Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Simultaneous removal of NO and Hg^0 from simulated flue gas over CoO_x - CeO_2 loaded biomass activated carbon derived from maize straw at low temperatures

Lei Gao^{a,b}, Caiting Li^{a,b,*}, Jie Zhang^{a,b}, Xueyu Du^{a,b}, Shanhong Li^{a,b}, Jiawen Zeng^{a,b}, Yaoyao Yi^{a,b}, Guangming Zeng^{a,b}

^a College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Manufacturing maize straw derived BAC obtains the unit of environmental and economic benefits.
- 15%Co_{0.4}Ce_{o.6}/BAC exhibited superior performance for simultaneous removal of NO and Hg⁰.
- The interaction between NO reduction and Hg⁰ oxidation was investigated.
- The mechanisms of simultaneous removal of NO and Hg⁰ were systematically proposed.

A R T I C L E I N F O

Keywords: Simultaneous removal NO Elemental mercury CoCe/BAC Adsorption Catalytic oxidation

ABSTRACT

To rationally utilize agricultural wastes and expediently simultaneous control of elemental mercury (Hg⁰) and NO, a series of CoO_x -CeO₂ loaded maize straw derived biomass activated carbon (CoCe/BAC) samples were applied for simultaneous NO and Hg⁰ removal. These samples' physicochemical characteristics were characterized by BET, SEM, XRD, NH₃-TPD, H₂-TPR, XPS and FTIR. 15%Co_{0.4}Ce_{0.6}/BAC yielded prominent Hg⁰ removal efficiency (96.8%) and superior NO removal efficiency (84.7%) at 230 °C. The separate or synchronous deactivation effects of 400 ppm SO₂ and 5%H₂O were detected. The interaction between NO removal and Hg⁰ removal, was investigated, the results demonstrated that abundant Hg⁰ exhibited very slightly inhibitory effect on NO removal, and NH₃ negatively affected Hg⁰ removal, whereas NO mildly boosted Hg⁰ removal in presence of O₂. The characterization analyses indicated the excellent performance of 15%Co_{0.4}Ce_{0.6}/BAC could be ascribed to its better texture properties, lower crystallinity and stronger redox ability. Besides, a synergetic effect appeared between cobalt oxide and cerium oxide, resulting in generating more Ce³⁺ and Co³⁺ to induce more anionic defects and produce more active oxygen and oxygen vacancies. The removal mechanisms of NO and Hg⁰ were systematically investigated, and NO reduction reactions were mainly assigned to the Langmuir-Hinshlwood mechanism while both adsorption and Hg⁰ oxidation contributed to Hg⁰ removal. Meanwhile, Hg⁰ oxidation corresponded to the Mars-Masson mechanism prevailed gradually with the increase of reaction time.

* Corresponding author at: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. *E-mail address*: ctli@hnu.edu.cn (C. Li).

https://doi.org/10.1016/j.cej.2018.02.100 Received 5 December 2017; Received in revised form 19 February 2018; Accepted 23 February 2018 Available online 24 February 2018 1385-8947/ © 2018 Elsevier B.V. All rights reserved.

1. Introduction

Coal-fired power plant, as the major contribution of worldwide energy demand, has become one of leading anthropogenic atmosphere pollutant emission sources [1–3]. Thereinto, nitrogen oxides (NO_x) and elemental mercury (Hg⁰) are deemed to be two significant atmosphere pollutants and have aroused widespread concern. NO_x is considered as an incentive for numerous environmental problems, such as regional acid smog, zone depletion and photochemical smog [3]. Hg⁰ is a global threat to the environment and human health because of its volatility, toxicity, persistence and bioaccumulation [2,3]. Consequently, more and more national laws and regulations have been implemented to restrict NO_x and Hg⁰ emissions [4,5]. For example, some strict regulations aiming to achieve ultra low emission in coal-fired power plants are put forward in China, in which the emission concentrations of NO_x and Hg⁰ are limited to 5 mg/m³ and 0.002 mg/m³, respectively [5].

Therefore, enormous technologies have been developed to reduce NO_x or Hg⁰ emissions from coal-fired power plants to meet these laws and regulations [2,4-6]. Among them, selective catalytic reduction (SCR) of NO_x with NH₃ is regarded as one widely applied technique due to its excellent performance, while activated carbon injection (ACI) for Hg removal has been a mature technology [2,7]. However, the ACI technology suffers from many shortcomings such as the low capture efficiency at high temperature, potential secondary pollution caused by spent sorbents and high operating cost due to the tremendous consumption of activated carbon (AC) [8,9]. Moreover, traditionally separate NO_x and Hg⁰ control technology faced several bottlenecks including large footprint requirement, high equipment and operation investment [10]. Hence, it is easy to consider whether or not to utilize the denitration catalyst for Hg⁰ removal, but researches demonstrated the most widely engaged denitrification catalysts (V₂O₅-WO₃(MoO₃)/ TiO₂) were not effective enough for Hg⁰ conversion in the flue gas burnt the low chlorine coal [4,6]. Furthermore, to avoid deactivation and reduce reaction costs, the SCR system was required to be loaded downstream of the particulate collector where the temperature was lower than the narrow active temperature window of the for-mentioned SCR catalyst [6,11]. Considering these handicaps, the development of novel appropriate catalysts for simultaneous removal NO_x and Hg⁰ at low temperature is of significantly practical interest.

Up to date, CeO₂ has been successfully widely used in a variety of heterogeneous reactions as an effective catalyst, a promoter, a support or active ingredient for NO reduction and Hg⁰ oxidation respectively because of its large oxygen storage capacity and unique redox couple Ce^{4+}/Ce^{3+} [4,12–14]. It was known that the combination of CeO_2 with other metal oxides such as MnOx, CuO and La2O3 could produce synergistic effect, which was conducive to the promotion of NO reduction and Hg⁰ oxidation [4,6,15,16]. Zhang et al. [17] studied hollow porous Mn_xCo_{3-x}O₄ nanocages deNO_x catalyst and found it had excellent low temperature activity and good SO_2 resistance. Due to the synergistic effect of high oxygen storage-release ceria and active Co species, Co₃O₄-CeO₂ composite catalyst, Co₃O₄/CeO₂ catalyst and CoO_x-CeO₂ loaded activated coke sorbent-catalyst had been reported to yield superior performance for VOCs oxidation [18,19], CO oxidation [20] and Hg⁰ oxidation [14], respectively. However, to the authors' knowledge, systematic researches with respect to CoO_v and CeO₂ as active ingredients for NO_x and Hg⁰ simultaneous removal are rarely reported.

In addition, activation carbon (AC) is considered as the most widely employed sorbent and the carrier of catalysts due to its large surface areas, favorable pore size and flexible working conditions [6,14,21]. Traditional ACs are usually derived from relatively expensive and nonrenewable raw materials such as bituminous coal and wood. At the same time, as a big agricultural country, China faces the challenges from the dispose of billions of tons of renewable agriculture straws every year. Since most of them cannot receive reasonable utilization and be open burning, thus engendering great harms to the environment [22]. Therefore, it is much monetary and environmentally friendly incentive for manufacturing biomass activated carbon (BAC) derived from annually renewable agriculture wastes. Thus, biomass activated carbons (BAC) derived from agriculture wastes have become a new concern due to significant practical interest [23,24]. Nevertheless, these BACs are mainly used for waste water treatment [23], and only limited applications on gas purification [24]. Notably, some meaningful researches related to bio-chars from various straws have emerged for mercury removal by adsorption or catalytic oxidation [25,26]. However, as we know, ideal adsorbents/catalysts should possess excellent surface area, these bio-chars often own unimpressive BET surface areas (about 200 m²/g). In this work, BACs from maize straw prepared by ZnCl₂ activation have severalfold BET surface areas (543–1029 m²/g), which are more propitious to adsorption and catalytic reactions. CoO_x and CeO₂ supported on the carrier of BAC by the impregnation method were investigated for NO and Hg⁰ simultaneous removal.

