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Abstract: The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped
polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous
determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are
presented here. The morphology properties of SPAN and MCN were characterized by transmission
electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were
characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse
potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the
optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to
80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+

(S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application
were also investigated, and the proposed electrode exhibited excellent performance. The proposed
method could be extended for other heavy metal determination.
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1. Introduction

Cadmium(II) and lead(II) are severe hazardous environmental pollutants with toxic effects on
living organisms due to their non-biodegradability and persistence [1,2]. For example, lead has obvious
effects on renal, brain development and blood pressure [3], and cadmium is primarily toxic to the
kidney, especially to the proximal tubular cells [4]. Therefore, it is of significance to develop sensitive,
rapid and simple analytical methods for the detection of trace amounts of Pb2+ and Cd2+ ions [5,6].
The common methods for heavy metals analysis include atomic absorption spectrometry (AAS) [7],
atomic emission spectrometry (AES) [8], atomic fluorescence spectrometry [9] and inductively-coupled
plasma mass spectrometry (ICP-MS) [10]. However, the widespread use of these techniques is limited
due to the relatively costly and difficult for the field on-line analysis.
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In contrast, electrochemical techniques for heavy metals detection offer several advantages,
such as low-cost, simplicity, accurateness, remarkable sensitivity, high stability, suitability for
multiplexed detection and the capability of on-line environmental monitoring [11–13]. Anodic
stripping voltammetry (ASV) has been considered to be the most effective tool for the quantification of
trace metal ions due to an effective pre-concentration step followed by electrochemical stripping
measurements of the accumulated analytes. Recently, the bismuth-based chemically-modified
electrodes (CMEs) have been proven to be highly sensitive and reliable for trace analysis of Cd2+

and Pb2+ in conjunction with anodic stripping voltammetry (ASV), due to the unique behavior of
bismuth nano-modified electrodes being attributed to the formation of multi-components alloys, as well
as the enhanced sensibility coming from the combination of the great properties of the nanostructured
material [11,14,15].

Therefore, unique nanostructures of advanced materials, such as quantum dots [16], metal
nanoparticles [17], grapheme [18], carbon nanotubes [19], and so on, have been developed for
bismuth-based electrochemical sensors. Ordered mesoporous carbon nitride material (MCN) with
large surface areas, small particle sizes, tunable pore diameters and high biocompatibility and activity
because of the CN matrix promises access to and good performances in a wider range of applications,
such as catalyst, supercapacitors, adsorbent, and so on. In our previous study, ordered mesoporous
carbon nitride (MCN) was used as the platform for electrochemical sensors, which can obviously
increase the sensitivity and lower the detection limit for phenols and heavy metals [20,21]. MCN
has faster electron transfer between substrate and MCN-sensing sites because of the π-π* electronic
transition in the MCN. Therefore, MCN was exploited as a platform to convert the recognition
information into a detectable signal. In addition, polyanilines (PAN) have unique properties, such
as, high electrical conductivity, good environmental stability, facile synthesis, low cost, homogeneity,
special redox properties and strong adherence to the electrode surface, and thus, PAN has been
extensively applied in electrochemical sensors [22]. However, the conductivity of PAN will be
significantly reduced when the pH of the solution is higher than four [23], which largely limits
its application in sensors. Fortunately, to overcome this drawback, many kinds of PAN derivatives,
such as self-doped polyanilines (SPANs), have been synthesized by different methods and used as
a new electroactive material for H2O2 and DNA detection [24–26] and a high performance redox
supercapacitor [27]. Compared to the parent PAN, SPAN with the functional groups, such as sulfonic
and carboxylic acid, owns their unique properties. Especially, SPAN shows an extended pH range
for electric conductivity and electrochemical activity, as well [28], which improved the potential to
determine Cd2+ and Pb2+ levels in real samples.

