1	Antimicrobial efficacy and mechanisms of silver
2	nanoparticles against Phanerochaete chrysosporium in the
3	presence of common electrolytes and humic acid
4	
5	Zhenzhen Huang ^{a,1} , Zhuotong Zeng ^{b,1} , Zhongxian Song ^{c,1} , Anwei Chen ^{d,1} ,
6	Guangming Zeng ^{a,*} , Rong Xiao ^{b,*} , Kai He ^a , Lei Yuan ^a , Hui Li ^a , Guiqiu Chen ^a
7	
8	^a College of Environmental Science and Engineering, Hunan University and Key
9	Laboratory of Environmental Biology and Pollution Control (Hunan University),
10	Ministry of Education, Changsha 410082, China
11	^b Department of Dermatology, Second Xiangya Hospital, Central South University,
12	Changsha 410011, China
13	^c Faculty of Environmental and Municipal Engineering, Henan Key Laboratory of
14	Water Pollution Control and Rehabilitation Technology, Henan University of Urban
15	Construction, Pingdingshan, 467036, China
16	^d College of Resources and Environment, Hunan Agricultural University, Changsha
17	410128, China

^{*} Corresponding authors. Tel.: + 86 731 88822829; fax: +86 731 88823701. *E-mail addresses*: zgming@hnu.edu.cn (G. Zeng); xiaorong65@csu.edu.cn (R. Xiao).

¹ Zhenzhen Huang, Zhuotong Zeng, Zhongxian Song and Anwei Chen contributed equally to this article.

19 Abstract

20	In this study, influences of cations (Na ⁺ , K ⁺ , Ca ²⁺ , and Mg ²⁺), anions (NO ₃ ⁻ , Cl ⁻ ,
21	and SO_4^{2-}), and humic acid (HA) on the antimicrobial efficacy of silver nanoparticles
22	(AgNPs)/Ag ⁺ against <i>Phanerochaete chrysosporium</i> were investigated by observing
23	cell viability and total Ag uptake. K ⁺ enhanced the antimicrobial toxicity of AgNPs on
24	P. chrysosporium, while divalent cations decreased the toxicity considerably, with
25	preference of Ca^{2+} over Mg^{2+} . Impact caused by a combination of monovalent and
26	divalent electrolytes was mainly controlled by divalent cations. Compared to AgNPs,
27	however, Ag^+ with the same total Ag content exhibited stronger antimicrobial efficacy
28	towards P. chrysosporium, regardless of the type of electrolytes. Furthermore, HA
29	addition induced greater microbial activity under AgNP stress, possibly originating
30	from stronger affinity of AgNPs over Ag ⁺ to organic matters. The obtained results
31	suggested that antimicrobial efficacy of AgNPs was closely related to water chemistry
32	addition of divalent electrolytes and HA reduced the opportunities directly for AgNP
33	contact and interaction with cells through formation of aggregates, complexes, and
34	surface coatings, leading to significant toxicity reduction; however, in monovalent
35	electrolytes, the dominating mode of action of AgNPs could be toxic effects of the
36	released Ag ⁺ on microorganisms due to nanoparticle dissolution.
37	Keywords:

38 Silver nanoparticles; Antimicrobial efficacy; *Phanerochaete chrysosprium*;

39 Monovalent and divalent electrolytes; Humic acid

40 **1. Introduction**

Silver nanoparticles (AgNPs), one of the most extensively studied nanomaterials, 41 42 are increasingly used in consumer products including paints, textiles, medicals, personal care products, and food storage bins [1-4], due to their broad-spectrum 43 antimicrobial efficacy and low mammalian cytotoxicity [5–7]. Increased AgNP 44 production and usage imply an increase potential for their release into surface waters 45 and subsurface, thus transforming into various silver forms (e.g., Ag⁰ nanoparticle, 46 dissolved Ag⁺, and soluble AgNP/Ag⁺ complexes) due to the oxidation and 47 48 dissolution of nanoparticles [8–11]. The incidental or intentional release of AgNPs to the environment poses a potential risk to the ecosystem and human health [12-18]. 49 The toxicity and antimicrobial activity of AgNPs are proven to be associated with 50 water chemistry, which shows impacts on aggregation, dissolution, and stability of 51 AgNPs [19–23]. 52 For example, divalent cations (e.g., Ca^{2+} and Mg^{2+}) were more efficient in AgNP 53 54 aggregation and conferred protective effects against cytotoxicity of nanoparticles via 55 potentially limiting their adherence onto microbial biomass as compared to monovalent cations (e.g., Na⁺) at similar concentrations [24,25]. Nevertheless, 56 Pokhrel et al. [26] exhibited an enhanced toxicity of AgNPs with increasing Ca^{2+} 57 concentrations. Besides, effects of aqueous anions on AgNP stability behaviors have 58 also been reported [9,27]. Chloride strongly enhanced the destabilization of AgNPs 59 through the formation of AgCl⁰ bridging of AgNPs, respectively [1,22]. Association of 60 these anions with released Ag^+ may form precipitates or soluble complexes [28,29]. 61