2. Experimental

2.1. Preparation of samples

Maize straws were collected from the rural areas of Xinyang city, Henan province, PR China. The raw material was first rinsed with deionized water and dried at 105 °C overnight, crushed and sieved for standby application. Then the resulted particles (RP) were impregnated into ZnCl_2 solution at calculated quantity (the mass ratio of activating agent (ZnCl_2) and RP of 1, which was chosen based on our preliminary experiments) for 24 h at ambient temperature. After that, the obtained materials were dried at 105 °C overnight, and subsequently they were activated in a tube-type electronic heating furnace at 750 °C for 2 h under N₂. After activation, the obtained materials were washed several times by 5 M HNO₃ and then bathed with deionized water until the pH of cleaning water reached approximately 7. Subsequently, the product was dried and sieved, thus obtaining the carrier of BAC.

The catalysts were prepared by impregnation method using foregoing BAC as the carrier and cobalt nitrate or cerium nitrate as the precursors of active ingredients. Calculated amounts of BACs were impregnated in corresponding precursors solutions for 24 h. Afterwards, these impregnated samples were dried at 105 °C for 18 h and then calcined at 550 °C for 4.5 h under N₂ atmosphere. Thus XCo_yCe_{1-y}/BAC catalyst was obtained, where X represented the mass percentage of metal oxides of the Co_y Ce_{1-y}/BAC samples while y referred to the molar ratio of Co in metal oxides, similarly, 1-y referred to the molar ratio of Ce in metal oxides. Moreover, for comparison, XCo/ BAC and XCe/BAC were synthesized by the same method.

2.2. Sample characterization

Pore characteristics including average pore diameter, total pore volume and Brunauer–Emmett–Teller (BET) surface area of different samples were acquired by N_2 adsorption with an automatic Micromeritics ASAP2460 volumetric sorption analyzer (Micromeritics Instrument Corp., USA).

The microstructure and morphology of different samples were measured by Scanning electron microscopy (SEM) using Nova Nano SEM 230 (USA).

X-ray diffraction (XRD) measurements of different samples were carried out on a Rigaku Smartlab (3KW) system (Japan) with Cu-Ka radiation (40 kV, 30 mA) in the 2θ range from 10° to 90° .

 H_2 -temperature programmed reduction (H_2 -TPR) and ammoniatemperature programmed desorption (NH_3 -TPD) were conducted on a TP-5080 automatic chemical adsorption instrument (Tianjin Xianquan, China).

X-ray photoelectron spectroscopy (XPS) was performed using a K-Alpha 1063 X-ray photoelectron spectrometer with 72 W Al K α radiation (Thermo Fisher Scientific, USA).

Fourier transform infrared spectroscopy (FTIR) was conducted on a

FTIR IRInfinity-1 spectrometer to investigate the surface groups of samples (Shimadzu, Japan). Its special region was between 4000 and 400 cm⁻¹ with a 2 cm⁻¹ resolution. Prior to the measurement, each sample was pretreated at 300 °C for 2 h to remove possible adsorbed species. Afterwards, the adsorption test was conducted for 1 h with a total gas flow of 500 mL/min at ambient temperature.

2.3. Sample activity test

The experimental schematic diagram was provided in our previous works [27,28]. The simulated flue gas (SFG) contained $100 \,\mu\text{g/m}^3$ $Hg^{0}(g)$, 6% O₂, 600 ppm NO, 600 ppm NH₃ and N₂ as the carrier gas and balance gas. Other concentrations of NO, NH_3 , O_2 and $Hg^0(g)$ as well as SO₂, H₂O(g) were provided when needed. N₂, O₂, NO, NH₃ and SO₂ from cylinder gases were accurately controlled by mass flow controllers, whereas the generation and control of certain concentrations of $Hg^{0}(g)$ or $H_{2}O(g)$ were described detailedly in our previous works [6,14]. Prior to each test, these gases mixed with each other in a gas mixing bottle. The total flow rate was maintained at 500 mL/min in all experiments and 300 mg sample corresponded to a space velocity of approximately 100,000 h^{-1} was laid in the central part of a quartz tube with an inner diameter of 10 mm and a length of 600 mm. The concentrations of NO and Hg⁰ were measured by an on-line mercury analyzer (Lumex RA-915 M, Russia, detection limit = 2 ng/m^3) with a data acquisition computer and a flue gas analyzer (MGA5, Germany).

Before the activity test, the blank test of the system was conducted and the effects of the pipes and the reactor on NO and Hg⁰ removal were proved to be negligible. In addition, a mercury conversion test was conducted to confirm mercury speciation as our previous works [6,21,29]. In which gas released from the reactor was firstly divided into two branches, one went to 10% KCl aqueous solution to remove Hg²⁺ for Hg⁰ measurement, and the other went to 10% SnCl₂ aqueous solution to reduce Hg²⁺ to Hg⁰ for total elemental mercury (Hg⁰_{0ut}^T) measurement. Then they went through 10% NaOH aqueous solution to remove acidic gas in the front of the mercury analyzer. The definition of NO removal efficiency (E_{NO}) and Hg⁰ removal efficiency (E_{Hg}) were given below by Eq. (1) and Eq. (2), respectively. Thence, the oxidation efficiency of Hg⁰ (Eoxi) could be calculated by Eq. (3).

$$E_{NO} = \frac{NO_{in} - NO_{out}}{NO_{in}} \times 100\%$$
⁽¹⁾

$$E_{Hg} = \frac{Hg_{in}^{0} - Hg_{out}^{0}}{Hg_{in}^{0}} \times 100\%$$
(2)

$$E_{\rm oxi} = \frac{Hg_{\rm out}^{0^{-T}} - Hg_{out}^{0}}{Hg_{in}^{0}} \times 100\%$$
(3)

where NO_{in} and NO_{out} represent the inlet NO concentration and the outlet NO concentration, respectively. Similarly, Hg_{0n}^{0} and Hg_{out}^{0} denote the inlet Hg^{0} concentration and the outlet Hg^{0} concentration, respectively. Besides, to reduce the experimental error, E_{NO} and E_{Hg} were the average of two or three parallel experimental data and the relative error was less than 5%.

3. Results and discussion

3.1. Samples characterization

3.1.1. BET analysis

The physical properties containing BET surface area, average pore diameter and total pore volume of virgin BAC and $Co_{0.4}Ce_{0.6}/BAC$ are listed in Table 1. Moreover, the N₂ adsorption-desorption isotherms of these samples are displayed in Fig. 1a, all isotherms show the typical IV curve with hysteresis loops tape H3, indicating the presence of slit-like pores according to IUPAC [15]. Taken as a whole, virgin BAC owned the biggest BET surface area of 1029.22 m²/g and the highest total pore

 Table 1

 The BET specific surface area and pore parameters of the samples.

Sample	BET surface area (m ² /g)	Total pore volume (cm ³ /g)	Average pore diameter (nm)
Virgin BAC	1029.22	0.690	2.682
5%Co _{0.4} Ce _{0.6} /BAC	708.89	0.475	2.681
15%Co _{0.4} Ce _{0.6} /BAC	628.85	0.391	2.486
25%Co _{0.4} Ce _{0.6} /BAC	543.51	0.342	2.513

Fig. 1. The N₂ adsorption-desorption isotherms and pore size distribution curves of virgin BAC and $Co_{0.4}Ce_{0.6}$ /BAC samples: (a) the N₂ adsorption-desorption isotherms, (b) the pore size distribution curves.

volume of $0.690 \text{ cm}^3/\text{g}$. However, both BET surface area and total pore volume of $\text{Co}_{0.4}\text{Ce}_{0.6}/\text{BAC}$ samples distinctly dropped with the increase of the loading value of metal oxides. This might be because that metal oxides dispersed on the external or internal surface of BACs, and excessive metal oxides loading would result in agglomeration and blocking some pores of BACs, thus decreasing total pore volume and BET surface area [11,30]. In addition, the pore size distribution curves of the samples were shown in Fig. 1b, taking the total pore volume into consideration, the pore volume characteristics were primarily determined by mesopore, macropore and micropore acted as auxiliary.

