- **1** Alleviation of heavy metal and silver nanoparticle toxicity
- 2 and enhancement of their removal by hydrogen sulfide in
- 3 Phanerochaete chrysosporium
- 4 Zhenzhen Huang ^{a,1}, Kai He ^{a,1}, Zhongxian Song ^{b,1}, Guangming Zeng ^{a,*}, Anwei Chen
- 5 ^{c,*}, Lei Yuan ^a, Hui Li ^a, Guiqiu Chen ^a
- ⁶ ^a College of Environmental Science and Engineering, Hunan University and Key
- 7 Laboratory of Environmental Biology and Pollution Control (Hung University),
- 8 Ministry of Education, Changsha 410082, PR China

Ć Ċ Ć

- 9 ^b School of Municipal and Environmental Engineering. Henan University of Urban
- 10 Construction, Pingdingshan 467036, PR Chin
- ^c College of Resources and Environment, Husan Agricultural University, Changsha
- 12 410128, PR China

^{*} Corresponding authors. Tel.: + 86 731 88822829; fax: +86 731 88823701.

E-mail addresses: zgming@hnu.edu.cn (G. Zeng), anweihuanjing@126.com (A. Chen).

¹These authors contribute equally to this article.

14 Abstract

15	Hydrogen sulfide (H ₂ S), an important cellular signaling molecule, plays vital
16	roles in mediating responses to biotic/abiotic stresses. Influences of H ₂ S on metal
17	removal, cell viability, and antioxidant response of Phanerochaete chrysosporium
18	upon exposure to heavy metals and silver nanoparticles (AgNPs) in the present study
19	were investigated. An enhancement in Pb(II) removal with an increase in
20	concentration of the H_2S donor sodium hydrosulfide (NaHS) was observed, and the
21	maximum removal efficiencies increased by 31% and 17% under 199 and 200 mg/L
22	Pb(II) exposure, respectively, in the presence of 500 μ M Na ₁ S Application of 500
23	μ M NaHS increased the cell viability by 15%–39% order Pb(II) stress (10–200 mg/L)
24	with relative to the untreated control. Increase in total Ag uptake and cell survival was
25	also elicited by NaHS in a concentration-dependent manner under AgNP stress.
26	Meanwhile, activities of superoxide listenase and catalase were significantly
27	enhanced with the introduction of NaHS under stresses of Pb(II), Cd(II), Cu(II),
28	Zn(II), Ni(II), and AgNax The inhibition in lipid peroxidation and oxidative stress
29	was observed in <i>P. crysosporium</i> cells exposed to these toxicants following NaHS
30	pretreatment, which could be attributed to the upregulation in antioxidant enzymes.
31	The results obtained suggest that H_2S can alleviate heavy metals and AgNP-induced
32	toxicity to P. chrysosporium and improve the removal efficiency of these toxicants
33	from wastewater.
34	Keywords: Hydrogen sulfide; Heavy metals; Silver nanoparticles; Bioremediation;

35 Antioxidant response; *Phanerochaete chrysosporium*

36 **1. Introduction**

- 37 Heavy metal contamination in water and soil has been one of the most concerned
- 38 global environmental problems due to the increasing anthropogenic and industrial
- activities (Fang et al., 2016; Tang et al., 2018; Ye et al., 2017; Zhang et al., 2019).
- 40 Excess exposure to heavy metals results in the deterioration of environmental quality
- and causes serious effects on the development of microorganisms, plants, animals,
- 42 and humans because of their long-term toxic effects, carcinogenicity, and
- 43 mutagenicity (Houda et al., 2016; He et al., 2018; Ren et al., 20 8 and b; Wang et
- 44 al., 2018). It is reported that lead (Pb), cadmium (Cd), chronied (Cr), copper (Cu),
- 45 nickel (Ni), and zinc (Zn) are the major heavy metal-xicants (Macomber et al.,
- 46 2011; Ye et al., 2017; Ye et al., 2017; Qin et al., 2018, Zhou et al., 2018; Wang et al.,
- 47 2013). Trace amounts of these toxicants are take to cause colonization inhibition,
- membrane damage, oxidative strass an exidant enzyme upregulation, chromosome
- 49 aberration, and even cell de th (Cong et al., 2009; Huang et al., 2015; Ali et al.,
- 2014). In addition, explosion in the use of silver nanoparticles (AgNPs), such as
 antimicrobial and sterile applications, also possesses environmental risks to human
- health and ecosystem (Choi et al., 2018; He et al., 2017a, 2018a and b). Both AgNPs
- themselves and released Ag^+ can induce generation of reactive oxygen species (ROS)
- and cytotoxicity through direct damage to cell membrane of some aquatic organisms
- and microbes in biological wastewater treatment processes (Wu et al., 2017; Zhang et
- al., 2018; Yang et al., 2018). Meanwhile, it has been documented that Ag speciation
- and precipitation are potentially changed due to alteration in transport and fate of

58	AgNPs under environmental stress, thus influencing their toxicity against aquatic
59	organisms (McGillicuddy et al., 2017; Yi et al., 2018; Yang et al., 2018; Xiong et al.,
60	2018; Leng et al., 2019).
61	Bioremediation is an economic, efficient, and environmentally friendly
62	alternative for removal of heavy metals (He et al., 2017b; Mir-Tutusaus et al., 2018).
63	Phanerochaete chrysosporium, a typical species of white rot fungi, has been proven to
64	be available for the treatment of wastewater containing heavy metals and AgNPs due
65	to its admirable biosorption capacity (Xu et al., 2012a and b). However, the efficiency
66	of P. chrysosporium in removal of heavy metals and AgNPs social limited due to its
67	lower resistance to toxic pollutants and longer biorer diation time. Hydrogen sulfide
68	(H ₂ S) has been used to assist in 2,4-dichlorophener (2,4-DCP) biodegradation by P .
69	chrysosporium in our previous study (Chen et al., 2014). Therefore, it is worth further
70	exploring whether this exogenous notes a can improve bioremediation capability of
71	heavy metals and AgNPs.
72	H_2S , a new preconversional molecule, has been recommended for mediating a
73	variety of physiological processes and defense responses against to biotic and abiotic
74	stresses including heavy metals (Chen et al., 2018). More recent evidences have
75	indicated that H ₂ S can exert antiinflammatory, antioxidant, antiapoptotic,
76	cytoprotective, and organ-protective effects, further improving environmental stress
77	tolerance of cells (Yuan et al., 2017). The protective roles of H_2S in plants could be
78	attributed to the decreased influx and transport of metals and the elevated antioxidant
79	enzymatic systems, including superoxide dismutase (SOD), catalase (CAT),

