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Abstract

The ecological risks of carbon nanotubes in the aquatic environment are of great
concern. In this work, the effects of multi-walled carbon nanotubes (MWCNTs) on
metabolic function of the microbial community in sediment contaminated with
phenanthrene were investigated. The metabolic function was evaluated by Biolog
ECO microplates a month later after MWCNTs of various dosages (0.5%, 1.0%, and
2.0%, w/w) were incorporated into the phenanthrene-contaminated sediment. The
self-organizing map (SOM) algorithm and principal compopeqts ysis were used
for data processing. The incorporation of 0.5% MWC \ he contaminated
sediment significantly enhanced microbial activity Mgom 0.83 to 0.92, average well
color development) and Shannon-Wiener (@ity index (from 3.19 to 3.23)
compared with the blank control. Cluste?&y\e microbial communities in different
treatments on the trained SOM e that phenanthrene had a greater impact on
the metabolic function of @ijent microbial communities than MWCNTs in the
experiments. Th eta@ifferences caused by MWCNTs were mainly reflected in
the utilization of amyro acids and polymers. The results of this study may contribute
to evaluating the ecological risks of MWCNTs in the aquatic environment and

developing the secure applications of MWCNTs.
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1. Introduction

Carbon nanotubes (CNTs) are one-dimensional carbonaceous nanomaterials with
a cylindrical graphite structure [1, 2]. Since they were first reported [3], continuous
research has been conducted on the unique chemical, electrical, mechanical, optical,
and thermal properties of CNTs. CNTs have found wide applications in biosensors,
coatings and films, composite materials, energy storage, medical devices,
microelectronics, and environment [1, 4-7]. The global market size of CNTs was

$2.26 billion in 2015, and was estimated to reach $5.64 \billiag by 2020 at a

compound annual growth rate of 20.1% [8]. As the pro nd application of
CNTs increase, these nanomaterials will inevitably D{ released into the environment.
Aquatic sediment is one of the main sinks of @m the natural environment [9]. It
is estimated that the concentration of CI\&A}ediment has reached a level of pg/kg
and will continue to increase [10

The potential ecologic@s of CNTs in the aquatic environment are of great
concern [12-14].ue @ unique structural characteristics, CNTs may have toxic
effects on aquatic ordgnisms such as fish, crustaceans, algae, and bacteria [15, 16]. On
the other hand, CNTs can interact with coexisting contaminants and alter their fates
and environmental risks [17]. Our previous work has shown that incorporating CNTs
of 0.5%, 1.0%, and 1.5% (w/w) into sediment significantly impeded the transport of
sodium dodecyl benzene sulfonate through riverine sediment columns and increased

the retardation factor from 5.10 to 42.7, 60.6, and 92.6, respectively [18]. Qian et al.

[19] found that CNTs would change the specific surface area and zeta potential of
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sediment, and the adsorption capacity of sediment for phosphorus increased from
0.664 to 0.996 mg/g with the increase of CNT content from 0% to 5% (w/w).
Abbasian et al. [20] added CNTs of 0.1%, 0.5%, and 1.0% (w/w) to a fresh water
sediment contaminated with crude oil, and found that the CNTs could increase the
microbial abundance and the effects depended on both CNT dosage and oil
concentration. Recent research by Myer et al. [21] showed that CNTs could reduce the

toxicity of diphenhydramine to Ceriodaphnia dubia in sediment exposure, and their

results suggested that the sediment containing carboxylated ¢CNTs 18 ng/g caused
a 78.7%-90.1% decrease in 48-h mortality. Despite the pro has been made in
recent years, more work is needed to improve the ledge of CNT ecological risks

in the aquatic environment. @

Sediment microbial community i%tive to the variations of sediment
environment and anthropogenic @r ce, which enables it to be an indicator for
assessing the ecological ri@ contaminants in the aquatic environment [22-24].
Most available sties Q)H)the effects of CNTs on sediment microbial communities
focused on the michpbial composition and structure diversity based on molecular
methods such as pyrosequencing, terminal restriction fragment length polymorphism,
and denaturing gradient gel electrophoresis [20, 25, 26]. These commonly used
methods are helpful for analyzing microbial community structure, but are limited in
reflecting the ecological relevance of community structure. The Biolog ECO
microplate is a useful tool to study the microbial metabolism based on carbon

utilization, and can provide valuable information about the ecological functions of