3.1.2. SEM analysis

The SEM images of virgin BAC and $Co_{0.4}Ce_{0.6}$ /BAC with different loading value are shown in Fig. 2. The dark zones represented carbon enriched areas, whereas light zones indicated the presence of metal oxides. The surface characteristics of virgin BAC was changed by loading metal oxides, which mainly dispersed on the surface of BACs. It

Fig. 2. SEM images of virgin BAC and 15%Co_{0.4}Ce_{0.6}/BAC: (a) Virgin BAC, (b) 5%Co_{0.4}Ce_{0.6}/AC, (c) 15%Co_{0.4}Ce_{0.6}/AC, (d) 25%Co_{0.4}Ce_{0.6}/AC. 10,000 multiplier.

could be clearly seen that 5%Co_{0.4}Ce_{0.6}/BAC had the best dispersion among these Co_{0.4}Ce_{0.6}/BAC samples and almost no agglomerate was observed, but it possessed the biggest dark zones, meaning that it couldn't provide abundant active centers for catalytic reactions. For 15%Co_{0.4}Ce_{0.6}/BAC, metal oxides highly scattered on the BAC surface, and only a few agglomerates were observed, while apparent agglomerates existed in 25%Co_{0.4}Ce_{0.6}/BAC. This was in accordance with the BET results. Combined XRD and SEM analyses, enough and high dispersion metal oxides on the surface of BACs were favorable for catalytic activities.

3.1.3. XRD analysis

Fig. 3 shows the XRD patterns of virgin BAC, 15%Co/BAC, 15%Ce/ BAC and 15%Co_yCe_{1-y}/BAC. With regard to virgin BAC, two strong peaks at 26.60° and 44.46° (JCPDS 25-0284) were observed [6,29]. Nevertheless, the two peaks decreased or even disappeared with the introduction of cobalt oxide or cerium oxide, suggesting there was a strong interaction between these oxides and BAC. For 15%Co/BAC, five peaks at $2\theta = 26.60^{\circ}$, 36.84° , 42.39° , 61.49° and 74.08° were detected, in which, except for the peak at 26.60° attributed to BAC, the peaks at 36.84° and 74.08° (JCPDS 09-0418) were ascribed to Co₃O₄ while the peaks at 42.39° and 61.49° (JCPDS 48-1719) belonged to CoO [14]. This indicated Co₃O₄ and CoO coexisted in the sample. Four peaks at $2\theta = 28.55^{\circ}$, 33.08° , 47.49° and 56.33° (JCPDS 04-0593) were attributed to CeO₂ in 15%Ce/BAC [6,14]. Compared with 15%Ce/BAC and 15%Co/BAC, these peaks belonged to CeO₂ and CoO and Co₃O₄ weakened or even disappeared in 15%Co_vCe_{1-v}/BAC samples, respectively.

Fig. 3. XRD patterns of virgin BAC, 15%Co/BAC, 15%Ce/BAC and 15%CovCe1-v/BAC.

This indicated cerium oxide crystallites and cobalt oxide crystallites in the 15%Co_yCe_{1-y}/BAC samples showed better dispersion compared with that of Co/BAC and Ce/BAC [31], besides, even amorphous surface species existed in these samples, which might be from the Co-Ce interaction and they were beneficial to catalytic reactions [14,20,31].

Fig. 4. NH₃-TPD curves of virgin BAC, 15%Co/BAC, 15%Ce/BAC and 15%Co $_{0.4}Ce_{0.6}/$ BAC.

3.1.4. NH₃-TPD analysis

It is generally accepted that the surface acidity characteristics of catalysts play an important role for NH3 adsorption and activation, which is of vital importance in the NH₃-SCR of NO reactions [6]. Therefore, NH3-TPD was performed to estimate the surface acidic characteristic of virgin BAC, 15%Co/BAC, 15%Ce/BAC and 15%Co_{0.4}Ce_{0.6}/BAC. As shown in Fig. 4, it could be clearly seen that virgin BAC exhibited two narrowest and smallest desorption peaks, indicating it had the poorest acidity. After introducing Co or Ce species, two broader and bigger peaks were observed in supported BAC samples, suggesting that the total amount and strength of acid sites were significantly improved after loading metal oxides. Meanwhile, the total acid sites followed the ascending order: 15%Ce/BAC < 15%Co/ BAC < 15%Co_{0.4}Ce_{0.6}/BAC. The weak desorption peaks at about 200 °C were assigned to Brønsted acid sites, whereas the strong peaks at around 625 °C were attributed to Lewis acid sites [32,33]. The Lewis acid sites were derived from unsaturated Co^{n+} or Ce^{n+} sites [32,34], while the Brønsted acid sites were associated with surface hydroxyl groups [32,35]. For 15%Co_{0.4}Ce_{0.6}/BAC, the most amount of Lewis acid sites might be due to the synergistic effect from Co and Ce species. Thus, the most acid sites of 15%Co04Ce06/BAC would cause a significant increase in adsorption capacity of NH₃, which was beneficial for the improvement of SCR activity.

3.1.5. H₂-TPR analysis

H₂-TPR measurements are applied to inspect the redox property of the samples and the results are illustrated in Fig. 5. 15%Ce/BAC exhibited one peak at around 570 °C, which would be assigned to the reduction of surface-capping oxygen species of CeO₂ [15,36]. Two reduction peaks centered about 318 °C and 420 °C were observed in the curve of 15%Co/BAC, the low temperature one was ascribed to the reduction step of Co^{3+} to Co^{2+} , whereas the high temperature one belonged to the reduction step of Co^{2+} to Co^{0} [17,37]. The intensity of the low temperature peak was much smaller than that of the high temperature one, which indicated the quantity of Co^{2+} was bigger than that of Co³⁺ in the 15%Co/BAC [37]. Compared with 15%Ce/BAC and 15%Co/BAC, the reduction peaks of 15%Co_{0.4}Ce_{0.6}/BAC shifted to lower temperature, which demonstrated the reductive ability of surface active species in 15%Co_{0.4}Ce_{0.6}/BAC was enhanced. This also suggested the coexistence of ceria and cobalt oxides played a syngestic effect, resulting in significantly boosting reducibility of the samples with single active ingredient, which was beneficial to promoting NH₃-SCR of NO reactions [17,38,39]. Moreover, the quantities of Co^{3+} and Ce^{3+} were enhanced due to the coexistence of ceria and cobalt oxides as the

Fig. 5. H₂-TPR curves of 15%Co/BAC, 15%Ce/BAC and 15%Co_{0.4}Ce_{0.6}/BAC.

Co 2p XPS analysis, which were correlated with catalytic activity, thus boosting the performance of the sample [27,28,37].

3.1.6. XPS analysis

XPS analysis was performed to evaluate the chemical states and composition of surface elements of virgin BAC, fresh and used 15%Co_{0.4}Ce_{0.6}/BAC. Fig. 6 displayed the spectra of O1s, Ce 3d, Co 2p and Hg 4f. The spectra of O 1s were presented in Fig. 6a. As for virgin BAC, two type peaks of O 1s were observed, the peak at 531.61 eV could be attributed to chemisorbed oxygen and/or weakly bonded oxygen, and the other peak at 533.46 eV was ascribed to either-type oxygen [21,40]. Both three type peaks of O 1s were observed on fresh and used 15%Co_{0.4}Ce_{0.6}/BAC samples, the peaks at 529.97 eV were regarded as lattice oxygen (denoted as O_{α}), the peaks at 531.57–531.78 eV were assigned to chemisorbed oxygen and/or weakly bonded oxygen (denoted as O_B), and the peaks at 532.83–532.87 eV represented hydroxyl groups or/and adsorbed water species (denoted as O_y) [14,41,42]. It was noteworthy that the introduction of metal oxides resulted in the generation of O_{α} and the vanishing of either-type oxygen. The former could be attributed to metal oxides supplying both O_{α} and O_{β} , which possessed good mobility and oxygen vacancies [14,43,44]. Combing the analyses of BET and SEM, the loading and calcination processes of metal oxides could cover the surface of virgin BAC, thus blocking the either-type oxygen, which might be responsible for the later. Compared with fresh 15%Co_{0.4}Ce_{0.6}/BAC, the ratio of O_{α} decreased from 51.60% to 43.94% after the reaction while the ratios of O_β and O_γ demonstrated an upward tendency after the reaction, indicating O_{α} participated in the reactions. The increase of binding energy of O 1s after the reaction also proved that the ratio of O_{α} to other oxygen species dropped [45]. Compared to O_{α} and $O_{\gamma},$ O_{β} was more reactive in redox and oxidation reactions due to its greater mobility [42,43,46] Moreover, our previous works indicated both O_{α} and O_{β} participated in the Hg⁰ oxidation processes [6,14,44]. Therefore, it was reasonable to infer that more active oxygen would benefit for the NO reduction and Hg⁰ oxidation processes [28,42].

