metal with hicroplastics in coastline
 211 sediment along the Persian Gulf. Waste Manage. 78, 649-658.
- Eckert E.M., Di A.C., Kettner M.T., Ariasandres M., Fontantio D., Grossart HP, 2017. Microplastics
 increase impact of treated wastewater on freshwater incroal community. Environ. Pollut. 234,
 495-502.
- Fang C., Zheng R., Zhang Y., Hong F., Mu J., Chen M. 201). Microplastic contamination in benthic
 organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298-306.
- Fossi M.C., Panti C., Guerranti C., Coppole D. Giannetti M., Marsili L., 2012. Are baleen whales
 exposed to the threat of micropostics A case study of the Mediterranean fin whale
 (Balaenoptera physalus). Mar. Pallet. Aull. 64, 2374-2379.
- Hadad D., Geresh S., Sivan A., 1005. Designadation of polyethylene by the thermophilic bacterium
 Brevibacillus borstelessi, J.A. pl.Microbiol. 98, 1093-1100.
- Hu D., Shen M., Zhang Y., I. H., Z ng G., 2019. Microplastics and nanoplastics: would they affect global
 biodiversity has re? Environ. Sci. Pollut. R. 26, 19997–20002.
- Jeyakumar D., Chirstee J., Doble M., 2013. Synergistic effects of pretreatment and blending on fungi
 mediated biodegradation of polypropylenes. Bioresour. Technol. 148, 78-85.
- Jun Y., Yu Y., Wei-Min W., Jiao Z., Lei J., 2014. Evidence of polyethylene biodegradation by bacterial
 strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48, 13776-13784.
- Kettner M.T., Rojas-Jimenez K., Oberbeckmann S., Labrenz M., Grossart H.P., 2017. Microplastics alter
 composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447-4459.
- Li J., Green C., Reynolds A., Shi H., Rotchell J.M., 2018. Microplastics in mussels sampled from coastal
 waters and supermarkets in the United Kingdom. Environ. Pollut. 241, 35-44.
- 232 Miranda D.D.A., Carvalho-Souza G.F.D., 2016. Are we eating plastic-ingesting fish? Mar. Pollut. Bull.
 233 103, 109-114.
- Pa o A., Jacinto J., Costa J.P.D., Santos P.S.M., Vitorino R., Duarte A.C., 2019. Biotechnological tools
 for the effective management of plastics in the environment. Crit. Rev. Env. Sci. Tec. 49, 410441
- 237 Pathak V.M., Navneet., 2017. Review on the current status of polymer degradation: a microbial approach.

238	Bioresour. Bioproces. 4, 15-46.
239	PlasticsEurope., 2018. Plastics-The facts 2018.
240	Set äl ä O., Fleming-Lehtinen V., Lehtiniemi M., 2014. Ingestion and transfer of microplastics in the
241	planktonic food web. Environ. Pollut. 185, 77-83.
242	Sharma S., Chatterjee S., 2017. Microplastic pollution, a threat to marine ecosystem and human health:
243	a short review. Environ. Sci. Pollut. R. 24, 21530-21547.
244	Shen M., Zhang Y., Zhu Y., Song B., Zeng G., Hu D., 2019a. Recent advances in toxicological research
245	of nanoplastics in the environment: A review. Environ. Pollut. 252, 511-521.
246	Shen M., Zhu Y., Zhang Y., Zeng G., Wen X., Yi H., 2019b. Micro(nano)plastics: Unignorable vectors
247	for organisms. Mar. Pollut. Bull. 139, 328-331.
248	Slootmaekers B., Catarci-Carteny C., Belpaire C., Saverwyns S., Fremout W., Blust R., 2019.
249	Microplastic contamination in gudgeons (Gobio gobio) from Flemish rivers (Belgium). Environ.
250	Pollut. (Barking, Essex : 1987) 244, 675-684.
251	Su L., Xue Y., Li L., Yang D., Kolandhasamy P., Li D., 2016. Microplastics in Taihu Lake, China. Environ.
252	Pollut. 216, 711-719.
253	Syranidou E., Karkanorachaki K., Amorotti F., Franchini M., Reporchou E., Kaliva M., 2017.
254	Biodegradation of weathered polystyrene films in seawater vicrocosms sci. Rep. 7, 17991-
255	18003.
256	Teng J., Wang Q., Ran W., Wu D., Liu Y., Sun S., 2019. Microalastic in cultured oysters from different
257	coastal areas of China. Sci. Total Environ. 653, 1282-129
258	Thompson R.C., Olsen Y., Mitchell R.P., Davis A., Rowland S., John A.W.G., 2004. Lost at sea: Where
259	is all the plastic? Science 304, 838-838.
260	Tribedi P., Alok K., 2013. Low-density polyethylece degradation by Pseudomonas sp AKS2 biofilm.
261	Environ. Sci. Pollut. R. 20, 4146-4145.
262	Weber M., Makarow D., Unger B., Mortie, N., Vilde B.D., Eekert M.V., 2018. Assessing Marine
263	Biodegradability of Plastic—'owards as Environmentally Relevant International Standard Test
264	Scheme. Proceedings of the contational conference on microplastic pollution in the
265	mediterranean sea.
266	Wen X., Du C., Xu P., Zeng G., H ang D., Yin L., 2018. Microplastic pollution in surface sediments of
267	urban water creatin Changsha, China: Abundance, composition, surface textures. Mar. Pollut.
268	Bull. 136, 414-23.
269	Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., 2016. A bacterium that degrades
270	and assimilates poly(ethylene terephthalate). Science 351, 1196-1199.
271	Yu Y., Jun Y., Wei-Min W., Jiao Z., Yiling S., Longcheng G., 2015a. Biodegradation and Mineralization
272	of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization
273	and Isotopic Tests. Environ. Sci. Technol. 49, 12080-12086.
274	Yu Y., Jun Y., Wei-Min W., Jiao Z., Yiling S., Longcheng G., 2015b. Biodegradation and Mineralization
275	of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environ. Sci.
276	Technol. 49, 12087-12093.
277	
278	
279	