80	peroxidase, and non-enzymatic constituents (He et al., 2018). Enhancement in enzyme
81	activities, such as SOD, CAT, and reduced glutathione, leads to the decreases in
82	malonyldialdehyde (MDA) content and ROS production. In addition to the
83	improvement of antioxidant enzymes, H ₂ S, as a reductive substance, can also
84	scavenge ROS directly, such as superoxide (O_2 ⁻) and hydrogen peroxide (Geng et al.,
85	2004; Mitsuhashi et al., 2006). However, little information is available on the
86	introduction of H_2S to bioremediation using microorganisms, especially fungi.
87	Moreover, whether H ₂ S can alleviate the toxic effects induced by berry metals and
88	nanomaterials, and improve the biological treatment efficiency remains an open
89	question. Thus, the aim of this study was to investigat the effects of H_2S on the
90	bioremediation efficiency, cell viability, oxidative damage, and antioxidant enzyme
91	activities of <i>P. chrysosporium</i> under stresses f.Pb(II), Cd(II), Cu(II), Ni(II), Zn(II),
92	and AgNPs. P. chrysosporium was preused with the H ₂ S donor sodium hydrosulfide
93	(NaHS) prior to exposure to these toxicants.
94	2. Materials and methods
95	2.1. Strain culture

P. chrysosporium strain BKMF-1767 (CCTCC AF96007) obtained from the
China Center for Type Culture Collection (Wuhan, China) was maintained on malt
extract agar slants at 4 °C. Spore suspensions were prepared by gently scraping the
spores from the agar surface into sterile ultrapure water and blending them evenly.
The fungal spore suspensions at a concentration of 2.0×10⁶ CFU/mL were inoculated
into the culture medium and cultivated at 37 °C under 150 rpm. After 3 days of

incubation, *P. chrysosporium* mycelia were harvested and rinsed several times forfurther use.

104 2.2. Characterizations of AgNPs

105	Polyethylene glycol-coated AgNPs (PVP-AgNPs) used in this work were
106	obtained from NanoAmor (Houston, TX). The PVP-AgNP powders were suspended
107	in ultrapure water, mixed with ultrasonic agitation, and stored at 4 $$ $^{\circ}$ C in dark for
108	further use. The as-prepared AgNPs were monodispersed and spherical in shape with
109	an average particle diameter of 57.3 \pm 15.5 nm on the basis of tangetission electron
110	microscopy (TEM) observations (Fig. 1). The mean hydrodynamic diameter of
111	AgNPs was also determined with the value of 85.1 ± 7 nm by dynamic light
112	scattering (DLS) with a Zetasizer Nano-ZS (Malvern Instrument, U.K.). Difference in
113	size distributions obtained from TEM and Dr.S. methods arises from their different
114	measurement principles (Huang (73), 227). Besides, the zeta-potential of AgNPs
115	showed a negative value of -10.8 ± 0.8 mV, and the dissolved fractions of AgNP
116	stock suspension, verecound to be less than 1% by monitoring the filtrates after
117	ultrafiltration centrifugation using ICP-MS. After digestion of the samples using
118	HNO_3 and H_2O_2 , total Ag concentration in aqueous solutions was determined by a
119	flame atomic absorption spectroscopy (FAAS, PerkinElmer AA700, USA) (Huang et
120	al., 2018a and b).

121 2.3. Effect of H₂S on removal of heavy metals and AgNPs

122 The influences of different concentrations of H_2S on Pb(II) and total Ag removal 123 were investigated. After pretreatment with NaHS (0, 50, 100, and 500 μ M) for 4 h, *P*.

124	chrysosporium pellets were transferred to aqueous solutions containing 10, 50, 100,
125	and 200 mg/L Pb(II) and AgNPs separately for another 78 h. Furthermore, a
126	comparative experiment on removal of various heavy metals was also performed. The
127	fungal pellets were pretreated with 100 μ M NaHS for 4 h and then exposed to 100
128	mg/L Cd(II), Cu(II), Ni(II), and Zn(II), separately. Cultures that were treated with 0-
129	500 μ M NaHS but without heavy metals or AgNPs were used as controls. The culture
130	media were taken at predetermined intervals for analysis of residual heavy metal
131	concentrations. Concentrations of heavy metals in the aqueous colutions were
132	monitored by using FAAS.
133	2.4. Physiological assays
134	After pretreatment with NaHS (0–100 μ N), <i>J. chrysosporium</i> pellets, that were
135	exposed to Pb(II), Cd(II), Cu(II), Ni(II), Zn(N), and AgNPs at initial concentrations of
136	100 mg/L for 24 h, were harvested and reshed three times with ultrapure water for
137	physiological analyses, including cell viability, lipid peroxidation, O_2^- generation,
138	and antioxidant enzyme. For cell viability assays, prolonged exposure (78 h) to 10–
139	200 mg/L Pb(II) and agNPs with and without NaHS pretreatments was also carried
140	out. Cell viability was assessed by MTT method according to Chen et al. (2014).
141	The content of malondialdehyde (MDA), a cytotoxic product of lipid
142	peroxidation, was measured following our previous procedures (Zeng et al., 2012;
143	Huang et al., 2018c). O_2 generation was detected according to Chen et al. (2014)
144	with minor modifications. Briefly, fungal samples (0.2 g) were homogenized in 2.5
145	mL of phosphate buffer (50 mM, pH 7.8). 1 mL of the extracts was added into 0.9 mL