In this paper, combining the advantages of MCN and SPAN nanofibers, we developed a
highly sensitive sensor for electrochemical analysis of trace Cd2+ and Pb2+ through square wave
anodic stripping voltammetry (SWASV), which has rarely been reported. The SPAN nanofibers and
MCN-modified glassy carbon electrode (GCE) showed a remarkable capability of faster electron
transfer and excellent stability. At the same time, bismuth nanoparticles were used for trace analysis
of heavy metals in conjunction with anodic stripping voltammetry. In a word, this sensor exhibited
outstanding performance in cost, simplicity, accurateness, sensitivity and stability and has certain
practical significance.

2. Results and Discussion

2.1. Morphology Characterization of SPAN Nanofibers and MCN

The morphology characterization of SPAN nanofibers was investigated by TEM. As shown below,
Figure 1A shows that SPAN nanofibers were interconnected through many particles to form a net-like
or ring-like structure, which contributed to the uniform modification of the electrode surface by MCN.
Besides, from the TEM image of Figure 1B, a highly order stripe-like structure can be observed clearly.
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Figure 1. Transmission electron microscopy (TEM) of the (A) self-doped polyaniline (SPAN) nanofiber 
and (B) mesoporous carbon nitride (MCN). 

2.2. Electrochemical Behavior 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to 
investigate the characteristics of different modified electrodes (bare GCE, GCE/SPAN and 
GCE/SPAN/MCN). CV was carried out in 5.0 mM [Fe(CN)6]3−/4− (1:1) solution containing 0.1 M KCl 
for different modified electrodes, shown in Figure 2A. As can be seen, compared to the bare GCE, 
both GCE/SPAN and GCE/SPAN/MCN showed relatively larger current signals. The reason for that 
might be analyzed from the fact that the synergistic amplification effect of the SPAN nanofibers and 
MCN accelerates the electron transfer of [Fe(CN)6]3−/4− on the MCN/SPAN membrane. Besides, the 
CVs indicated that the modified electrode has a good current response performance. 

EIS of [Fe(CN)6]3−/4− is used to provide information about the interface properties and impedance 
changes in the process of electrode modification [29]. It is well known that in the typical Nyquist plot 
of impedance spectra, a semicircle portion at higher frequencies corresponds to the electron transfer 
resistance, and a linear portion at lower frequencies corresponds to the diffusion process [30]. Figure 2B 
exhibits the Nyquist diagrams of the different modified electrodes, and the inset depicts the 
equivalent circuit. According to the method described in our previous report [21], the bare GCE has 
a relative large electron-transfer resistance (Rct) value of about 778.4 Ω. The Rct value had a very small 
increase after modification of SPAN. An almost straight line was obtained after modification by MCN 
with superior electrical conductivity, indicating that MCN can accelerate the electron transfer on the 
electrode. This increase indicated that the SPAN and MCN were successfully modified with GCE, 
and they provided a large surface area and more binding sites with heavy metal ions, as well as 
accelerate the electron transfer. 

 

Figure 2. (A) Cyclic voltammetry diagrams of the glassy carbon electrode (GCE), GCE/SPAN and 
GCE/SPAN/MCN, using a 0.1 M KCl solution containing 5.0 mM ferro-/ferri-cyanide, with a potential 
range of −0.4–0.8 V and a scan rate of 100 mV·s−1; (B) electrochemical impedance spectra of GCE, 
GCE/SPAN and GCE/SPAN/MCN using a 0.1 M KCl solution containing 5.0 mM ferro-/ferri-cyanide, 
with a frequency range of 0.1–105 Hz, a bias potential of 0.19 V vs. a saturated calomel electrode (SCE) 
and an alternating current (AC) amplitude of 5 mV. 

Figure 1. Transmission electron microscopy (TEM) of the (A) self-doped polyaniline (SPAN) nanofiber
and (B) mesoporous carbon nitride (MCN).

2.2. Electrochemical Behavior

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used
to investigate the characteristics of different modified electrodes (bare GCE, GCE/SPAN and
GCE/SPAN/MCN). CV was carried out in 5.0 mM [Fe(CN)6]3´{4´ (1:1) solution containing 0.1 M KCl
for different modified electrodes, shown in Figure 2A. As can be seen, compared to the bare GCE,
both GCE/SPAN and GCE/SPAN/MCN showed relatively larger current signals. The reason for that
might be analyzed from the fact that the synergistic amplification effect of the SPAN nanofibers and
MCN accelerates the electron transfer of [Fe(CN)6]3´{4´ on the MCN/SPAN membrane. Besides, the
CVs indicated that the modified electrode has a good current response performance.