The Ce 3d XPS spectra of fresh and used 15%Co_{0.4}Ce_{0.6}/BAC were presented in Fig. 6b, the peaks labeled as u, u₁, u₂ and u₃ were ascribed to Ce 3d3/2 spin-orbit states, while those peaks marked as v, v₁, v₂ and v₃ were attributed to Ce 3d5/2 states. Meanwhile, u/v, u₂/v₂ and u₃/v₃ doublets corresponded to Ce⁴⁺, and u₁/v₁ were assigned to Ce³⁺ [42,44]. For both samples, Ce⁴⁺ and Ce³⁺ coexisted and Ce⁴⁺ was obviously predominant. The existence of Ce³⁺ might induce unsaturated chemical bonds and a charge imbalance, generating more chemisorbed oxygen and oxygen vacancies [47]. In addition, it had positive effects on the adsorption capacity of NH₃ and NO and the

Fig. 6. XPS spectra of virgin BAC, fresh and used 15%Co_{0.4}Ce_{0.6}/BAC: (a) O 1s, (b) Ce 3d, (c) Co 2p and (d) Hg 4f.

sample' redox capability [48]. These were beneficial for NO reduction and Hg⁰ oxidation processes, which were confirmed in our previous works [6,27,28]. After reactions, the ratio of Ce³⁺ decreased from 29.94% to 21.34% compared with the fresh sample, suggesting a redox reaction took place between Ce³⁺ and Ce⁴⁺. The u₂ peak of used sample showed obviously broader compared with the fresh one, resulting in the increase of the value of u₂/v₂, which also indicated that Ce³⁺ participated in the reaction, generating more Ce⁴⁺. The decrease of the Ce³⁺ ratio suggested that the transformation between Ce³⁺ and Ce⁴⁺ was not entirely balanced, a portion of Ce³⁺ irreversibly transformed to Ce⁴⁺ during the catalytic reactions [49]. Ce species shifted constantly between Ce³⁺ and Ce⁴⁺ with storing and releasing oxygen, meanwhile, the consumed Ce³⁺ was due to O₂ oxidizing Ce³⁺ to Ce⁴⁺ (Eq. (4)) and thus compensated the lattice oxygen rapidly (Eq. (5)).

$$\operatorname{Ce}_2\operatorname{O}_3 + 1/2\operatorname{O}_2 \to 2\operatorname{CeO}_2 \tag{4}$$

$$2\text{CeO}_2 \rightarrow \text{Ce}_2\text{O}_3 + \text{O}_\alpha \tag{5}$$

Fig. 6c presented the Co 2p XPS spectra of fresh and used 15%Co_{0.4}Ce_{0.6}/BAC, and they were deconvoluted into two spin-orbit doublets labeled as D₁ and D₂, and three satellite peaks denoted as S₁, S₂ and S₃. Meanwhile, D₁ at 780.2 eV \pm 0.3 eV and a spin-orbital splitting of 15.1 eV were assigned to the octahedral Co³⁺ species. D₂ at 781.8 eV \pm 0.2 eV and a spin-orbital splitting of 15.5 eV were attributed to the tetrahedral Co²⁺ species [19,50]. S₁ and S₂ satellite peaks corresponded to octahedral sites while S₃ satellite peak was attributed to tetrahedral sites [51]. These satellite peaks were an evidence of the

presence Co species reduction from Co^{3+} to Co^{2+} in octahedral sites [19,52]. The $\text{Co}^{3+}/\text{Co}^{2+}$ ratio of 1.44 in fresh 15%Co_{0.4}Ce_{0.6}/BAC was a little higher than that in the used sample (1.19), suggesting a reduction shift occurred as mentioned above. The decrease of the Co³⁺/Co²⁺ ratio also indicated that the transformation between Co³⁺ and Co²⁺ was not entirely balanced, partial Co³⁺ was irreversibly transformed to Co²⁺ during the reactions.

The Hg4f XPS spectra of used 15%Co_{0.4}Ce_{0.6}/BAC were shown in Fig. 6d, three peaks at 101.54 eV, 102.87 eV and 104.4 eV were detected. The medium peak at 102.87 eV represented the Si 2p [29]. The strong peak at 101.54 eV was ascribed to Hg 4f_{7/2} and the weak peak at 104.4 eV was attributed to Hg 4f_{5/2}, which were assigned to Hg 4f for HgO [27,29,53]. The presence of HgO was also confirmed by the mercury conversion test (Fig. 7). Although Fig. 7 indicated that both adsorption and oxidation contributed to E_{Hg} , no characteristic peak at 99.9 eV for adsorbed Hg⁰ was observed [29,53]. The reason was that the result of XPS was the experiment proceeding for 80 h when the adsorbed Hg⁰ was negligible and oxidizing Hg⁰ to HgO mainly contributed to E_{Hg} .

3.1.7. FTIR analysis

FTIR spectra about adsorbing different gaseous components were performed in Fig. 8. As a whole, all the samples shared some similar bands that might be mainly due to the nature of the carrier. For instance, the obvious band at 1290 cm^{-1} was attributed to asymmetric stretching vibrations of C–O–C in ester groups [21]. Several new bands

Fig. 7. The results of mercury conversion tests. Reaction conditions: T=230 °C, 6% $O_{2,}$ $100 ug/m^3$ Hg 0, 600 ppm NO, 600 ppm NH_3, N_2 as balance.

Fig. 8. FTIR spectra for $15\%Co_{0.4}Ce_{0.6}/BAC$. Reaction conditions: NO + O₂ (600 ppm NO + 6% O₂), NH₃ + O₂ (600 ppm NH₃ + 6% O₂), NO + NH₃ + O₂ (600 ppm NO + 600 ppm NH₃ + 6% O₂), SO₂ + O₂ (300 ppm SO₂ + 6% O₂), H₂O + O₂ (5 vol.% H₂O + 6% O₂) and N₂ as balance gas.

Fig. 9. Effect of active ingredient on simultaneous NO and Hg^0 removal. Reaction conditions: T = 80–320 °C, 6% O_2 , 100 $\mu g/m^3$ Hg^0 , 600 ppm NO, 600 ppm NH₃, N_2 as balance.

at 1051, 1192, 1385, 2365 cm⁻¹ were observed after adsorbing NO + O_2 . The band at 1051 cm⁻¹ could be attributed to nitrato and nitrito species [54]. The band at 1192 cm^{-1} was ascribed to anionic nitrosyl NO- that could transfer to nitrite or nitrate [27]. The band at 1385 cm^{-1} corresponded to nitrate species and the band at 2365 cm^{-1} was ascribed to overtone vibrations of nitrato species [28,55]. Three new bands at 1053, 1188, 1400 cm⁻¹ were detected in the NH₃ + O_2 adsorption spectra. The bands at 1053 and 1188 cm⁻¹ were ascribed to coordinated NH₃ bound to Lewis acid sites while the weak band at 1400 cm⁻¹ was assigned to ammonium ion on Brønsted acid sites [27,55,56]. This indicated NH₃ could be simultaneously adsorbed on Lewis acid sites and Brønsted acid sites, suggesting both acid sites might contribute to the denitration reactions. In the spectra of $NO + NH_3 + O_2$ adsorption, the sharp band at about 1052 cm^{-1} might be the overlapping of nitrato and nitrito and coordinated NH₃ bound to Lewis acid sites [27,55]. Similarly, the obvious band at 1191 cm^{-1} could be also considered as the overlapping of anionic nitrosyl NO- and coordinated NH₃ on Lewis acid sites [27,55]. The band at 1399 cm^{-1} corresponded to ammonium bound to Brønsted acid sites [55,56]. This demonstrated that NO and NH₃ could be adsorbed simultaneously on corresponding adsorption sites, which might be transferred into some intermediates participating in the denitration reactions.