- of 50 mM phosphate buffer and 0.1 mL of 10 mM hydroxylamine hydrochloride.
- 147 After 20 min of reaction at 25 °C, 1 mL of 17 mM p-aminobenzenesulfonic acid and 1
- 148 mL of 7 mM a-naphthylamine were introduced into the mixture, which was incubated
- at 25 °C for another 20 min. Absorbance of the mixture was recorded at 530 nm by
- spectrophotometry. *P. chrysosporium* viability and O_2 levels were expressed as
- relative percentages to the untreated control.
- 152 The activities of antioxidant enzymes SOD and CAT were measured following
- the method described by Zeng et al. (2012) and Huang et al. (2018) SOD activity was
- detected by monitoring 50% inhibition of nitroblue tetrazoli in chloride reduction.
- 155 CAT activity was tested by monitoring the absorbane of H_2O_2 at 240 nm and one unit
- 156 of CAT was defined as a decrease of 0.1 unit of A 40 per min.
- 157 All assays were conducted in triplicate. The data were statistically analyzed by
- 158 SPSS 22.0 software and express a a the means \pm standard deviations. Statistical
- 159 differences between the experimental groups were determined using one-way analysis
- 160 of variance, followed by Tubey post-hoc test. Differences of p < 0.05 were considered 161 to be statistically significant.
- 162 **3. Results and discussion**
- 163 3.1. Promoting effects of H_2S on Pb(II) removal
- 164 Effects of H₂S on Pb(II) removal by *P. chrysosporium* were investigated under
- stress of 10–200 mg/L Pb(II). As shown in Fig. 2A-D, no obvious changes in Pb(II)
- removal are observed for low-concentration NaHS pretreatments ($0-100 \mu$ M). Further
- increase in NaHS concentration (up to $500 \ \mu$ M) results in a significant promotion in

168	Pb(II) removal efficiency. Although the maximum removal efficiencies for NaHS (0–
169	500 $\mu M)$ pretreatments all arrived at 100% at the initial Pb(II) concentration of 10 and
170	50 mg/L, 500-µM NaHS pretreatment elicited higher Pb(II) removal efficiency for
171	short-term exposure (1–24 h) (Fig. 2A and B). The removal efficiencies under 100 and
172	200 mg/L Pb(II) treatments were also markedly increased by higher-dose NaHS
173	during the whole adsorption process, with an increase of 31% and 17%, respectively,
174	in the maximum removal efficiency of Pb(II) relative to the samples without NaHS
175	(Fig. 2C and D). These findings indicated that Pb(II) removal by P brysosporium
176	was enhanced after NaHS pretreatment, especially at higher conventrations, and the
177	time to achieve higher removal efficiencies was shorined greatly. Similar results
178	were reported for promotion of 2,4-DCP degradation by 50–100 μ M NaHS (Chen et
179	al., 2014). Besides, our previous studies found that the pH levels increased with
180	increasing reaction time (Huang et al., 1925 and 2017). Thus, another possibility for
181	higher Pb(II) removal could be the formation of the precipitation of Pb(II) ions.
182	3.2. Effects of H_2^{1} on total Ag removal
183	A promoting effect of H ₂ S was also observed on total Ag removal at NaHS
184	concentration of 50 μ M. The maximum percentages of total Ag removal were 56%,
185	68%, 90%, and 70.0% at the AgNPs concentration of 10, 50, 100, and 200 mg/L,
186	respectively (Fig. 3). It was found that higher Ag removal efficiencies were obtained
187	at moderate concentrations of AgNPs. In addition, it was also observed that exposure
188	to 200 mg/L AgNPs showed higher removal efficiency of total Ag under 100- μ M
189	NaHS pretreatment. However, pretreatments with higher NaHS concentrations (500

190	μ M) induced a clear dose-dependent efficiency reduction in total Ag removal,
191	reaching undetectable levels in all AgNP-treated groups. The findings indicated that
192	Ag uptake by <i>P. chrysosporium</i> mycelium could be closely related to the
193	concentrations of NaHS and AgNPs. AgNPs with higher initial concentrations tended
194	to maintain better dispersion and stability, and oxidative dissolution and precipitations
195	of nanoparticles could occur at lower concentrations of NaHS. These would result in
196	greater Ag diffusion into fungal mycelium, enhancing the treatment efficiency of P.
197	chrysosporium (Guo et al., 2016a and b). Additionally, the undetectable levels in total
198	Ag removal efficiency in the presence of 500 μ M NaHS coupled explained by the
199	fact that AgNPs might be directly converted to the proparticle aggregates and/or
200	larger-sized Ag ₂ S-NPs through a solid-fluid suitid aion reaction at higher NaHS
201	concentrations, resulting in higher retention of Ag content in the media (Wirth et al.,
202	2012; Guo et al., 2016a; Wang et al. 2015).
203	3.3. Removal of various heavy metals and AgNPs with NaHS pretreatment
204	Pb(II), Cd(II, Cu(O, N(II), and Zn(II) at the same initial concentrations of 100
205	mg/L were adopted a models of heavy metal ions. Fig. 4A shows that the capture
206	percentages of 27% and 51% for Pb(II) and Cd(II) are observed after 24 h of
207	exposure, whereas no removal is detected for Cu(II), Ni(II), Zn(II), and AgNP
208	treatments when <i>P. chrysosporium</i> cells are pretreated with 100 µM NaHS.
209	Predictably, diverse heavy metals with different adsorption sites and metal-binding
210	energies in <i>P. chrysosporium</i> may result in different degrees of removal performance.
211	The undetectable removal efficiency implied that P. chrysosporium might have

212	weaker binding affinities to Cu(II), Ni(II), and Zn(II) than Pb(II) and Cd(II). Coupled
213	with the observations of total Ag removal in Fig. 3, unlike heavy metals, the
214	hindrance of Ag uptake into cells could be possibly due to NaHS-incuded AgNP
215	aggregation being blocked outside the cells (Wirth et al., 2012). Moreover, effect of
216	H ₂ S on Cd(II) removal was evaluated under 100-mg/L Cd(II) (Fig. 4B). Similar to
217	Pb(II) removal, application of NaHS (0, 50, and 100 $\mu M)$ enhanced removal of Cd(II)
218	in a dose-dependent manner, with maximum efficiencies of 49%, 50%, and 55%,
219	respectively.
220	3.4. Effects of H_2S on cell viability under heavy metal and A_2 is spess
221	After exposure to different concentrations of PbcU and AgNPs for 78 h, the
222	effects of H ₂ S on the tolerance of <i>P. chrysospolius</i> to 1b(II) and AgNP toxicity were
223	investigated (Fig. 5A and B). The results showed that a concentration-dependent
224	decrease in <i>P. chrysosporium</i> celive being without NaHS pretreatment was observed
225	after introduction of Pb(II) 10, 5), 100, and 200 mg/L), causing the death of
226	approximately 257, 404, 57%, and 60%, respectively (Fig. 5A). A significant
227	decrease in cell viability might be due to inhibition of cell division imparted by Pb(II)
228	in cell wall (Ali et al., 2014). However, Pb(II)-induced cell death was dramatically
229	reversed by NaHS pretreatment in a concentration-dependent manner. Application of
230	500 μ M NaHS caused the most significant increase in cell viability, approximately
231	27%, 15%, 27%, and 39% higher viability than the untreated control, respectively.
232	The enhancement in cell viability induced by NaHS demonstrated that H ₂ S exerted a
233	strong protective effect against Pb(II) toxicity.