4
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microbial community [27, 28]. Thus, the Biolog ECO microplate is used in this work.
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants
widely found in oil-contaminated sediments. Phenanthrene is a PAH with three
benzene rings and commonly used as model PAH [29-31]. It is of great environmental
concern because of its toxicity and persistence in the aquatic environment [32, 33]. In
this study, multi-walled carbon nanotubes (MWCNTSs) of various dosages (0.5%,
1.0%, and 2.0%, w/w) were incorporated into the sediment contaminated with
phenanthrene. The primary objective of this work is to de gag the effects of
MWCNTs on the metabolic function of microbial commW the contaminated
sediment. The results of this study will benefit thgh\understanding of CNT-induced
changes in sediment microbial community anl ¢ valuable information for risk

assessment of CNTs in the aquatic enviro&p

2. Materials and method‘ )
2.1. Sediment an @

Surface sedimel¢ samples (0—15 cm) were collected from five sites located in
Changsha section of the Xiangjiang River, which is the largest river in Hunan
Province, China. This river runs from south to north, and flows into the Dongting
Lake belonging to the Yangtze River system. Three separate samples were taken from
every site, and immediately transported to the laboratory after sampling. The collected
samples were air-dried, crushed, and sieved through a sieve with a mesh aperture of

one mm. Samples from different sites were manually homogenized prior to use. No
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native PAHs were detected in the sediment. Phenanthrene was artificially spiked into
the sediment (detailed spiking procedures are provided in the Supplementary
Material). The final concentration of phenanthrene was detected at 2.03 mg/g in the
prepared sediment. This level of phenanthrene concentration was chosen to match the
total amount of residual PAHs commonly found in soil and sediment heavily
contaminated with oil [34-37]. MWCNTs with a CNT content > 90%, a length of
5-20 pum, and an outer diameter of 10-20 nm were used in this study. They were
purchased from Chengdu Organic Chemistry Co., Chinesg K¢ y of Sciences,

Chengdu, China.

2.2. Experimental design @

Eight treatments were performed” M\the experiments. The details of the
experimental design are displayce~ e 1. For the sediments contaminated with
phenanthrene, MWCNTs W@spectively added at weight ratios of 0% (T2), 0.5%
(T4), 1.0% (T6),wgd Z@TS), and the mixtures were manually homogenized. The
same procedures welp performed on uncontaminated sediments, and these treatments
were used as controls (T1, T3, T5, and T7). Previous studies have shown that
MWCNTs can significantly alter soil microbial activity and pollutant bioavailability at
relatively high concentrations (> 0.5%, w/w), but have little effects on those at low
concentrations [38-40]. Considering that our primary objective is to study the effects
of MWCNTs on metabolic function of microbial community in the sediment, though
the concentrations of MWCNTs used in this study (0.5%-2.0%, w/w) are relatively

6
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high, they are suitable for purpose and may correspond to practical cases of accidental
spills or CNT waste accumulation [39]. After incorporating CNTs into the sediment,
ultrapure water was slowly added at a water/sediment ratio of 5:1 (v/w) to simulate
the water-sediment system. The overlying water was removed at the end of one-month
treatment and sediment samples were taken out for Biolog ECO microplate

experiments.

Table 1
Experimental design for investigating the effects of MWCNTs cWypolic function of the

microbial community in sediment contaminated with phefyathrene.

Treatment Components

Treatment 1 (T1) Sediment - —

Treatment 2 (T2) Sediment leh)ene (0.2%, w/w) -

Treatment 3 (T3) Sediment MWCNTs (0.5%, w/w)
Treatment 4 (T4) Sediment anthrene (0.2%, w/w) MWCNTs (0.5%, w/w)
Treatment 5 (TS) Sediment - MWCNTs (1.0%, w/w)
Treatment 6 (T6) Sedinfwt Phenanthrene (0.2%, w/w) MWCNTs (1.0%, w/w)
Treatment 7 (T7) S dignt) - MWCNTs (2.0%, w/w)
Treatment 8 (T8) @em Phenanthrene (0.2%, w/w) MWCNTs (2.0%, w/w)