62	These behaviors would further reduce AgNP/Ag ⁺ bioavailability and toxicity. By
63	contrast, AgNP stability was increased in the presence of phosphate and bicarbonate
64	[30]. However, no specific ion effects were observed for nitrate (NO $_3^-$) and sulfate
65	(SO_4^{2-}) as described by Baalousha et al. [31]. Moreover, natural organic material
66	(NOM) could enhance AgNP stability through steric or electrostatic repulsion after
67	being adsorbed onto nanoparticle surface, playing an important role in the
68	environmental fate, transport, and toxicity of nanomaterials [32-35]. Enhanced
69	aggregation was also documented in certain systems when NOM was complexed with
70	cations and intermolecular bridging of humic acid (HA) macromolecules occurred in
71	the presence of multivalent cations such as Ca^{2+} [36,37]. Although numerous studies
72	show that relatively subtle changes in water chemistry have been linked to differences
73	in reactivity, bioavailability, and potential toxicity of AgNPs in aquatic environments
74	[32,38,39], the roles of water chemistry in the mode of antimicrobial action of AgNPs
75	on filamentous fungi have not been addressed systematically in the literature.
76	Therefore, studies on the antifungal efficacy of AgNPs over a wide range of
77	environmental parameters are important to elucidate the effects of AgNPs on
78	microorganisms in ecosystems.
79	The objective of the current study is to establish a correlation between water
80	characteristics and tolerance of Phanerochaete chrysosporium (P. chrysosporium, the
81	model species of white-rot fungi) to AgNPs that could easily predict antimicrobial
82	properties and ecotoxicology of AgNPs. Herein, tolerance is defined as cell survival
83	upon antimicrobial treatments. A viability-based tolerance assay was carried out to

84	systematically assess antimicrobial efficacy of AgNPs against P. chrysosporium
85	following exposure to different electrolytes including single monovalent, single
86	divalent, a mixture of the two ions, and HA. This study also investigated changes of
87	AgNP size and zeta-potential, dissolved Ag ⁺ concentration, intracellular and
88	extracellular Ag content, lignolytic enzyme activity, and microbial morphology.
89	Toxicity of Ag ⁺ versus AgNPs was compared by conducting antibacterial assays under
90	similar water chemistry conditions. Their differential effects on AgNP vs Ag ⁺ toxicity
91	will be valuable in addressing how water characteristics may affect their relative
92	contributions to AgNP antimicrobial activity.
93	2. Materials and Methods
94	2.1. Effects of environmental electrolytes on toxicity responses of P. chrysosporium to
95	AgNPs and Ag ⁺
96	Influences of monovalent, divalent ions, and HA on AgNP cytotoxicity were
97	investigated in P. chrysosporium. To achieve an identical cell concentration,
98	equivalent mycelia (0.2 g) were added respectively into: (i) suspensions containing
99	
	various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO ₃ , Na ₂ SO ₄ ,
100	various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO ₃ , Na ₂ SO ₄ , KCl, KNO ₃ , K ₂ SO ₄ , CaCl ₂ , Ca(NO ₃) ₂ , CaSO ₄ , MgCl ₂ , and MgSO ₄) under 30-µM
100 101	various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO ₃ , Na ₂ SO ₄ , KCl, KNO ₃ , K ₂ SO ₄ , CaCl ₂ , Ca(NO ₃) ₂ , CaSO ₄ , MgCl ₂ , and MgSO ₄) under 30-μM AgNP stress; (ii) suspensions comprising different AgNP doses (0, 10, 60, 100, and
100 101 102	various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO ₃ , Na ₂ SO ₄ , KCl, KNO ₃ , K ₂ SO ₄ , CaCl ₂ , Ca(NO ₃) ₂ , CaSO ₄ , MgCl ₂ , and MgSO ₄) under 30-µM AgNP stress; (ii) suspensions comprising different AgNP doses (0, 10, 60, 100, and 170 µM) and a constant concentration of the above single electrolytes (30 mM); (iii)
100 101 102 103	 various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO₃, Na₂SO₄, KCl, KNO₃, K₂SO₄, CaCl₂, Ca(NO₃)₂, CaSO₄, MgCl₂, and MgSO₄) under 30-µM AgNP stress; (ii) suspensions comprising different AgNP doses (0, 10, 60, 100, and 170 µM) and a constant concentration of the above single electrolytes (30 mM); (iii) mixtures of electrolytes (500 mM NaNO₃ and 10 mM Ca(NO₃)₂; 500 mM NaNO₃ and
100 101 102 103 104	 various concentrations of single electrolytes (0.5–500 mM; NaCl, NaNO₃, Na₂SO₄, KCl, KNO₃, K₂SO₄, CaCl₂, Ca(NO₃)₂, CaSO₄, MgCl₂, and MgSO₄) under 30-µM AgNP stress; (ii) suspensions comprising different AgNP doses (0, 10, 60, 100, and 170 µM) and a constant concentration of the above single electrolytes (30 mM); (iii) mixtures of electrolytes (500 mM NaNO₃ and 10 mM Ca(NO₃)₂; 500 mM NaNO₃ and 100 mM Ca(NO₃)₂) with 30 µM AgNPs, higher concentrations of monovalent cations