When the sample treated by $SO_2 + O_2$, some characteristic bands were detected. The band centered at 1045 cm⁻¹ was proposed to be the stretching vibrations of adsorbed sulfates or bisulfates [57], which could heighten the acidity of the sample and promote the adsorption of NH₃ and its intermediates, thus partly alleviating the inhibition effect of SO₂ [11]. In addition, the band observed at 1136 cm⁻¹ was assigned to gas-phase SO₂ and the band at 2336 cm⁻¹ was demonstrated as liquidlike physisorbed SO₂ [57,58]. As a result, the presence of adsorbed SO₂ could restrict the removal of NO and Hg⁰ to some degree due to the competition effect, as shown in Fig. 10. After adsorbing H₂O + O₂, the characteristic band appeared at 1628 cm⁻¹ could be ascribed to dHOH of H₂O [2]. Besides, the band observed at 1421 cm⁻¹ corresponded to the presence of water [27]. The presence of H₂O could negatively affect the removal of NO and Hg⁰ due to the competition effect, which was in accordance with the results of Fig. 11.

3.2. The performance of samples

3.2.1. Effect of active ingredient

Fig. 9 displayed the performances of 15%Ce/BAC, 15%Co/BAC and 15%Co_yCe_{1-y}/BAC samples on simultaneous removal of NO and Hg⁰ at

Fig. 10. Effect of the concentration of O₂ on simultaneous NO and Hg⁰ removal over 15%Co_{0.4}Ce_{0.6}/BAC. Reaction conditions: T = 230 °C, 0–12% O₂, 100 µg/m³ Hg⁰, 600 ppm NO, 600 ppm NH₃, N₂ as balance.

Fig. 11. The separate or synchronous effects of SO₂ and H₂O on simultaneous NO and Hg⁰ removal over 15%Co_{0.4}Ce_{0.6}/BAC. Reaction conditions: T = 230 °C, 6% O₂, 100 ug/m³ Hg⁰, 600 ppm NO, 600 ppm NH₃, 400 ppm SO₂(when used), 5vol.%H₂O(when used), N₂ as balance.

80–320 °C. $E_{\rm NO}$ and $E_{\rm Hg}$ over these samples almost shared the similar trend. Thereinto, E_{NO} exhibited an obvious increase with the increase of reaction temperature from 80 °C to 260 °C and afterwards showed different trends, while E_{Hg} yielded a very slight raise in the temperature range of 80-230 °C and then decreased distinctly with further increasing reaction temperature. The obvious decrease of $E_{\rm Hg}$ at high temperature could be explained by two possible reasons. One was attributed to high temperature inhibiting Hg^0 adsorption [28,43]. In addition, high temperature did some damage to the carrier' structure of BAC because a very little amounts of CO and CO₂ were detected in the outlet gas at 290 °C and 320 °C, which was discussed in more detail in the part of mechanism study. Compared with 15%Ce/BAC and 15%Co/ BAC, $15\%Co_vCe_{1-v}$ /BAC shown better E_{NO} and E_{Hg} , indicating that a synergistic effect took place between CoOx and CeO2 when they coexisted. This synergistic effect was also observed in other reports [6,14,44]. Among these 15%Co_vCe_{1-v}/BAC samples, 15%Co_{0.4}Ce_{0.6}/ BAC manifested the best performance and it possessed E_{NO} of 84.7% and E_{Hg} of 96.8% at 230 °C.

3.2.2. Effect of O_2

The effects of O_2 on simultaneous removal of NO and Hg^0 over $15\%Co_{0.4}Ce_{0.6}/BAC$ were shown in Fig. 10. The sample exhibited poor performance for NO and Hg^0 removal in the absence of O_2 , which was due to adsorption and weak reactions from the chemisorbed oxygen and lattice oxygen existed on the surface of $15\%Co_{0.4}Ce_{0.6}/BAC$, as shown in the O 1s XPS analysis. Higher E_{NO} and E_{Hg} were achieved after the addition of 3% O_2 and they obtained further obvious increase when the concentration of O_2 to 9% or even to 12% engendered little impact on Hg^0 and NO removal. This indicated O_2 could markedly promote Hg^0 and NO removal under insufficient oxygen conditions and gaseous O_2 could replenish the consumed lattice and chemisorbed oxygen [28,59], which were consistent with other reports [60,61].

3.2.3. Effects of SO_2 and H_2O

The separate or synchronous effects of SO₂ and H₂O on NO and Hg⁰ simultaneous removal over 15%Co_{0.4}Ce_{0.6}/BAC were illustrated in Fig. 11. It was detected that SO₂ and H₂O had inhibitory influence on both NO and Hg⁰ removal, and the negative effect increased with the increase of the concentrations of SO₂ and H₂O in our previous works [6,27,44]. Combined with the FTIR analysis and literatures, the adverse effect of SO₂ could be explained by two reasons, on one hand, the competitive effect existed among SO₂ and NO, NH₃ and Hg⁰ for

Fig. 12. Effect of the concentration of $\rm Hg^0$ on NO removal over 15%Co_{0.4}Ce_{0.6}/BAC. Reaction conditions: T = 230 °C, 6% O_2, 0–400 $\mu g/m^3$ Hg⁰, 600 ppm NO, 600 ppm NH₃, N₂ as balance.

adsorption or catalytic sites [27,62]. On the other hand, the possible formation of ammonium sulfates or other sulfates would destroy the sample's porous structure and block the activated centers [28,63], thus leading to the decrease of E_{NO} and E_{Hg} . Similarly, the competitive adsorption among H_2O , Hg^0 , NH_3 and NO was responsible for the decrease of E_{Hg} and E_{NO} by H_2O [28,43,64].

Fig. 11 also revealed that the synchronous effect of 400 ppm SO₂ and 5% H₂O induced an obvious drop of E_{NO} and E_{Hg} , compared with that of the separate effects of SO₂ and H₂O. The obvious drop of E_{NO} and E_{Hg} was ascribed to the synergistic competition effects and the possible formation of ammonium sulfates (bisulfates) or other sulfates due to the coexistence of SO₂ and H₂O and other gas components. The more serious deactivation effect derived from the combined influence of SO₂ and H₂O was also found in our previous works [6,11].

3.3. The interaction between NO removal and Hg^0 removal

3.3.1. Effect of Hg⁰ on NO removal

Hg⁰ was a pivotal component in the SFG, which might have an influence on NO removal. Therefore, the effects of different concentrations of Hg⁰ on NO removal over 15%Co_{0.4}Ce_{0.6}/BAC were illustrated in Fig. 12. For contrast, the test under Hg-free flue gas condition was performed. E_{NO} didn't display any palpable change after the introduction of $100 \,\mu\text{g/m}^3 \,\text{Hg}^0$. However, E_{NO} demonstrated a slight decrease with further increase of the concentration of Hg⁰, indicating that Hg⁰ had mildly inhibitory effect on NO removal. Two possible reasons could be responsible for this prohibitive phenomenon. For one thing, it was easy to understand that Hg⁰ could compete with NO and NH₃ for adsorption or catalytic sites. For another thing, the XPS analysis had confirmed that the formation of HgO accumulated on the surface of the sample due to the oxidation reaction of Hg⁰, and the accumulated HgO might cover some activated centers, resulting in a slight drop of E_{NO} [28,42]. Fortunately, it was noteworthy that the concentration of Hg⁰ in actual condition was much lower than that in the tested conditions and the presence of Hg⁰ only had slight effect on NH₃-SCR of NO in the practical application.

3.3.2. Effects of SCR atmosphere on Hg⁰ removal

As shown in Fig. 13, the effects of SCR atmosphere (NO and NH₃) on Hg^0 removal over 15%Co_{0.4}Ce_{0.6}/BAC were investigated. The blank test of Hg^0 removal was carried out when NO and NH₃ were removed from the SFG. The blank test yielded better E_{Hg} than that under SFG conditions, suggesting that the coexistence of 600 ppm NH₃ and 600 ppm NO

Fig. 13. Effect of SCR atmosphere (NH₃ and NO) on Hg⁰ removal over 15%Co_{0.4}Ce_{0.6}/ BAC. Reaction conditions: T = 230 °C, 6% O₂, 100 μ g/m³ Hg⁰, 0–900 ppm NO, 0–900 ppm NH₃, N₂ as balance. SFG contained 100 μ g/m³ Hg⁰, 6%O₂, 600 ppm NO, 600 ppm NH₃, N₂ as balance.

could negatively affect Hg^0 removal, which was in agreement with previous works [2,4,6,28]. It was conjectured that SCR reaction prevailed over the Hg^0 oxidation reaction when NO reduction and Hg^0 oxidation reactions coexisted under high concentrations of NH_3 and NO [28,65].