2.3. Biolog ECO microplate experiments

The Biolog ECO microplate (Biolog Inc., California, USA) has 96 wells
containing 31 kinds of carbon sources (2 amines, 6 amino acids, 10 carbohydrates, 7
carboxylic acids, 2 phenolic compounds, and 4 polymers) in triplicate and three wells
without carbon sources (Table S1). Each well of the microplate also contains a

colorless tetrazolium dye, which can be reduced to a purple formazan when the
7
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carbon source is utilized by microorganisms [41]. The color shades of purple reflect
the difference in utilization of carbon sources. For microbial community analysis, 10
g (dry weight) of sediments were added into 90 mL of sterile NaCl solution (0.85%,
w/v), and the suspension was shaken at 200 rpm for 30 min. After standing for 30 min,
150 pL of supernatant were added to each well of the microplate. The inoculated
microplates were incubated at 25 °C for 7 days. Absorbance was recorded at 590 nm
(colour + turbidity) and 750 nm (turbidity) with a microplate spectrophotometer

(Thermo Scientific Multiskan GO, USA) every 24 h [42].

2.4. Data processing

Average well color development (AWCD@C indicates the microbial activity
was calculated with the following equatio&)42]:
AWCD =3LIZ(Ci —R) 3)
where C; is the difference @19 of absorbance at 590 and 750 nm from the wells
containing carbo our@)nd R is the difference value of the blank well without
carbon sources. Theyphannon-Wiener diversity index (H') of the sediment microbial
community was calculated according to the following equation [27]:
H' ==Y (p,xIn p,) )
where p; = (Ci — R) / Y(Ci — R), Ci and R have the same meaning as those in Eq. (3).
One-way analysis of the variance (ANOVA) followed by the least significant

difference (LSD) test at a significance level of 0.05 was performed to compare the

mean values. The self-organizing map (SOM) algorithm was used to classify the

8
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microbial communities in different treatments based on the utilization of each carbon
source in the microplate. SOM is an artificial neural network widely used for
visualizing input data of high dimensionality in a two dimensional space through the
training of unsupervised learning [43]. The Matlab software and SOM toolbox were
used to implement the SOM algorithm according to previously reported instructions
[43-45]. The input data were normalized to the range between zero and one with a
linear transformation. The principal component analysis (PCA) was conducted to
determine how the microbial communities are different base icroplate data.
The principal components that could explain over 5% tal variance were

involved in the analysis. The PCA and SOM analysifzyere performed with microplate

data at 168 h of incubation [46]. Q)

X0

3. Results and discussion
3.1. Characterization of the @ll’jem‘ and MWCNTs

The micro ho@f sediment and MWCNTs was characterized by scanning
electron microscope YWEM). The typical tubular structure of MWCNTs was observed
and the sediment particles varied in size and shape (Fig. 1). The measured pH value of
the sediment was 7.92 and it had an organic carbon content of 1.63% (w/w). Energy
disperse spectroscopy (EDS) analysis was performed to determine the elemental
composition of sediment, and the result showed that oxygen, silicon, aluminum, and

potassium were the main components (Fig. 1e).
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Fig. 1. SEM images of the used MWCNTs (a and b) and sedimepi(c and d), and EDS

analysis of the sediment (e).

3.2. Effect of MWCNTs on microbial metabolic fun %

3.2.1. Microbial activity and diversity inK)@

The overall microbial activity iy @ rent treatments is indicated by AWCD and

shown in Fig. 2a. Compared@ the blank control without MWCNTs and
phenanthrene (T1), otcbgrgrease of microbial activity was observed in the
sediments with 0.\ WWCNTs (T3 and T4). For the phenanthrene-contaminated
sediments, no significant differences of microbial activity were found between the
sediment without MWCNTs (T2) and other groups except T4. Comparing the results
of T3-T8, the sediments with 0.5% MWCNTs showed higher microbial activity than
the sediments with higher content of MWCNTs. These results suggested that the
addition of 0.5% MWCNTs could enhance the microbial activity in sediment. The
reason might be that these MWCNTs acted as microenvironments for the attachment