EIS of [Fe(CN)6]3´{4´ is used to provide information about the interface properties and impedance
changes in the process of electrode modification [29]. It is well known that in the typical Nyquist
plot of impedance spectra, a semicircle portion at higher frequencies corresponds to the electron
transfer resistance, and a linear portion at lower frequencies corresponds to the diffusion process [30].
Figure 2B exhibits the Nyquist diagrams of the different modified electrodes, and the inset depicts the
equivalent circuit. According to the method described in our previous report [21], the bare GCE has a
relative large electron-transfer resistance (Rct) value of about 778.4 Ω. The Rct value had a very small
increase after modification of SPAN. An almost straight line was obtained after modification by MCN
with superior electrical conductivity, indicating that MCN can accelerate the electron transfer on the
electrode. This increase indicated that the SPAN and MCN were successfully modified with GCE, and
they provided a large surface area and more binding sites with heavy metal ions, as well as accelerate
the electron transfer.
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Figure 2. (A) Cyclic voltammetry diagrams of the glassy carbon electrode (GCE), GCE/SPAN and
GCE/SPAN/MCN, using a 0.1 M KCl solution containing 5.0 mM ferro-/ferri-cyanide, with a potential
range of ´0.4–0.8 V and a scan rate of 100 mV¨ s´1; (B) electrochemical impedance spectra of GCE,
GCE/SPAN and GCE/SPAN/MCN using a 0.1 M KCl solution containing 5.0 mM ferro-/ferri-cyanide,
with a frequency range of 0.1–105 Hz, a bias potential of 0.19 V vs. a saturated calomel electrode (SCE)
and an alternating current (AC) amplitude of 5 mV.
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2.3. Optimization of Experimental Parameters

2.3.1. Optimization of Supporting Electrolyte

SPAN has a good electrical conductivity in acid solution, and acetate buffer solution
(10 mM, pH 4.6) is usually used for Pb(II) and Cd(II) determination by ASV using bismuth film
electrodes [1,2,13]. Therefore, acetate buffer solution (10 mM, pH 4.6) was employed as the supporting
electrolyte. The effect of Bi3+ concentration was investigated, due to the thickness of bismuth film
formed by Bi3+ influencing the formation of binary or multicomponent “fusible” alloys with various
heavy metals, which in turn affects the currents response [2]. As seen in Figure 3A, the stripping
peak current of Cd2+ and Pb2+ increased with the Bi3+ concentration ranging from 100 µg¨ L´1 to
500 µg¨ L´1. Besides, no obvious increase of the peak current was found over 300 µg¨ L´1 of the Bi3+

concentration, which was considered as the saturation of bismuth film. Meanwhile, the higher Bi3+

concentration would block the conductive surface of the electrode, reduce the number of active sites
and cause competitive enrichment between Bi3+ and target metals on the electrode surface [2,31].
However, in the case of Bi3+ 100 µg¨ L´1, probably the thickness of the film is not sufficient. Thus, for
further studies, the Bi3+ concentration of 300 µg¨ L´1 was selected.

Besides, it was found that a suitable salt concentration can enrich Bi3+ and target metals on the
electrode surface and, thus, increases the current response. When the sensor was tested with 10 mM
acetate buffer solution (pH 4.6) containing 300 mM NaCl, the current response reached plateau and
then remained stable (see Figure 3B). Therefore, in this case, we chose 300 mM NaCl as a compromise
among the high sensitivity, good resolution and reproducibility of the peaks.
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The pre-concentration time usually affects the sensitivity of the sensor; in fact, lower detection 
limits can be obtained with longer deposition time. In our case, we investigated a deposition time 
range between 300 s and 900 s, with Cd2+ and Pb2+ both at a concentration of 10 μg·L−1. As expected 
(Figure S1), by increasing the deposition time, there is an increase of sensitivity for each heavy metal 
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Figure 3. (A) Bi3+ concentration effect on peak height in a solution containing 200 mM NaCl, 10 µg¨ L´1