To further identify the several effect of NO and NH₃ on Hg⁰ removal, a battery of tests with different various concentrations of NO or NH3 were undergone. A slightly propulsive effect of NO alone on Hg⁰ removal was observed and the promotional role boosted lightly with the increase of the concentration of NO. This phenomenon also appeared under the conditions that NH₃ and more NO coexisted in the flue gas. As mentioned in the FTIR analysis, NO could weakly absorb on the surface of the sample, and some of these absorbed NO might react with the surface oxygen to generate NO2, which was reported to be active for Hg^0 oxidation [44,66]. On the contrary, the presence of NH_3 alone displayed some inhibitory effect on Hg⁰ removal and this appearance was also detected under the conditions that NO and more NH3 coexisted in the flue gas. The inhibitory effect of NH₃ on Hg removal might be explained by that NH₃ could rapidly adsorb on the sample surface and afterwards some adsorbed species generated, which might consume surface active oxygen and occupy the surface active sites to inhibit Hg⁰ oxidation, thus resulting in a decrease of E_{Hg} [55,67].

3.4. Mechanism study

According to the results of characterizations and previous works, it was proposed that the synergistic effect emerged between ceria and cobalt oxide, meanwhile, some CeO₂ was transformed to Ce₂O₃ while part Co²⁺ was shifted to Co³⁺, producing some Co₃O₄ (Eq. (6)) [14]. It was deemed that ample Co³⁺ possibly increased anionic defects resulting from special porous channels and larger surface areas and the quantity of Co³⁺ on the sample surface was correlated with catalytic activity [37]. In addition, Ce³⁺ could induce unsaturated chemical bonds and a charge imbalance, generating more chemisorbed oxygen and oxygen vacancies [47]. Moreover, the redox shift between Ce³⁺ and Ce⁴⁺ could be conducive to simultaneous NO and Hg⁰ removal. As a result, the synergistic effect between ceria and cobalt oxide was beneficial for NO reduction and Hg⁰ oxidation reactions.

Fig. 7 indicated both adsorption and Hg⁰ oxidation contributed to Hg⁰ removal, whose contributions varied with reaction time and Hg⁰ oxidation prevailed gradually. It was speculated that both O_{α} and O_{β} took place the Hg⁰ oxidation reactions (Eqs. (11) and (12)) [27,28,44].

However, O_{α} might play the predominant role in this work (Eq. (11)), as shown in the XPS O 1s analysis, which was in accordance with our previous work [14]. Gas-phase oxygen could replenish the consumed O_{α} and O_{β} and reoxidize the reduced metal oxides (Eqs. (4), (8) and (9)) [68]. Combined with the characterization analyses and the literatures, it was surmised that the Hg⁰ oxidation reaction over 15%Co_{0.4}Ce_{0.6}/ BAC mainly followed the Mars-Masson mechanism [14,69,70]. It was speculated that Hg⁰(g) was preferentially adsorbed on the surface of the sample to form adsorbed Hg⁰(ad) and afterwards it would be oxidized into HgO(ad) by O_{α} and O_{β} , meanwhile, part of HgO(ad) might convert into HgO(g). The reaction pathways could be summarized as follows:

$$2\text{CeO}_2 + 3\text{CoO} \rightarrow \text{Ce}_2\text{O}_3 + \text{Co}_3\text{O}_4 \tag{6}$$

$$Co_3O_4 \rightarrow 3CoO + O_{\alpha}$$
 (7)

$$3CoO + 1/2 O_2 \rightarrow Co_3O_4$$
 (8)

$$O_2 + \text{surface}-\text{BAC} \rightarrow 2O_\beta$$
 (9)

 $Hg^{0}(g) + surface - BAC \rightarrow Hg^{0}(ad)$ (10)

$$Hg^{0}(ad) + O_{\alpha} \rightarrow HgO(ad)$$
 (11)

 $Hg^{0}(ad) + O_{\beta} \rightarrow HgO(ad)$ (12)

$$HgO(ad) \rightarrow HgO(g)$$
 (13)

For NH₃-SCR of NO, it was well accepted that catalytic centers of metal oxides loaded catalysts were active metal oxides, which were considered as electron transfer stations among NH₃, NO and O₂ [6,13,16,71,72]. On the basis of these literatures and the results of characterizations and tests, Co-Ce metal oxides (denoted as MO) acted as catalytic centers in this work. Therefore, chief reaction pathways were inferred as follows: NH3 was firstly coordinated to Brønsted sites or Lewis acid sites while some NO was oxidized to NO₂ absorbed on the surface of the sample, then adsorbed NH₃ species reacted with gaseous NO and adsorbed NO₂, thus forming the final products of N₂ and H₂O. These reactions were summarized as Eq. (9) and Eqs. ((14)-(19)), which was mainly ascribed to the Langmuir-Hinshlwood mechanism [13,27]. Notably, very little amounts of CO and CO₂ were detected at 290 °C and 320 °C in the outlet gases, indicating some side reactions occurred along with NO reduction and Hg⁰ oxidation processes due to the carrier of carbon as a reducing agent, as shown in Eqs. ((20)-(22)), thus destroying the carrier structure to some degree and resulting in the decrease of E_{Hg} and even E_{NO} . This phenomenon was also observed in other NO reduction reactions over carbon carrier loaded metal oxides [6,16,73]. Notwithstanding, these side reactions were much weaker compared with NO reduction and Hg⁰ oxidation reactions at low temperatures (< 260 °C).

$$MO + O_{\beta} \leftrightarrow MO_2^*$$
 (14)

$MO_2^* + NO(g) \leftrightarrow MO + NO_2(ad)$	(15)
--	------

 $NH_3(g) \rightarrow NH_3(ad)$ (16)

$$\mathrm{NH}_3(\mathrm{g}) + \mathrm{H}^+ \to \mathrm{NH}_4^+(\mathrm{ad}) \tag{17}$$

- $2NH_3(ad) + 2NO_2(ad) + NO(g) \rightarrow 2N_2 + 3H_2O$ (18)
- $2NH_4^+(ad) + NO_2(ad) + NO(g) \rightarrow 2N_2 + 3H_2 O + 2H^+$ (19)
- $MO_2^* + surface BAC \rightarrow MO + CO$ (20)
- $\mathrm{MO}_2^* + \mathrm{CO} \to \mathrm{MO} + \mathrm{CO}_2 \tag{21}$

$$2NO + 2CO + O_2 \rightarrow N_2 + 2CO_2$$
 (22)

4. Conclusion

A series of $\text{CoO}_x\text{-}\text{CeO}_2$ loaded maize straw derived biomass activated

carbon (CoCe/BAC) samples were applied for simultaneous NO and Hg⁰ removal. 15%Co_{0.4}Ce_{0.6}/BAC yielded prominent Hg⁰ removal efficiency (96.8%) and superior NO removal efficiency (84.7%) at 230 °C. The separate or synchronous deactivation effects of 400 ppm SO₂ and 5% H₂O were detected. The interaction between NO removal and Hg⁰ removal was investigated, the results demonstrated that the presence of abundant Hg⁰ exhibited very slightly inhibitory effect on NO removal, and NH₃ negatively affected Hg⁰ removal, whereas NO mildly boosted Hg⁰ removal in presence of O₂. The characterization analyses indicated the excellent performance of 15%Co_{0.4}Ce_{0.6}/BAC could be ascribed to its better texture properties, lower crystallinity and stronger redox ability. Besides, a synergetic effect appeared between cobalt oxide and cerium oxide, resulting in generating more Ce³⁺ and Co³⁺ to induce more anionic defects and produce more active oxygen and oxygen vacancies. The mechanisms of simultaneous removal of NO and Hg⁰ were probed and proposed based on the characterizations and literatures. NO reduction reactions were mainly assigned to the Langmuir-Hinshlwood mechanism while both adsorption and Hg⁰ oxidation contributed to Hg⁰ removal. Meanwhile, Hg⁰ oxidation corresponded to the Mars-Masson mechanism prevailed gradually with the increase of reaction time.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China – China (51478173), the National Key Research and Development Program of China – China (2016YFC0204104) and the Scientific and Technological Major Special Project of Hunan Province in China – China (2015SK1003).