and growth of microbes and protected them from predation [20]. In the aquatic
10

Element  Weight%  Atomic%
OK 55.15 72.64
Mg K 0.42 0.37
AlK 13.13 10.26
SiK 16.88 12.66
KK 4.09 22
Mn K 0.45 0.17
Fe K 1.81 0.68
CuK 0.35 0.11
ZnK 0.31 0.1
Au M 7.41 0.79
K
K Mn Fe
1 L 1 L
4 6 keV
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environment, biofilms are the main form of microbial life, and the formation of
biofilms can be promoted in the presence of CNTs due to the abundant sites on CNTs
for microbial attachment [47]. Additionally, CNTs can adsorb external nutrients that
are required for microbial growth, which improves the availability of nutrients [48].
When more MWCNTs (1.0% and 2.0%) were added, the increase of microbial
activity might be inhibited due to the antibacterial effect of a large number of
MWCNTs [38]. Bulk MWCNTs can envelop the adsorbed microorganisms and isolate
them from the external environment, thus preventing their grogwith 9].

Although the differences of overall microbial activity certain treatment
groups are not significant, the Shannon-Wiengh diversity index (H") varies
considerably (Fig. 2b). Shannon-Wiener div@ mdex is a widely used species
diversity index that takes into account thes)&ﬁs richness and evenness, and provides
heterogeneity information for mj 1Nggommunity studies [50]. Compared with the
blank control (T1), the a@ijp of 0.5% MWCNTs significantly increased the
diversity index o icr@ommunity in phenanthrene-contaminated sediment (T4).
The treatments withyaddition of only MWCNTs (T3, TS5, and T7) showed lower
diversity index than those with addition of both MWCNTs and phenanthrene (T4, T6,
and T8). It has been reported that microbial diversity is positively correlated with
environmental heterogeneity [51]. Thus, when multiple exogenous substances were
incorporated, the microbial diversity increased with greater sediment heterogeneity.
Additionally, no significant differences in the diversity index were found between the

contaminated sediment without MWCNTs (T2) and those sediments incorporated

11
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with MWCNTs (T4, T6, and T8). This result indicated that the addition of MWCNTs
had little influence on microbial species of the sediment contaminated with
phenanthrene in the experiments. Further analysis was performed with SOM
algorithm and PCA to illustrate the microbial differences in utilization of each carbon

source in the microplates.
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Treatment

Fig. 2. AWCD of the Biolog ECO microplates (a) and Shannon-Wiener diversity index (b)
from different treatment groups at 168 h. Different letters denote statistically significant

differences (P < 0.05) between groups.

12



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

3.2.2. SOM analysis

The utilization of carbon sources in the microplate by microbial communities in
different treatments was analyzed with SOM algorithm. Through SOM analysis, the
relationship between the clusters of sediment microbial communities and the
utilization of each carbon source can be clearly identified. A 28-unit map (7 X 4) was
selected as the best compromise between a low quantization error and a number of
neurons close to the number of samples. The k-means algorithm was applied to cluster
the trained map and classify the microbial communities in [d&fe treatments into
four groups (Fig. 3, cluster I-IV). Microbial commun he same cluster
exhibited more similar metabolic characteristics towgads the 31 carbon sources. It was
found that all the control treatments (T1, T3, @n 7) were in the cluster I. The
main characteristic of this cluster was th)a&e) sediments in these treatments did not
contain phenanthrene, thus it su% t phenanthrene had a greater impact on the
metabolic function of sediment microbial communities than MWCNTs in the
experiments. Thi ul@ecause phenanthrene is easier to be bioaccumulated and
involved in the micyebial metabolism than MWCNTs [14, 52]. The treatment T2
appeared in the cluster II and III, but not the cluster IV. This result indicated that, for
the phenanthrene-contaminated sediment, the addition of 2.0% MWCNTs (T8) caused
more significant differences in the microbial metabolic function than other treatments
(T4 and T6). Freixa et al. [15] have reported that the dose-effect relationships between
CNT exposure and biological response are not linear. Aquatic organisms may have

adaptive mechanisms to the exposure of CNTs at relatively low concentrations, but
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suffer distinct negative impacts when the concentration of CNTs is extremely high.
On the other hand, the incorporation of 2.0% MWCNTs caused higher retention of
phenanthrene in sediment, which was shown with lower phenanthrene concentration
in the overlying water (Fig. S1). Co-exposure to these MWCNTs and phenanthrene

resulted in more significant differences in the metabolic function.