234	However, P. chrysosporium viability in the presence of AgNPs alone was slightly
235	enhanced, rather than inhibited with the increasing AgNP concentrations (Fig. 5B).
236	This could be possibly because of nanoparticle aggregation greatly reducing the direct
237	contact/interaction between AgNPs and P. chrysosporium cells. Meanwhile, an
238	obvious increase in cell viability was noticed after pretreatment with 50 μ M NaHS,
239	except for 10- μ M AgNP treatments, indicating H ₂ S-exerted protection against AgNP
240	stress. With further increasing the concentrations of NaHS, however, P.
241	chrysosporium viability was remarkably depressed, resulting insub-motial cell death
242	(38%–41%) under exposure to 50–200 mg/L AgNPs following pretreatment with 500
243	μ M NaHS. The inhibitory effects of higher concentrations of NaHS suggested that
244	excess H ₂ S released might be toxic to <i>P. chryst sprium</i> , in agreement with the
245	findings of previous studies (Chen et al., 2018: Chen et al., 2014).
246	Furthermore, the data regarding effects of H_2S on the viability of <i>P</i> .
247	chrysosporium after exposure to various heavy metals and AgNPs for 24 h are shown
248	in Fig. 5C. In the absence of NaHS pretreatment, Pb(II), Cd(II), Cu(II), Ni(II), and
249	Zn(II) at initial concentration of 100 mg/L led to reduction in cell viability by 36%,
250	57%, 78%, 28%, and 56%, respectively, as compared to the untreated control. By
251	comparison, Cd(II), Cu(II), and Zn(II) exerted more toxic effects to P. chrysosporium
252	cells. The differential responses of cell viability to various heavy metals could be due
253	to different sensitivities and repair abilities of P. chrysosporium. After pretreatment
254	with 50 and 100 μ M NaHS, cell viability under heavy-metal stress was not
255	significantly affected, in line with the finding reported by Shahbaz et al. (2014) who

250 Tould that 1125 had fittle influence on Cu toxicity in <i>Drassica perinensis</i> . By C
--

- stimulation of AgNPs and NaHS on cell survival was observed when *P*.
- chrysosporium cells were exposed to 100 mg/L AgNPs for 24 h. This could be
- attributed to the increased nanoparticle sizes and agglomeration under high-dose
- AgNPs and/or in the presence of NaHS (Gliga et al., 2014).
- In contrast to short-term exposure (24 h), H₂S exerted the stimulatory effects on
- 262 *P. chrysosporium* survival in a concentration-dependent manner following 78 h of
- exposure to Pb(II) (Fig. 5A and C). The phenomena could be as vocinted with effective
- removal of Pb(II) by *P. chrysosporium* after prolonged exposure as illustrated in Fig.
- 265 2. More enzymes were probably activated to defend a ainst oxidative damage and to
- recover cell growth and replication during long-term exposure (Huang et al., 2018c).
- 267 To verify the effects of H_2S promotion to beavy metal removal and cell viability
- induced by NaHS, physiological analysis of *P. chrysosporium* pretreated with and
- without NaHS were carried out under the stresses of various heavy metals and AgNPs. 3.5. Effects of H2 contents of MDA and O_2^-
- 271 MDA content was determined to estimate the extent of lipid peroxidation under
- different treatments of NaHS and heavy metals (Fig. 6). Significant MDA
- accumulation was evoked by Pb(II), Cd(II), Cu(II), and AgNP treatments, especially
- in the case of Pb(II) stressed group. A higher MDA content in *P. chrysosporium*
- exposed to Pb(II) demonstrated that Pb(II) could not enter into cells, but might be
- distributed onto the cell walls and plasma membranes (Wang et al., 2010; Xu et al.,
- 277 2012b). It led to a decrease in the concentrations of unsaturated fatty acids, thus

278	enhancing the peroxidation of membrane lipid markedly (Wang et al., 2010).
279	Interestingly, in spite of the highest MDA level caused by Pb(II) treatment, P.
280	chrysosporium viability was not strongly inhibited. The higher tolerance of P.
281	chrysosporium to Pb(II) was likely ascribed to its highly effective antioxidant defense
282	mechanisms. However, a significant reduction in lipid peroxidation occurred in
283	Pb(II)-, Cd(II)-, Cu(II)-, Zn(II)-, and AgNP-stressed cells following H ₂ S application
284	compared with their corresponding treatments without NaHS. The results indicated
285	that H ₂ S depressed heavy metal and AgNP-induced plasma membran damage
286	significantly.
287	The production of O_2^- was also measured to evaluate the role of NaHS in
288	mediating heavy metal-induced oxidative stress. Fig. on shows that NaHS
289	pretreatments have no significant influence O_2^- production in the control and the
290	groups exposed to Pb(II), Ni(II), and $2n(1)$. However, O ₂ $^{-}$ production in the NaHS-
291	incubated P. chrysosporium cells under stress of Cd(II), Cu(II), and AgNPs reduced
292	42%, 34%, and 44%, respectively, as compared to those without NaHS incubation,
293	indicating the relieving effect of NaHS on O_2^- accumulation. Under Cu(II) stress,
294	although NaHS-induced inhibitory effects on O_2^- generation occurred, the prominent
295	production of O_2^- was still observed. The overproduction of free radicals, not being
296	eliminated effectively, would give rise to oxidative damage to fungal cells, resulting
297	in a significant reduction in cell survival, as illustrated in Fig. 5C.