References

- L. Fan, L. Ling, B. Wang, R. Zhang, The adsorption of mercury species and catalytic oxidation of Hg⁰ on the metal-loaded activated carbon, Appl. Catal. A: Gen. 520 (2016) 13–23.
- [2] L. Zhao, C. Li, S. Li, Y. Wang, J. Zhang, T. Wang, G. Zeng, Simultaneous removal of elemental mercury and NO in simulated flue gas over V₂O₅/ZrO₂-CeO₂ catalyst, Appl. Catal. B: Environ. 198 (2016) 420–430.
- [3] M. Hui, Q. Wu, S. Wang, S. Liang, L. Zhang, F. Wang, M. Lenzen, Y. Wang, L. Xu, Z. Lin, H. Yang, Y. Lin, T. Larssen, M. Xu, J. Hao, Mercury flows in China and global drivers, Environ. Sci. Technol. 51 (2017) 222–231.
- [4] H. Li, S. Wu, C.Y. Wu, J. Wang, L. Li, K. Shih, SCR atmosphere induced reduction of oxidized mercury over CuO-CeO₂/TiO₂ catalyst, Environ. Sci. Technol. 49 (2015) 7373–7379.
- [5] H. Xu, Z. Qu, C. Zong, W. Huang, F. Quan, N. Yan, MnOx/Graphene for the catalytic oxidation and adsorption of elemental mercury, Environ. Sci. Technol. 49 (2015) 6823–6830.
- [6] L. Gao, C. Li, P. Lu, J. Zhang, X. Du, S. Li, L. Tang, J. Chen, G. Zeng, Simultaneous removal of Hg⁰ and NO from simulated flue gas over columnar activated coke granules loaded with La₂O₃-CeO₂ at low temperature, Fuel 215 (2018) 30–39.
- [7] S. Sjostrom, M. Durham, C.J. Bustard, C. Martin, Activated carbon injection for mercury control: overview, Fuel 89 (2010) 1320–1322.
- [8] Y. Yang, J. Liu, B. Zhang, F. Liu, Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe₂O₄, J. Hazard. Mater. 321 (2017) 154–161.
- [9] E. Sasmaz, A. Kirchofer, A.D. Jew, A. Saha, D. Abram, T.F. Jaramillo, J. Wilcox, Mercury chemistry on brominated activated carbon, Fuel 99 (2012) 188–196.
- [10] Y. Zhao, R. Hao, M. Qi, Integrative process of preoxidation and absorption for simultaneous removal of SO₂, NO and Hg⁰, Chem. Eng. J. 269 (2015) 159–167.
- [11] L. Qu, C. Li, G. Zeng, M. Zhang, M. Fu, J. Ma, F. Zhan, D. Luo, Support modification for improving the performance of MnO_x–CeO_y/γ-Al₂O₃ in selective catalytic reduction of NO by NH₃, Chem. Eng. J. 242 (2014) 76–85.
- [12] H.S. Gandhi, G.W. Graham, R.W. McCabe, Automotive exhaust catalysis, J. Catal. 216 (2003) 433–442.
- [13] J. Wang, Z. Yan, L. Liu, Y. Zhang, Z. Zhang, X. Wang, Low-temperature SCR of NO with NH₃ over activated semi-coke composite-supported rare earth oxides, Appl. Surf. Sci. 309 (2014) 1–10.
- [14] H. Wu, C. Li, L. Zhao, J. Zhang, G. Zeng, Y. Xie, X. Zhang, Y. Wang, Removal of gaseous elemental mercury by cylindrical activated coke loaded with Co₀x-Ce₀2 from simulated coal combustion flue gas, Energy Fuels 29 (2015) 6747–6757.
- [15] H. Chen, Y. Xia, H. Huang, Y. Gan, X. Tao, C. Liang, J. Luo, R. Fang, J. Zhang, W. Zhang, X. Liu, Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH₃-SCR, Chem. Eng. J. 330 (2017) 1195–1202.
- [16] P. Lu, C. Li, G. Zeng, L. He, D. Peng, H.C. Li, Y. Zhai, Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and

ceria, Appl. Catal. B: Environ. 96 (2010) 157-161.

- [17] L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, Rational design of highperformance DeNOx catalysts based on Mn_xCo_{3-x}O₄ nanocages derived from metal–organic frameworks, ACS Catal. 4 (2014) 1753–1763.
- [18] S. Lin, G. Su, M. Zheng, D. Ji, M. Jia, Y. Liu, Synthesis of flower-like Co₃O₄–CeO₂ composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene, Appl. Catal. B: Environ. 123–124 (2012) 440–447.
- [19] C. Wang, C. Zhang, W. Hua, Y. Guo, G. Lu, Sonia Gil, A. Giroir-Fendler, Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts, Chem. Eng. J. 315 (2017) 392–402.
- [20] J. Li, G. Lu, G. Wu, D. Mao, Y. Wang, Y. Guo, Promotional role of ceria on cobaltosic oxide catalyst for low-temperature CO oxidation, Catal. Sci. Technol. 2 (2012) 1865–1871.
- [21] J. Ma, C. Li, L. Zhao, J. Zhang, J. Song, G. Zeng, X. Zhang, Y. Xie, Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid, Appl. Surf. Sci. 329 (2015) 292–300.
- [22] H. Zhang, J. Hu, Y. Qi, C. Li, J. Chen, X. Wang, J. He, S. Wang, J. Hao, L. Zhang, L. Zhang, Y. Zhang, R. Li, S. Wang, F. Chai, Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China, J. Clean. Prod. 149 (2017) 629–635.
- [23] M.N. Mahamad, M.A.A. Zaini, Z.A. Zakaria, Preparation and characterization of activated carbon from pineapple waste biomass for dye removal, Int. Biodeter. Biodegr. 102 (2015) 274–280.
- [24] S. Singh, M.A. Nahil, X. Sun, C. Wu, J. Chen, B. Shen, P.T. Williams, Novel application of cotton stalk as a waste derived catalyst in the low temperature SCR-deNOx process, Fuel 105 (2013) 585–594.
- [25] G. Li, S. Wang, Q. Wu, F. Wang, B. Shen, Mercury sorption study of halides modified bio-chars derived from cotton straw, Chem. Eng. J. 302 (2016) 305–313.
- [26] J. Zeng, C. Li, L. Zhao, L. Gao, X. Du, J. Zhang, L. Tang, G. Zeng, Removal of elemental mercury from simulated flue gas over peanut shells carbon loaded with iodine ions, manganese oxides, and zirconium dioxide, Energy Fuels 31 (2017) 13909–13920.
- [27] T. Wang, C. Li, L. Zhao, J. Zhang, S. Li, G. Zeng, The catalytic performance and characterization of ZrO₂ support modification on CuO-CeO₂/TiO₂ catalyst for the simultaneous removal of Hg⁰ and NO, Appl. Surf. Sci. 400 (2017) 227–237.
- [28] J. Zhang, C. Li, L. Zhao, T. Wang, S. Li, G. Zeng, A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg⁰ from simulated flue gas, Chem. Eng. J. 313 (2017) 1535–1547.
- [29] S. Tao, C. Li, X. Fan, G. Zeng, P. Lu, X. Zhang, Q. Wen, W. Zhao, D. Luo, C. Fan, Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas, Chem. Eng. J. 210 (2012) 547–556.
- [30] J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Preparation and characterization of CeO₂ highly dispersed on activated carbon, Mater. Res. Bull. 43 (2008) 1850–1857.
- [31] H. Li, G. Lu, D. Qiao, Y. Wang, Y. Guo, Y. Guo, Catalytic methane combustion over Co₃O₄/CeO₂ composite oxides prepared by modified citrate sol-gel method, Catal. Lett. 141 (2011) 452–458.
- [32] T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH₃, Catal. Commun. 12 (2010) 310–313.
- [33] D. Fang, F. He, X. Liu, K. Qi, J. Xie, F. Li, C. Yu, Low temperature NH₃-SCR of NO over an unexpected Mn-based catalyst: promotional effect of Mg doping, Appl. Surf. Sci. 427 (2018) 45–55.
- [34] L. Zhu, Y. Zeng, S. Zhang, J. Deng, Q. Zhong, Effects of synthesis methods on catalytic activities of CoO_x-TiO₂ for low-temperature NH₃-SCR of NO, J. Environ. Sci.-China 54 (2017) 277–287.
- [35] Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Impacts of niobia loading on active sites and surface acidity in NbO_x/CeO₂–ZrO₂ NH₃–SCR catalysts, Appl. Catal. B: Environ. 179 (2015) 380–394.
- [36] T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. McDonald, P.G. Smirniotis, Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO₂ catalysts for the low-temperature SCR of NOx under oxygen-rich conditions, J. Catal. 325 (2015) 145–155.
- [37] B. Bai, H. Arandiyan, J. Li, Comparison of the performance for oxidation of formaldehyde onnano-Co₃O₄, 2D-Co₃O₄, and 3D-Co₃O₄ catalysts, Appl. Catal. B: Environ. 142–143 (2013) 677–683.
- [38] P.A. Kumar, M.D. Tanwar, N. Russo, R. Pirone, D. Fino, Synthesis and catalytic properties of CeO₂ and Co/CeO₂ nanofibres for diesel soot combustion, Catal. Today 184 (2012) 279–287.
- [39] N. Russo, S. Furfori, D. Fino, G. Saracco, V. Specchia, Lanthanum cobaltite catalysts for diesel soot combustion, Appl. Catal. B: Environ. 83 (2008) 85–95.
- [40] G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li–air cells, J. Phys. Chem. Lett. 3 (2012) 1242–1247.
- [41] J. Li, N. Yan, Z. Qu, S. Qiao, S. Yang, Y. Guo, P. Liu, J. Jia, Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al₂O₃ at lower temperatures, Environ. Sci. Technol. 44 (2010) 426–431.
- [42] H. Li, S. Wu, L. Li, J. Wang, W. Ma, K. Shih, CuO–CeO₂/TiO₂ catalyst for simultaneous NO reduction and Hg⁰ oxidation at low temperatures, Catal. Sci. Technol. 5 (2015) 5129–5138.
- [43] H. Li, C.-Y. Wu, Y. Li, J. Zhang, CeO₂-TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas, Environ. Sci. Technol. 45 (2011) 7394–7400.
- [44] Y. Xie, C. Li, L. Zhao, J. Zhang, G. Zenga, X. Zhang, W. Zhang, S. Tao, Experimental study on Hg⁰ removal from flue gas over columnar MnO_x-CeO₂/activated coke, Appl. Surf. Sci. 333 (2015) 59–67.
- [45] Q. Wan, L. Duan, K. He, J. Li, Removal of gaseous elemental mercury over a