Fig. 3. Distribution and clusterin @ro al communities in different treatments (T1-T8)
g g

on the SOM based on t il n of carbon sources. Clusters (I-IV) were derived from

k-means algorithm < to the trained SOM. Numbers in the brackets indicate the

repetitions.

The component planes that show the absorbance for each carbon source on the
trained SOM were displayed in Fig. 4. At the top left corner of Fig. 4, a unified
distance matrix (U-matrix) visualizes the relative distances between adjacent neurons.
The matrix can help to identify clusters of microbial communities in different

treatments on the SOM [53]. On the whole, L-asparagine, tween 80, D-mannitol, and
14
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N-acetyl-D-glucosamine were highly utilized by the sediment microbes (shown with a
minimum absorbance value more than 1.20). D-xylose, 2-hydroxy benzoic acid,
phenylethylamine, and D, L-a-glycerol phosphate were not utilized by the sediment
microbes (shown with a maximum absorbance value less than 0.15). Most of the
maximum absorbance values appeared in the neurons at the top left, top right, and
bottom left corner, which respectively correspond to T1 (or T3), T4, and T8 by

reference to the microbial community distribution in Fig. 3. The microbial

communities in T1 and T3 showed the highest utilization for gc, L-asparagine,

i-erythritol, itaconic acid, and D-malic acid, while D- ic acid y-lactone,
glycogen, D-glucosaminic acid, and putrescine werg\gost effectively utilized by the
sediment microbes in T8. The component p@o 15 carbon sources (including
B-methyl-D-glucoside, D-galacturonic ac&ljen 80, D-mannitol, 4-hydroxy benzoic
acid, L-serine, a-Cyclodextrin, cdrl-D-glucosamine, y-hydroxy butyric acid,
L-threonine, glycyl—L—glut@c) acid, D-cellobiose, glucose-1-phosphate, a-keto
butyric acid, an —DQ‘[)se) displayed the maximum absorbance values in the
neurons correspondiyg to T4. The high utilization of these carbon sources by the

sediment microbes in T4 could account for the higher activity and diversity index of

microbial community in the contaminated sediment with 0.5% MWCNTs.

15
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3.2.3. Principal component analysis

PCA was further performed to distinguish the microbial communities in different
treatments based on the utilization of 31 carbon sources. PCA 1is a statistical procedure
that orthogonally transforms a set of original variables into linearly uncorrelated
variables which are called principal components [54]. The results of PCA analysis are
displayed by the biplot method with the first two principal components (Fig. 5). The
first principal component (PC1) and the second principal component (PC2) explained
30.29% and 19.22% of the original variables, respectively.\V; s in the figure
indicate the direction in which the utilization of carbon so ((N¢cases. Most of the
vectors are in the first and the fourth quadrants wigre T4 and T3 locate in. These
vectors indicate the specific carbon sources tha@rl uted to the enhanced metabolic
function of microbial communities in)%) sediments incorporated with 0.5%
MWCNTs.

In the principal compo@ltjpace, the distinctions of different treatments can be
related to the dif ncegl);arbon source utilization by examining the correlation of
carbon source variabjes to the principal components [55]. Important carbon sources
for distinguishing the microbial communities of different treatments are displayed in
Table 2. At least half of these carbon source variables are explained by PC1 or PC2.
According to the results of Table 2 and the distribution of T1-T8 in Fig. 5, the PC1
distinguishes the treatments with different MWCNT addition. The metabolic
differences caused by MWCNTs are mainly reflected in utilizing five out of six amino

acids, three out of ten carbohydrates, two out of seven carboxylic acids, and three out