Pb2+ and Cd2+. Square wave anodic stripping voltammetry (SWASV) parameters: Ebegin = ´1 V,
Eend = ´0.4 V, Estep = 0.010 V, Epulse = 0.02 V, Econdition = ´0.4 V, Edeposition = ´1 V, frequency = 50 Hz,
deposition time = 300 s and equilibrium time = 20 s. (B) NaCl concentration effect on peak height in a
solution containing 300 µg¨ L´1 Bi3+, 10 µg¨ L´1 Pb2+ and Cd2+. SWASV parameters: Ebegin = ´1 V,
Eend = ´0.4 V, Estep = 0.010 V, Epulse = 0.02 V, Econdition = ´0.4 V, Edeposition = ´1 V, frequency = 50 Hz,
deposition time = 300 s and equilibrium time = 20 s.

2.3.2. Effect of Deposition Time

The pre-concentration time usually affects the sensitivity of the sensor; in fact, lower detection
limits can be obtained with longer deposition time. In our case, we investigated a deposition time
range between 300 s and 900 s, with Cd2+ and Pb2+ both at a concentration of 10 µg¨ L´1. As expected
(Figure S1), by increasing the deposition time, there is an increase of sensitivity for each heavy metal
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tested. However, for the further experiments, 600 s was chosen for a compromise between the
sensitivity and speed of the measurement. The relatively long deposition time may be ascribed to the
palm-sized electrochemical workstation due to its potential in portable applications, and a shorter time
can be applied when using regular-sized instrument with higher precision.

2.3.3. Effect of Frequency, SW Pulse Height and SW Step Increment

The effect of frequency was investigated by studying the peak height while varying the frequency
in a range between 10 and 100 Hz. We observed an increase of peak height for both heavy metals at
increasing frequency (see Figure 4A). The reason may be that the oxidation of these metals became less
reversible at higher frequencies, which also also found by Kefala et al. [32] and Arduini et al. [11]; thus,
in our case, a frequency of 100 Hz was selected for the rest of the work.

Pulse potential (Epulse) was also optimized by varying the SW in a range between 5 and 50 mV to
investigate the SW pulse height. As seen in Figure 4B, a relevant increase in the interval from 0.005 to
0.05 V was observed. However, a pulse potential of 20 mV was eventually chosen for the compromise
among high sensitivity, good resolution and reproducibility of the peaks (see Figure 4B). The step
potential effect on the cadmium and lead ion peak height using a step increment from 0.001 to 0.02 V
was studied, and an increase of sensitivity was observed for both heavy metals tested (Figure S2).
However, in this case, we also chose 0.01 V as a compromise among the high sensitivity, good resolution
and reproducibility of the peaks current (Figure S2).
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the rest of the work. 

2.4. SWASV Analysis of Cd2+ and Pb2+ 

The SWASV responses of GCE/SPAN/MCN to Cd(II) and Pb(II) were investigated by increasing 
the metal ion concentrations from 1 μg·L−1 to 80 μg·L−1 under the optimum conditions described above. 
The analysis procedure was described in Section 2.4. As seen in Figure 5, the peak currents increased, 
and the peak potentials shifted little with the increase of the concentrations of Cd(II) and Pb(II). 
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Pb2+ and Cd2+ and 300 mM NaCl. SWASV parameters: Ebegin = ´1 V, Eend = ´0.4 V, Estep = 0.010 V,
Epulse = 0.02 V, Econdition = ´0.4 V, Edeposition = ´1 V, frequency = 1–100 Hz, deposition time = 600 s
and equilibrium time = 20 s. (B) Optimization of pulse potential (Epulse) using a solution containing
300 µg¨ L´1 Bi3+, 10 µg¨ L´1 Pb2+ and Cd2+ and 300 mM NaCl. SWV parameters: Ebegin = ´1 V,
Eend = ´0.4 V, Estep = 0.010 V, Epulse = 0.005–0.05 V, Econdition = ´0.4 V, Edeposition = ´1 V,
frequency = 100 Hz, deposition time = 600 s and equilibrium time = 20 s.