- Taken together, H_2S seemed to be an important antioxidant signaling molecule
- involved in the mechanisms of tolerance against lipid peroxidation and oxidative
- 300 stress induced by heavy metals and AgNPs.
- 301 *3.6. Promotion of exogenous H*₂*S on antioxidant enzyme activities*
- To observe the role of H_2S on antioxidant defense system of *P. chrysosporium*,
- the activities of enzymes SOD and CAT under heavy-metal and AgNP stress were
- 304 measured when *P. chrysosporium* was pretreated with NaHS. Higher SOD activities
- in the range of 136.1–214.2 U/g Fw were obtained after introduction f Pb(II), Cd(II),
- 306 Cu(II), and AgNPs, whereas, for Ni(II) and Zn(II) exposure, there was no significant
- difference in SOD activity relative to the untreated control (Fig. 7A). Accordingly, in
- 308 comparison with Ni(II) and Zn(II), *P. chrysospori in* was more sensitive to the other
- metal ions and AgNPs. It has been document d that SOD activity could be stimulated
- by the introduction of toxic pollutance directly, such as heavy metals and AgNPs, or be
- increased by upregulating the expression of genes encoding SOD indirectly, in
- response to compression of excess O_2^- generation (Zeng et al., 2012; Ma et al.,
- 313 2015; Huang et al., 2018c). Importantly, SOD activities were enhanced by 102.7,
- 53.3, 34.3, 93.5, 61.5, 45.0, and 32.0 U/g Fw in cells pre-incubated with NaHS under
- the control, Pb(II), Cd(II), Cu(II), Ni(II), Zn(II), and AgNP stress, respectively, when
- compared to those without NaHS pre-incubation. A similar dose-dependent
- stimulatory effect of NaHS on CAT activity was observed when *P. chrysosporium* was
- subjected to the treatments with heavy metals and AgNPs (Fig. 7B). CAT activities

- were greatly activated in the NaHS-pretreated groups, with an increase of 35.5–100.3
- U/g Fw relative to those of the untreated groups.

321	Besides, it should be noted that in the absence of NaHS pretreatment, there was
322	no significant difference in CAT activity of <i>P. chrysosporium</i> between the control and
323	treatments with heavy metals and AgNPs. CAT activities under the control and
324	stresses of Pb(II), Cd(II), Cu(II), Ni(II), Zn(II), and AgNPs were 64.8, 67.7, 77.2,
325	56.7, 55.4, 32.8, and 52.7 U/g Fw, respectively. By contrast, changes in antioxidant
326	enzyme activities induced by heavy metals and AgNPs had a clear difference in SOD
327	and CAT in absence of NaHS. SOD is well-known to a key to come in an active
328	oxygen scavenger system and act as the first defense ine against toxic ROS for cells
329	to adapt to biotic and abiotic stresses, catalyzing the dismutation of O_2^- to O_2 and
330	H_2O_2 (Tan et al., 2015). CAT plays a vital key role in scavenging or detoxifying H_2O_2
331	into H_2O and O_2 (Huang et al., 2010). Therefore, it was speculated that the lower
332	CAT activity was probably e concerned with the higher SOD activity provoked by
333	heavy metal and N_2NP tress and that accumulation of H_2O_2 was increased due to
334	SOD overexpression resulting in the suppression in CAT activity (Pacini et al., 2013;
335	Huang et al., 2018c). Another possibility for the depression of CAT was that subunits
336	assembly and/or biosynthesis of CAT had been adversely affected by a variety of toxic
337	pollutants. Furthermore, the metal-enzyme complexes formed perhaps led to
338	alterations in the structure and enzyme activity of CAT (Sun et al., 2009).
339	Collectively, the activities of antioxidant enzymes can be stimulated by heavy-
340	metal and AgNP-induced ROS generation, which in turn will be scavenged by

341	antioxidant enzymes to maintain the oxidative balance in <i>P. chrysosporium</i> , further
342	protecting against oxidative damage to the cellular components. The levels of MDA
343	and O_2 ⁻ were markedly lowered when the mycelia were pretreated with 50 and 100
344	μ M NaHS, probably because of the remarkable enhancement in activities of SOD and
345	CAT enzymes under NaHS pretreatments. Predictably, H ₂ S mitigated the oxidative
346	stress triggered by heavy metal ions and AgNPs via enhancing the expression of ROS
347	scavenging enzymes (SOD and CAT). Similar results on NaHS-promoted tolerance to
348	oxidative stress caused by toxicants in bacteria and fungi were also exported (Chen et
349	al. 2014; Mironov et al., 2017; He et al., 2018).
350	Furthermore, many evidences indicate that low use H ₂ S has a positive effect on
351	growth, development, and abiotic/biotic stress esistance of animals, plants, and
352	microorganisms (Garc á-Mata and Lamattina 2010; Mironov et al., 2017; Zhu et al.,
353	2018). For example, pretreatment with KHS (a H_2S donor) in plants can increase
354	stress tolerance to toxic heavy metals, such as Pb, Cd, Cu, Cr, Zn, Al, and As (Chen et
355	al. 2014; Guo et an. 2016b) and decrease the accumulation of heavy metals (Liu et
356	al., 2016; Han et al., 2018), thereby alleviating heavy metal-induced toxicity.
357	Conversely, in the present study, H ₂ S application was proven to be rewarding for
358	improvement in removal efficacy of heavy metals Pb, Cd, and Ag. Further studies
359	must be conducted to explore high-efficiency removal of other heavy metals and the
360	simultaneous removal of various toxic pollutants by P. chrysosporium through H ₂ S-
361	based technologies. Activation of P. chrysosporium cells could be stimulated due to
362	the effective removal of these toxicants, and the surviving cells might induce an

363	increase in the production of enzymes against membrane-damaging lipid peroxidation
364	and oxidative stress. So, NaHS-induced significant increase in P. chrysosporium
365	viability may be precisely due to the alleviation of oxidative stress under heavy metal
366	and AgNP stress. Consequently, it could be concluded that H ₂ S plays a vital role in
367	cell growth, antioxidant defense systems, and efficient removal of toxic pollutants in
368	wastewater treatment.
369	4. Conclusions

In the present study, H₂S pretreatment improved the removal of Pb(II), Cd(II), 370 and total Ag by P. chrysosporium and ameliorated heavy m 371 ced growth inhibition significantly. H₂S-promoted enhancement the activities of antioxidant 372 enzymes was observed. Furthermore, lipid per sxi ation and oxidative stress evoked 373 by heavy metals and AgNPs were also alleviated by H₂S. Stimulation of H₂S on P. 374 chrysosporium viability under h and AgNP stress could be ascribed to the 375 upregulation of antioxidant enzymes, as well as the efficient biological removal of 376 hts in this work provide the evidence of potential 377 these toxicants. T ins applications of H₂S h bioremediation of wastewater and have great significance for 378 advancing the mechanistic understanding of H₂S-facilitated toxicant tolerance in 379 fungal cells. 380

381 Acknowledgements

- This work was financially supported by the National Natural Science Foundation of
- 383 China (51579099, 51521006, 51508186, and 51879105), the Program for Changjiang
- 384 Scholars and Innovative Research Team in University (IRT-13R17).