 $CeO_2\text{-WO}_3\text{/TiO}_2$ nanocomposite in simulated coal-fired flue gas, Chem. Eng. J. 170 (2011) 512–517.

- [46] S. Yang, W. Zhu, Z. Jiang, Z. Chen, J. Wang, The surface properties and the activities in catalytic wet air oxidation over CeO₂–TiO₂ catalysts, Appl. Surf. Sci. 252 (2006) 8499–8505.
- [47] Y. Jiang, Z. Xing, X. Wang, S. Huang, X. Wang, Q. Liu, Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH₃, Fuel 151 (2015) 124–129.
- [48] P. Ning, Z. Song, H. Li, Q. Zhang, X. Liu, J. Zhang, X. Tang, Z. Huang, Selective catalytic reduction of NO with NH₃ over CeO₂–ZrO₂–WO₃ catalysts prepared by different methods, Appl. Surf. Sci. 332 (2015) 130–137.
- [49] X. Zhang, B. Shen, F. Shen, X. Zhang, M. Si, P. Yuan, The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas, Chem. Eng. J. 326 (2017) 551–560.
- [50] T. Cai, H. Huang, W. Deng, Q. Dai, W. Liu, X. Wang, Catalytic combustion of 1,2dichlorobenzene at low temperature over Mn-modified Co₃O₄ catalysts, Appl. Catal. B: Environ. 166–167 (2015) 393–405.
- [51] Z. Tian, P.H.T. Ngamou, V. Vannier, K. Kohse-Höinghaus, N. Bahlawane, Catalytic oxidation of VOCs over mixed Co–Mn oxides, Appl. Catal. B: Environ. 117–118 (2012) 125–134.
- [52] M. Konsolakis, M. Sgourakis, S.A.C. Carabineiro, Surface and redox properties of cobalt–ceria binary oxides: on the effect of Co content and pretreatment conditions, Appl. Surf. Sci. 341 (2015) 48–54.
- [53] N.D. Hutson, B.C. Attwood, K.G. Scheckel, XAS and XPS characterization of mercury binding on brominated activated carbon, Environ. Sci. Technol. 41 (2007) 1747–1752.
- [54] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Low-temperature selective catalytic reduction of NO with NH₃ over Mn-Ce oxides supported on TiO₂ and Al₂O₃: a comparative study, Chemosphere 78 (2010) 1160–1166.
- [55] G. Qi, R.T. Yang, R. Chang, MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH₃ at low temperatures, Appl. Catal. B: Environ. 51 (2004) 93–106.
- [56] F. Cao, J. Xiang, S. Su, P. Wang, L. Sun, S. Hu, S. Lei, The activity and characterization of MnO_x-CeO₂-ZrO₂/γ-Al₂O₃ catalysts for low temperature selective catalytic reduction of NO with NH₃, Chem. Eng. J. 243 (2014) 347–354.
- [57] H. Fu, X. Wang, H. Wu, Y. Yin, J. Chen, Heterogeneous uptake and oxidation of SO₂ on iron oxides, J. Chem. Phys. C 111 (2007) 6077–6085.
- [58] J. García-Martínez, D. Cazorla-Amorós, A. Linares-Solano, SO₂-Faujasite interaction: a study by in situ FTIR and thermogravimetry, Langmuir 18 (2002)

9778-9782.

- [59] A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, Enhanced soot oxidation by lattice oxygen via La³⁺-doped CeO₂, J. Catal. 230 (2005) 237–248.
- [60] H. Li, Y. Li, C. Wu, J. Zhang, Oxidation and capture of elemental mercury over SiO₂-TiO₂-V₂O₅ catalysts in simulated low-rank coal combustion flue gas, Chem. Eng. J. 169 (2011) 186–193.
- [61] Y. Xu, Q. Zhong, X. Liu, Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature, J. Hazard. Mater. 283 (2015) 252–259.
- [62] M. Casapu, O. Kröcher, M. Elsener, Screening of doped MnO_x-CeO₂ catalysts for low-temperature NO-SCR, Appl. Catal. B: Environ. 88 (2009) 413–419.
 [63] W. Xu, H. He, Y. Yu, Deactivation of a Ce/TiO₂ catalyst by SO₂ in the selective
- catalytic reduction of NO by NH₃, J. Chem. Phys. C 113 (2009) 4426–4432. [64] Y. Li, P.D. Murohy, C. Wu, K. Powers, J.C.J. Bonzongo, Development of silica/v.
- [64] Y. Li, P.D. Murphy, C. Wu, K. Powers, J.C.J. Bonzongo, Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal combustion flue gas, Environ. Sci. Technol. 42 (2008) 5304–5309.
- [65] S. Niksa, N. Fujiwara, A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas, J. Air Waste Manage. 55 (2005) 1866–1875.
- [66] Y. Shi, S. Chen, H. Sun, Y. Shu, X. Quan, Low-temperature selective catalytic reduction of NO_x with NH₃ over hierarchically macro-mesoporous Mn/TiO₂, Catal. Commun. 42 (2013) 10–13.
- [68] R. Grabowski, S. Pietrzyk, J. Słoczyński, F. Genser, K. Wcisło, B. Grzybowska-Świerkosz, Kinetics of the propane oxidative dehydrogenation on vanadia/titania catalysts from steady-state and transient experiments, Appl. Catal. A: Gen. 232 (2002) 277–288.
- [69] J. Yang, Y. Zhao, J. Zhang, C. Zheng, Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas, Environ. Sci. Technol. 48 (2014) 14837–14843.
- [70] A.A. Presto, E.J. Granite, Survey of catalysts for oxidation of mercury in flue gas, Environ. Sci. Technol. 40 (2006) 5601–5609.
- [72] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu–Mn mixed oxides for low temperature NO reduction with NH₃, Catal. Today 111 (2006) 236–241.
- [73] Y.H. Li, C.W. Lee, B.K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption, Fuel 82 (2003) 451–457.