2.3.4. Effect of Equilibrium Time

The equilibrium time is the time between the deposition step and the dissolution of the heavy
metals reduced on the surface of the electrode in the deposition step by means of square wave
voltammetry. The equilibrium time was investigated in order to obtain well-resolved peaks, where the
heights of the cadmium and lead peaks remained almost unchanged (Figure S3). However, using 20 s
as the equilibrium time, well-resolved and reproducible peaks were obtained (RSD% equal to 3.2%
and 4.4% for Cd2+ and Pb2+, respectively), and thus, 20 s were chosen as the equilibrium time in the
rest of the work.
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2.4. SWASV Analysis of Cd2+ and Pb2+

The SWASV responses of GCE/SPAN/MCN to Cd(II) and Pb(II) were investigated by increasing
the metal ion concentrations from 1 µg¨ L´1 to 80 µg¨ L´1 under the optimum conditions described
above. The analysis procedure was described in Section 2.4. As seen in Figure 5, the peak currents
increased, and the peak potentials shifted little with the increase of the concentrations of Cd(II) and
Pb(II). Figure 4 (inset) shows that the resulting calibration plots were linear over the range from
5 µg¨ L´1 to 80 µg¨ L´1. The calibration equation for Cd(II) was Ip = (0.76948 ˘ 0.03551)¨ CCd +
(24.2304 ˘ 1.14382) with a high correlation coefficient of 0.98944, and the calibration equation for Pb(II)
was Ip = (0.61772 ˘ 0.03316)¨ CPb + (34.5145 ˘ 1.27773) with a high correlation coefficient of 0.98576.
The detection limits for Cd(II) and Pb(II) were calculated to be 0.7 µg¨ L´1 and 0.2 µg¨ L´1, respectively,
based on signal-to-noise ratio of three (S/N = 3). The Cd(II) and Pb(II) detection performances of
the proposed sensor were compared with other previously-reported Bi film-modified electrodes,
and the results are listed in Table 1. Compared to the sensors based on Bi/SWNTs, Bi/Au-GN-Cys,
Bi/2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS)-MWCNTs, polymer/Bi
and Nafion/Bi, this sensor exhibited an improved linear detection range. Besides, compared to the
sensors based on reduced graphene oxide (RGO)/Bi and polymer/Bi, this sensor showed a relatively
lower detection limit. All of these results provide evidence indicating that this sensor exhibited
improved analytical performance in terms of linear detection range and showed a relatively lower
detection limit. Additionally, the reason may be ascribed to the use of MCN and SPAN, which can
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Figure 5. (A) SWASV curves at GCE/SPAN/MCN in 10 mM acetate buffer (pH 4.6) containing 300 mM
NaCl, 300 µg¨ L´1 Bi3+, with different Cd2+ and Pb2+ concentrations (from a–i: 0, 1, 2, 5, 10, 20 , 40, 60,
80 µg¨ L´1). The SWASV parameters were Ebegin = ´1 V, Eend = ´0.4 V, Estep = 0.010 V, Epulse = 0.02 V,
Econdition = ´0.4 V, Edeposition = ´1 V, frequency = 100 Hz, deposition time = 300 s and equilibrium
time = 20 s. (B) and (C) show the plots of stripping peak current vs. the Cd(II) and Pb(II) concentration.
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Table 1. Comparison of the analytical performance of some Bi film-modified electrodes for
measurements of Cd(II) and Pb(II).

Electrode
Analytical
Technique

Linear Range (µg¨ L´1) Detection Limit (µg¨ L´1)
Reference

Cd(II) Pb(II) Cd(II) Pb(II)

Bi/SWNTs/GCE SWASV 0.5–11 0.5–11 0.076 0.18 [33]
Bi/Au-GN-Cys/GCE SWASV 0.50–40 0.50–40 0.10 0.05 [1]

Bi/ABTS-MWCNTs/GCE DPSV 0.5–35 0.2–50 0.2 0.1 [5]
Bi/Nafion/PANI-MES/GCE SWASV 0.1–20 0.1–30 0.04 0.05 [34]

RGO/Bi/GCE SWASV 20–120 20–120 2.8 0.55 [35]
polymer/Bi/GCE SWASV 2–60 2–60 2 2 [36]
Nafion/Bi/GCE SWASV 1–20 1–20 0.1 0.1 [37]

SPAN/MCN/GCE SWASV 5–80 5–80 0.7 0.2 This work

SWNTs: single-walled carbon nanotubes; Au-GN-Cys: gold nanoparticle-graphene-cysteine composite; ABTS:
2,2-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt; MWCNTs: multi-walled carbon nanotubes;
PANI-MES: polyaniline-2-mercaptoethanesulfonate; RGO: reduced graphene oxide.