385 **References**

- 386 Ali, B., Song, W.J., Hu, W.Z., Luo, X.N., Gill, R.A., Wang, J., Zhou, W.J., 2014.
- 387 Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural
- changes in oilseed rape. Ecotoxicol. Environ. Saf. 102(1), 25-33.
- Chen, A., Zeng, G., Chen, G., Zhang, C., Yan, M., Shang, C., Hu, X., Lu, L., Chen,
- M., Guo, Z., Zuo, Y., 2014. Hydrogen sulfide alleviates 2,4-dichlorophenol
- toxicity and promotes its degradation in *Phanerochaete chrysosporium*.
- 392 Chemosphere 109, 208-212.
- Chen, Z., Yang, B., Hao, Z. K., Zhu, J., Zhang, Y., Xu, T., 2018, Exogenous hydrogen
- sulfide ameliorates seed germination and seedling growth of cauliflower under
- lead stress and its antioxidant role. J. Plant Cowur Regul. 37, 5-15.
- Choi, Y., Kim, H.A., Kim, K.W., Lee, B.T., 2018. Comparative toxicity of silver
- nanoparticles and silver ion to Exterichia coli. J. Environ. Sci. 66(4), 50-60.
- Fang, H., Liu, Z., Jin, Z., Zhang, L., Liu, D., Pei, Y., 2016. An emphasis of hydrogen
- 399 sulfide-cystone cycle of enhancing the tolerance to chromium stress in
- 400 arabidopsis. En iron. Pollut. 213, 870-877.
- 401 Garc á-Mata, C., Lamattina, L., 2010. Hydrogen sulphide, a novel gasotransmitter
- 402 involved in guard cell signalling. New Phytol. 188(4), 977-984.
- 403 Geng, B., Chang, L., Pan, C., Qi, Y., Zhao, J., Pang, Y., Du, J., Tang, C., 2004.
- 404 Endogenous hydrogen sulfide regulation of myocardial injury induced by
- 405 isoprotenol. Biochem. Biophys. Res. Commun. 318, 756-763.
- 406 Gliga, A.R., Sara, S., Inger, O.W., Bengt, F., Karlsson, H.L., 2014. Size-dependent

407	cytotoxicity of silver nanoparticles in human lung cells: the role of cellular
408	uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11, 11.
409	Gong, J., Wang, B., Zeng, G., Yang, C., Niu, C., Niu, Q., Zhou, W., Liang, Y., 2009.
410	Removal of cationic dyes from aqueous solution using magnetic multi-wall
411	carbon nanotube nanocomposite as adsorbent. J. Hazard Mater. 164(2-3), 1517-
412	1522.
413	Guo, Z., Chen, G., Liu, L., Zeng, G., Huang, Z., Chen, A., Hu, L., 2016b. Activity
414	variation of Phanerochaete chrysosporium under nanosilv r errosure by
415	controlling of different sulfide sources. Sci. Rep. 6, 20313
416	Guo, Z., Chen, G., Zeng, G., Liang, J., Huang, B., X., Z., Yi, F., Huang, Z., He, K.,
417	2016a. Determination of inequable fate and taxicity of Ag nanoparticles in a
418	Phanerochaete chrysosporium biofilm system through different sulfide sources.
419	Environ. Sci.: Nano 3(5), 1927 1085.
420	Han, Y., Wu, M., Hao, L., i, H.2018. Sulfur dioxide derivatives alleviate cadmium
421	toxicity by exhancing actioxidant defence and reducing Cd ²⁺ uptake and
422	translocation in foxtail millet seedlings. Ecotoxicol. Environ. Saf. 157, 207-215.
423	He, H., Li, Y., He, L.F., 2018. The central role of hydrogen sulfide in plant responses
424	to toxic metal stress. Ecotoxicol. Environ. Saf. 157, 403-408.
425	He, K., Chen, G., Zeng, G., Chen, A., Huang, Z., Shi, J., Huang, T., Peng, M., Hu, L.,
426	2018a. Three-dimensional graphene supported catalysts for organic dyes
427	degradation. Appl. Catal., B 228, 19-28.
428	He, K., Chen, G., Zeng, G., Huang, Z., Guo, Z., Huang, T., Peng, M., Shi, J., Hu, L.,

429	2017b. Applications of white rot fungi in bioremediation with nanoparticles and
430	biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol. 101(12), 1-
431	10.

- He, K., Chen, G., Zeng, G., Peng, M., Huang, Z., Shi, J., Huang, T., 2017a. Stability,
- transport and ecosystem effects of graphene in water and soil environments.
- 434 Nanoscale 9(17), 5370-5388.
- 435 He, K., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Xu, P., Huang, Z., Shi, J., Hu, L.,
- 436 Chen, G., 2018b. Advancement of Ag-graphene based nan composites: an
- 437 overview of synthesis and its applications. Small 18005 11-33
- Houda, Z., Bejaoui, Z., Albouchi, A., Gupta, D.K., Copas, F.J., 2016. Comparative
- study of plant growth of two poplar tree speces inigated with treated
- 440 wastewater, with particular reference to coumulation of heavy metals (Cd, Pb,
- 441 As, and Ni). Environ. Moni . Asser, 188(2), 99.
- 442 Huang, Z., Chen, G., Zeng, G., Chen, A., Zuo, Y., Guo, Z., Tan, Q., Song, Z., Niu, Q.,

2015. Polyver, l altoho immobilized *Phanerochaete chrysosporium* and its
application in the bioremediation of composite-polluted wastewater. J. Hazard

- 445 Mater. 289, 174-183.
- 446 Huang, Z., Chen, G., Zeng, G., Guo, Z., He, K., Hu, L., Wu, J., Zhang, L., Zhu, Y.,
- 447 Song, Z., 2017. Toxicity mechanisms and synergies of silver nanoparticles in
- 448 2,4-dichlorophenol degradation by *Phanerochaete chrysosporium*. J. Hazard
- 449 Mater. 321, 37-46.
- 450 Huang, Z., He, K., Song, Z., Zeng, G., Chen, A., Yuan, L., Li, H., Hu, L., Guo, Z.,