17
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of four polymers. Microbial communities in the sediments with 0.5% MWCNTs (T3
and T4) showed a higher response in utilizing five amino acids (L-arginine,
L-asparagine, L-serine, L-threonine, and glycyl-L-glutamic acid), three carbohydrates
(D-mannitol, N-acetyl-D-glucosamine, and D-cellobiose), two carboxylic acids
(D-galacturonic acid and D-malic acid), and a polymer (tween 80), but a lower
response in utilizing other two polymers (a-cyclodextrin and glycogen) than those in
other treatments. The PC2 distinguishes the treatments with and without phenanthrene.
It 1is positively correlated to L-phenylalanine, C -glucosamine,
glucose-1-phosphate, a-D-lactose, a-keto butyric acid, an oxy benzoic acid,
but negatively correlated to i-erythritol and tween Comparing the results of PCA
and SOM analysis, the high (or low) respon o0 these important carbon sources
correspond to high (or low) absorbance)&ﬁs on the SOM. For example, PC2 is
negatively correlated to i-erythri 1 correlation coefficient of —0.730, and the
scores of treatments witho@nanthrene (T1, T3, TS5, and T7) on the PC2 are
negative. Corres din@)le neurons representing T1, T3, TS, and T7 on the SOM
of i-erythritol showe¥rhigher absorbance values with red color. These results can help
to understand the effects of MWCNTs on metabolic function of the microbial

community in sediment contaminated with phenanthrene.
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Fig. 5. Principal component analysis of the microbial fgtabolism of 31 carbon sources in
different treatments (T1-T8). The results are d y the biplot method using the
variable eigenvectors scores. Vectors indicat&@rection in which the utilization of carbon
source increases. 1. B-methyl-D-gl jdM. D-galactonic acid y-lactone; 3. L-arginine; 4.
pyruvic acid methyl ester; 5. Iﬁlje; 6. D-galacturonic acid; 7. L-asparagine; 8. tween 40; 9.

i-erythritol; 10. 2- rox@oic acid; 11. L-phenylalanine; 12. tween 80; 13. D-mannitol;

14. 4-hydroxy benzoicyecid; 15. L-serine; 16. a-cyclodextrin; 17. N-acetyl-D-glucosamine; 18.
y-hydroxy butyric acid; 19. L-threonine; 20. glycogen; 21. D-glucosaminic acid; 22. itaconic
acid; 23. glycyl-L-glutamic acid; 24. D-cellobiose; 25. glucose-1-phosphate; 26. a-keto

butyric acid; 27. phenylethylamine; 28. a-D-lactose; 29. D, L-a-glycerol phosphate; 30.

D-malic acid; 31. putrescine.
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Table 2

Correlation coefficients () of important carbon source variables to the first two principal

components.
PCl PC2
Carbon source r Carbon source r
Amino acids Amino acids
L-Arginine 0.568 L-Phenylalanine 0.753
L-Asparagine 0.671
L-Serine 0.697 Carbohydrates
L-Threonine 0.664 i-Erythritol —0.730
Glycyl-L-glutamic acid 0.719 N-Acetyl-D-glucosamine  0.639

Glucose-1-phosphate 0.731
Carbohydrates a-D-Lactose 0.688
D-Mannitol 0.898
N-Acetyl-D-glucosamine  0.553 Carboxylic acids
D-Cellobiose 0.915 a-Keto butyric act 0.y42
Carboxylic acids Phenolic compo
D-Galacturonic acid 0.606 4-Hydgoxy benzoic agi 0.585
D-Malic acid 0.582

Polym
Polymers Tween —0.806
Tween 80 0.855
a-Cyclodextrin —0.648
Glycogen —0.521 X \

4
4. Conclusions C)C)
Overall, the e ntal results suggested that MWCNTs of high concentrations

(0.5%—-2.0%, w/w) could bring about significant changes in the metabolic function of
sediment microbial communities. The phenanthrene-contaminated sediment with
0.5% MWCNTs showed the highest microbial activity and Shannon-Wiener diversity
index. The metabolic differences caused by MWCNTs mainly reflect in the utilization
of 13 carbon sources (including five amino acids, three carbohydrates, two carboxylic
acids, and three polymers) on the Biolog ECO microplate. Clustering the microbial

communities in different treatments on the trained SOM suggested that phenanthrene
20



366

367

368

369

370

371

372

had a greater impact on the metabolic function of sediment microbial communities
than MWCNTs in the experiments. The variations of microbial metabolic function
provide valuable information for evaluating the ecological risks of CNTs in the
aquatic environment. This study is a community level physiological profiling. Further
research is needed to develop the knowledge with other methods of molecular biology

and ecology.
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