2.5. Reproducibility, Stability and Interference

The reproducibility was investigated by preparing five proposed electrodes based on the
above-mentioned procedure and applied to the determination of 10 µg¨ L´1 Cd2+ and Pb2+. Under
optimum conditions, the RSDs of five independent electrodes were 4.74% for Cd2+ and 3.72% for
Pb2+, indicating that the fabrication procedure was reliable and the proposed electrode had good
reproducibility (Figure S4). The electrode also had good long-term storage stability after one week of
storage. All of the results showed the good performance of the proposed sensor.

The anti-interference ability of the modified electrode is crucial for the electrode’s practical
application. In order to examine the anti-interference ability of the proposed sensor, various cations
and anions were added to the acetate buffer solution containing 10 µg¨ L´1 Cd2+ and Pb2+ for SWASV
analysis under optimum conditions. The results showed that a 100-fold concentration ratio of Al3+,
Ca2+, Mg2+, Cl´ and K+, a 50-fold concentration ratio of Co2+, CO3

2´ and Zn2+ and a 20-fold
concentration ratio of Fe3+, Hg2+ and Ni2+ presented less than a 5.6% peak current decrease. However,
Cu2+ has a relatively large influence. A 20-fold concentration ratio of Cu2+ presented a 13.2% peak
current decrease; while a 10-fold concentration ratio of Cu2+ resulted in less than a 6.1% peak current
decrease. Therefore, the result that the common ions had little effect on the quantification of Cd2+ and
Pb2+ indicated a good anti-interference ability of the proposed sensor.

2.6. Application to Real Samples

The proposed sensor was used to quantify Cd2+ and Pb2+ in real samples with the purpose of
evaluation the application of it. The real samples were collected from Taozi Lake, Changsha, China,
and were filtered with a 0.45-mm membrane (purchased from Millipore, Boston, MA, USA), adjusted
to pH 4.6 using acetate buffer with 300 µg¨ L´1 Bi3+ added. The recovery was found to be in the range
from 96.48% to 104.15%, and the measurement results obtained by the proposed sensor were also in
good agreement with the ICP-MS method (Table 2). The comparative result showed that the proposed
sensor has good accuracy and recovery, suggesting the great application potential in real samples.

Table 2. Determination of Cd2+ and Pb2+ in real samples.

Sample
Added

(µg¨ L´1)
ICP-MS
(µg¨ L´1) Proposed Sensor (nM) Relative Concentration

Deviation (%)

Cd2+ Pb2+ Cd2+ Pb2+ Cd2+ Pb2+ Cd2+ Pb2+

River Water 1 5 5 5.3 ˘ 0.26 6.1 ˘ 0.43 5.5 ˘ 0.66 6.5 ˘ 0.53 2.60 4.49
River Water 2 10 10 11.1 ˘ 0.96 10.9 ˘ 1.2 10.5 ˘ 0.49 11.3 ˘ 1.3 3.93 2.54
River Water 3 15 15 16.4 ˘ 1.9 17.5 ˘ 2.1 15.1 ˘ 1.4 16.8 ˘ 1.7 5.37 2.89
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3. Experimental Section

3.1. Reagents, Preparation of SPAN Nanofibers and MCN

MCN was synthesized using SBA-15 (an ordered hexagonal mesoporous silica template) as a
template, and carbon tetrachloride was used as a carbon source. SBA-15 and MCN were synthesized in
our lab according to the method reported by Vinu and co-workers [38], with slight alterations [20,39].
Detailed information of the preparation of SPAN nanofibers is described in the Supporting Information.