451	Chen, G., 2018c. Antioxidative response of <i>Phanerochaete chrysosporium</i>
452	against silver nanoparticle-induced toxicity and its potential mechanism.
453	Chemosphere 211, 573-583.
454	Huang, Z., Xu, P., Chen, G., Zeng, G., Chen, A., Song, Z., He, K., Yuan, L., Li, H.,
455	Hu, L., 2018a. Silver ion-enhanced particle-specific cytotoxicity of silver
456	nanoparticles and effect on the production of extracellular secretions of
457	Phanerochaete chrysosporium. Chemosphere 196, 575-584.
458	Huang, Z., Zeng, Z., Chen, A., Zeng, G., Xiao, R., Xu, P., He, L., Seng, Z. Hu, L.,
459	Peng, M., Huang, T., Chen, G., 2018b. Differential behaviors of silver
460	nanoparticles and silver ions towards cysteine: Poremediation and toxicity to
461	Phanerochaete chrysosporium. Chemospher 205, 199-208.
462	Leng, L., Huang, H., Li, H., Li, J., Zhou, W., 2019. Biochar stability assessment
463	methods : A review. Sci. Total Environ. 647, 210-222.
464	Liu, X., Chen, J., Wang, G. I., Wing, W.H., Shen, Z.J., Luo, M.R., Gao, G.F., Simon,
465	M., Ghoto, K., Zhang, H.L., 2016. Hydrogen sulfide alleviates zinc toxicity by
466	reducing zinc uptake and regulating genes expression of antioxidative enzymes
467	and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum
468	nigrum L. Plant Soil 400(1-2), 177-192.
469	Ma, C., Chhikara, S., Minocha, R., Long, S., Musante, C., White, J.C., Xing, B.,
470	Dhankher, O.P., 2015. Reduced silver nanoparticle phytotoxicity in Crambe
471	<i>abyssinica</i> with enhanced glutathione production by overexpressing bacterial γ -
472	glutamylcysteine synthase. Environ. Sci. Technol. 49, 10117-10126.

473 Maconibel, L., Hausnigel, K.F., 2011. Mechanishis of hicker toxic	473	JII. Mechanisms of nick	el toxicity in
---	-----	-------------------------	----------------

- 474 microorganisms. Metallomics 3(11), 1153-1162.
- 475 McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M.,
- 476 Dockery, P., Prendergast, M., Rowan, N., Morris, D., 2017. Silver nanoparticles
- in the environment: sources, detection and ecotoxicology. Sci. Total Environ.
- 478 575, 231-246.
- 479 Mironov, A., Seregina, T., Nagornykh, M., Luhachack, L.G., Korolkova, N., Lopes,
- 480 L.E., Kotova, V., Zavilgelsky, G., Shakulov, R., Shatalin, K. Maller, E., 2017.
- 481 Mechanism of H₂S-mediated protection against oxidative stress in *Escherichia*
- 482 *coli*. Proc. Natl. Acad. Sci. U. S. A. 114(23), 60-2-6027.
- 483 Mir-Tutusaus, J.A., Baccar, R., Caminal, G., Surr, M., 2018. Can white-rot fungi be a
- real wastewater treatment alternative for organic micropollutants removal? A
- 485 review. Water Res. 138, 13775.
- 486 Mitsuhashi, H., Yamashita, L., Ikuchi, H., Kuroiwa, T., Kaneko, Y., Kiromura, K.,
- 487 Ueki, K., Norma, X. 2006. Oxidative stress-dependent conversion of hydrogen
- sulfide to sulfite by activated neurophils. Shock 24, 529.
- 489 Pacini, N., Elia, A.C., Abete, M.C., Dorr, P., Brizio, A.J.M., Gasco, L., Righetti, M.,
- 490 Prearo, M., 2013. Antioxidant response versus selenium accumulation in the
- 491 liver and kidney of the Siberian sturgeon (*Acipenser baeri*). Chemosphere
- **492 93**(10), 2405-2412.
- 493 Qin, L., Zeng, G., Lai, C., Huang, D., Xu, P., Zhang, C., Cheng, M., Liu, X., Liu, S.,
- Li, B., Yi, H., 2018. "Gold Rush" in Modern Science: Fabrication Strategies and

495	Typical Advanced Applications of Gold Nanoparticles in Sensing. Coord. Chem.
496	Rev. 359, 1-31.
497	Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Feng, H., Song, B., Huang, C., Tang,
498	X., 2018a. Effect of exogenous carbonaceous materials on the bioavailability of
499	organic pollutants and their ecological risks. Soil Biol. Biochem. 116, 70-81.
500	Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., Deng, R.,
501	2018b. Sorption, transport and biodegradation - An insight into bioavailability of
502	persistent organic pollutants in soil. Sci. Total Environ. 61-611-1154-1163.
503	Shahbaz, M., Stuiver, C.E.E., Posthumus, F.S., Parmar, S., Navyevford, M.J., De
504	Kok, L.J., 2014. Copper toxicity in Chinese cablege is not influenced by plant
505	sulphur status, but affects sulphur metabolistic-related gene expression and the
506	suggested regulatory metabolistes. Plan Biol. 16, 68-78.
507	Sun, S.Q., He, M., Cao, T., Zhang, X.C. Han, W., 2009. Response mechanisms of
508	antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or
509	combined Prend/or Ni Environ. Monit. Assess. 149(1), 291-302.
510	Tan, Q., Chen, G., Zung, G., Chen, A., Guan, S., Li, Z., Zuo, Y., Huang, Z., Guo, Z.,
511	2015. Physiological fluxes and antioxidative enzymes activities of immobilized
512	Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to
513	toxic pollutants in solution. Chemosphere 128, 21-27.
514	Tang, X., Zeng, G., Fan, C., Zhou, M., Tang, L., Zhu, J., Wan, J., Huang, D., Chen,
515	M., Xu, P., Zhang, C., Xiong, W., 2018. Chromosomal expression of CadR on

Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci.

- 517 Total Environ. 636, 1355-1361.
- 518 Wang, H., Yuan, X., Wu, Y., Chen, X., Leng, L., Zeng, G., 2015. Photodeposition of
- 519 metal sulfides on titanium metal-organic frameworks for excellent visible-light-
- driven photocatalytic Cr(VI) reduction. RSC Adv. 5, 32531-32535.
- 521 Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang X., Lin N., Qi, Y.,
- 522 2013. Adsorption characteristics and behaviors of graphene oxide for Zn(II)
- removal from aqueous solution. Appl. Surf. Sci. 279, 432-440.
- 524 Wang, L., Zhou, Q., Zhao, B., Huang, X., 2010. Toxic effect of heary metal terbium
- ion on cell membrane in horseradish. Chemosphere 80, 1834
- 526 Wang, Y., Zhu, Y., Hu, Y., Zeng, G., Zhang, Y., Zhang, C., Feng, C., 2018. How to
- 527 Construct DNA Hydrogels for Environmenta Applications: Advanced Water

Treatment and Environmental Analysis. Small 14(1703355), 1-19.

- 529 Wirth, S.M., Lowry, G.V., Tiltor, ND, 2012. Natural organic matter alters biofilm
- tolerance to silver nanoparticles and dissolved silver. Environ. Sci. Technol. 46,
 12687-1269
- 532 Wu, F., Harper, B.J., Harper, S.L., 2017. Differential dissolution and toxicity of
- surface functionalized silver nanoparticles in small-scale microcosms: impacts of
- community complexity. Environ. Sci.: Nano 4, 359-372.
- Xiong, W., Zeng, Z., Li, X., Zeng, G., Xiao, R., Yang, Z., Zhou, Y., Zhang, C., Cheng,
- 536 M., Hu, L., Zhou, C., Qin, L., Xu, R., Zhang, Y., 2018. Multi-walled carbon
- 537 nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive
- removal of antibiotics from aqueous solutions. Chemosphere 210, 1061-1069.

539	Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z.,
540	Huang, C., Xie, G.X., Liu, Z.F., 2012a. Use of iron oxide nanomaterials in
541	wastewater treatment: A review. Sci. Total Environ. 424, 1-10.
542	Xu, P., Zeng, G.M., Huang, D.L., Lai, C., Zhao, M.H., Wei, Z., Li, N.J., Huang, C.,
543	Xie, G.X., 2012b. Adsorption of Pb(II) by iron oxide nanoparticles immobilized
544	Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and
545	mechanisms analysis. Chem. Eng. J. 203, 423-431.
546	Yang, Y., Zeng, Z., Zhang, C., Huang, D., Zeng, G., Xiao, R., Lui, C., Zhou, C., Guo,
547	H., Xue, W., Cheng, M., Wang, W., Wang, J., 2018. Consection of iodine
548	vacancy-rich BiOI/Ag@AgI Z-scheme heterojustion photocatalysts for visible-
549	light-driven tetracycline degradation: transformation pathways and mechanism
550	insight. Chem. Eng. J. 349, 808-821.
551	Yang, Y., Zhang, C., Lai, C., Zeng, S., Leang, D., Cheng, M., Wang, J., Chen, F.,
552	Zhou, C., Xiong, W., 2018. 1 iOX (X = Cl, Br, I) photocatalytic nanomaterials:
553	Application for fulls and environmental management. Adv. Colloid Interface
554	Sci. 254, 77-93.
555	Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., Yu, J., Ren, X., Yi, H., Cheng,
556	M., Zhang, C., 2017. Biological technologies for the remediation of co-
557	contaminated soil. Crit. Rev. Biotechnol. 37(8), 1062-1076.
558	Ye, S., Zeng, G., Wu, H., Zhang, C., Liang, J., Dai, J., Liu, Z., Xiong, W., Wan, J., Xu,
559	P., Cheng, M., 2017. Co-occurrence and interactions of pollutants, and their
560	impacts on soil remediation—A review. Crit. Rev. Environ. Sci. Technol. 47(16),

561 1528-1553.

- 562 Yi, H., Huang, D., Qin, L., Zeng, G., Lai, C., Cheng, M., Ye, S., Song, B., Ren, X.,
- 563 Guo, X., 2018. Selective Prepared Carbon Nanomaterials for Advanced
- 564 Photocatalytic Application in Environmental Pollutant Treatment and Hydrogen
- 565 Production. Appl. Catal., B 239, 408-424.
- 566 Yuan, Y., Zheng, J., Zhao, T., Tang, X., Hu, N., 2017. Hydrogen sulfide alleviates

567 uranium-induced acute hepatotoxicity in rats: role of antioxidant and

- antiapoptotic signaling. Environ. Toxicol. 32(2), 581-593.
- 569 Zeng, G.M., Chen, A.W., Chen, G.Q., Hu, X.J., Guan, S., Stare, C., Lu, L.H., Zou,
- 570 Z.J., 2012. Responses of *Phanerochaete chryses prium* to toxic pollutants:
- 571 Physiological flux, oxidative stress, and detorification. Environ. Sci. Technol.
- **572 46**, 7818-7825.
- 573 Zhang, C., Wang, W., Duan, A., Zerg, S., Huang, D., Lai, C., Tan, X., Cheng, M.,
- 574 Wang, R., Zhou, C., Xong, W., Yang, Y., 2019. Adsorption behavior of
- engineered explorand carbon nanomaterials for metal endocrine disruptors:
- 576 Experiments and theoretical calculation. Chemosphere 222, 184-194.
- 577 Zhang, L., Zhang, J., Zeng, G., Dong, H., Chen, Y., Huang, C., Zhu, Y., Xu, R.,
- 578 Cheng, Y., Hou, K., Cao, W., Fang, W., 2018. Multivariate relationships between
- 579 microbial communities and environmental variables during co-composting of
- sewage sludge and agricultural waste in the presence of PVP-AgNPs. Bioresour.
- 581 Technol. 261, 10-18.
- 582 Zhou, C., Lai, C., Zhang, C., Zeng, G., Huang, D., Cheng, M., Hu, L., Xiong, W.,

583	Chen, M., Wang, J., Yang, Y., Jiang, L., 2018. Semiconductor/boron nitride
584	composites: synthesis, properties, and photocatalysis applications. Appl. Catal.,
585	B 238, 6-18.
500	

- Zhu, C.Q., Zhang, J.H., Sun, L.M., Zhu, L.F., Abliz, B., Hu, W.J., Zhong, C., Bai,
- 587 Z.G., Sajid, H., Cao, X.C., Jin, Q.Y., 2018. Hydrogen sulfide alleviates
- aluminum toxicity via decreasing apoplast and symplast Al contents in rice.
- 589 Front. Plant Sci. 9, 294.

n horied