Cd(NO3)2, Pb(NO3)2 and Bi(NO3)3¨ 5H2O were used to prepare the stock solutions of
Cd2+, Pb2+ and Bi3+ with ultrapure water, respectively, and the solutions were stored at 4 ˝C.
Cetyltrimethylammonium bromide and aniline (AN) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Acetate buffer solution (10 mM, pH 4.6) was prepared by
CH3COOH and CH3COONa and used as the supporting electrolyte. All chemicals were of analytical
grade and used as received; ultrapure water was used for the preparation of all the solutions.

3.2. Apparatus

Cyclic voltammetry (CV) measurements and square wave anodic stripping voltammetry (SWASV)
were carried out using a portable PalmSens Instrument (CHI1230B A14535 PalmSens, Utrecht,
The Netherlands) connected to a personal computer. In this work, the electrode system consists
of three parts. GCE/SPAN/MCN was proposed as the working electrode, saturated calomel electrode
(SCE) and Pt foil were used as reference electrode and auxiliary electrode, respectively. Scanning
electron microscopy (SEM) of the materials was obtained with an S-4800 scanning electron microscope
(Hitachi Ltd., Tokyo, Japan). Transmission electron microscopy (TEM) was obtained with a Tecnai G2
F20 S-TWIX electron microscope (FEI, Eindhoven, The Netherlands). A Model PHSJ-3F laboratory pH
meter (Leici Instrument, Shanghai, China) was employed for pH measurements of the buffer solutions.

3.3. Preparation of the Modified Electrodes

The bare glassy carbon electrode (GCE) was polished in alumina slurry and then rinsed
with deionized water. After being rinsed with ultrapure water, the electrode was sonicated in
acetone, ethanol and water successively [40,41]. Then, the electrode was electrochemically treated in
0.5 M H2SO4 by cyclic voltammetry between ´0.5 V and 1.5 V at 50 mV¨ s´1 until a steady-state redox
wave was observed. The self-assembled film was modified onto the GCE surface by layer-by-layer
means. First, 5 µL of the 2 mg¨ L´1 SPAN nanofiber suspension (dispersed in DMF) was dripped onto
the clean electrode surface, marked as the GCE/SPAN. After electrode drying, 5 µL of MCN suspension
(dispersed in DMF) were dip-coated on the GCE/SPAN, and dried in air to obtain GCE/SPAN/MCN.
Then, the prepared electrode was copiously rinsed with acetate buffer solution. When not in use, the
electrode was stored in a moist state at 4 ˝C.

3.4. Heavy Metal Measurement Using the Electrochemical Sensor

The modified electrode (GCE/SPAN/MCN) was immersed into 10 mL acetate buffer solution
of pH 4.6, containing 300 µg¨ L´1 of bismuth, and standard lead and cadmium solutions were added.
The analytical measurements were carried out in SWASV mode. Voltammetric experiments consisted
of three conventional steps: time-controlled electrochemical metal deposition, rest period and a
positive-going voltammetric stripping scan under the chosen conditions. In some cases, it was
followed by a forced electrochemical conditioning (cleaning) step with stirring solution to remove the
target metals eventually staying on the working electrode. The SWASV parameters are: Ebegin = ´1 V,
Eend = ´0.4 V, Estep = 0.010 V, Epulse = 0.02 V, Econdition = ´0.4 V, Edeposition = ´1 V, frequency = 100 Hz,
deposition time = 600 s and equilibrium time = 20 s. All measurements were carried out in acetate
buffer (10 mM, pH 4.6) with NaCl (300 mM) as the electrolyte.
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4. Conclusions

An SPAN/MCN/GCE has been successfully developed and used for simultaneous voltammetric
determination of trace Cd2+ and Pb2+ by the SWASV method. The excellent properties of MCN and
SPAN contributed to the superior performance of the proposed electrode, such as high electrochemical
sensitivity, lower detection limit, good capability of anti-interference and improved potential in real
samples. Novel materials based on SPAN would be an interesting research topic, and the combination
of carbon materials and SPAN in electrode fabrication would give us an alternative route to develop
new types of electrodes for heavy metals determination.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/6/1/7/s1.
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