106	inducing nanoparticle aggregation; and (iv) suspensions consisting of 30 mM of the
107	above single electrolytes, 30 μ M AgNPs, and 0.1 g/L HA. Ag ⁺ -elicited toxicity
108	responses were performed similarly under the same conditions except for the
109	substitution of Ag ⁺ (3 μ M) added as AgNO ₃ for AgNPs (30 μ M). The samples were
110	incubated for 24 h at 37 °C. The fungal mycelia were harvested by centrifugation and
111	washed three times with ultrapure water for AgNP/Ag ⁺ cytotoxicity assessment.
112	Dose-response effects of AgNP/Ag ⁺ antimicrobial viability were carried out in 2 mM
113	NaHCO ₃ buffer solution, which was selected due to the fact that it had no influence
114	on silver bioavailability and avoided ligands that might bind with AgNPs and Ag ⁺ and
115	facilitate precipitation or other confounding effects [10,27].
116	P. chrysosporium strain was cultivated in Kirk's liquid culture medium [40].
117	AgNPs (coated with citrate), with a mean hydrodynamic diameter of 21.6 ± 0.3 nm
118	and a negative zeta-potential of -34.5 ± 1.5 mV, were synthesized by NaBH ₄
119	reduction of AgNO ₃ , following the modified procedure as described in our previous
120	studies [41,42]. Viability of <i>P. chrysosporium</i> cells was determined by using the MTT
121	reduction assay according to Chen et al. [43]. Lignin peroxidase (LiP) and manganese
122	peroxidase (MnP) activities were also determined according to our previous report
123	[42]. Detailed descriptions on cultivation of <i>P. chrysosporium</i> , synthesis and
124	characterization of AgNPs, determination of cellular viability and total Ag content are
125	available in Supporting Information.

- *2.2.* Statistical analyses
- 127 Statistical analyses were determined by one-way analysis of variance (ANOVA)

128	using Student's t test and differences between treatments were regarded to be
129	significant at $p < 0.05$. All the experiments were repeated independently in triplicate.
130	The results obtained were presented as the mean of three independent replicates and
131	all data were analyzed with SigmaPlot 14.0 software and SPSS software.
132	3. Results and discussion
133	3.1. Effects of different electrolytes on microbial tolerance to AgNPs
134	Environmental anions may significantly influence the physicochemical
135	properties of AgNPs, and thereby their toxicity [9]. Survival of <i>P. chrysosporium</i> was
136	determined in the presence of AgNPs over a series of monovalent and divalent
137	electrolyte concentrations (Fig. 1). After addition of Na ⁺ , <i>P. chrysosporium</i> survival in
138	the presence of 1 mM NaCl increased by 15.4% and 11.7% compared with the control
139	and the treatment with AgNPs alone (103.7%, shown in section 3.5, Fig. 6A),
140	respectively, whereas a decline in cell viability was observed with an increase in NaCl
141	concentrations from 1 to 100 mM (Fig. 1A). A further increase of Na^+ concentration
142	to 500 mM led to a viability increase for NaCl, Na ₂ SO ₄ , and NaNO ₃ . At the same
143	electrolyte concentrations, although P. chrysosporium viability in the presence of
144	NaCl was slightly higher than those in Na ₂ SO ₄ and NaNO ₃ , insignificant influence
145	was observed for the three Na^+ dominant suspensions. In the presence of K^+ , viability
146	of P. chrysosporium in the range of 59.0%-84.6% was almost unchanged for KCl,
147	KNO ₃ , and K ₂ SO ₄ , independent of K^+ concentrations, except for the case of 500 mM
148	KNO ₃ with the minimum cell viability of 28.8% (Fig. 1B). The contrasting responses
149	in cell survival between NaCl and KCl amendments indicated the relative preferential

150	interaction/binding of Na ⁺ as low as 1 mM with carboxylates (COO ⁻) on AgNP
151	surfaces, leading to relative lower bioavailability and cytotoxicity of AgNPs towards P.
152	chrysosporium [44]. K ⁺ induced preferential enhancement in AgNP toxicity over Na ⁺ ,
153	possibly resulting from a large amount of Ag ⁺ released from AgNPs upon addition of
154	K ⁺ (Table 1). Furthermore, the mean hydrodynamic diameters of AgNPs were 37.7 \pm
155	1.6, 41.9 \pm 0.6, and 36.0 \pm 0.9 nm in the presence of buffer and 1 mM NaCl/KCl
156	electrolytes, respectively. Substantial toxicological studies have documented that
157	AgNPs with relatively larger sizes are much less reactive and toxic than smaller ones,
158	further causing lower adsorption, uptake, and cytotoxicity [45-48]. Hence, another
159	possibility for an enhancement in cell viability in 1 mM NaCl electrolyte was the
160	aggregation of nanoparticles.
161	Survival of <i>P. chrysosporium</i> in Ca^{2+} and Mg^{2+} solutions is presented in Fig. 1C
162	and D. Similar to the toxicity profile obtained in the presence of Na ⁺ , cell viability in
163	divalent electrolytes was stimulated by Cl ⁻ at low concentrations (1 mM), but was
164	depressed by almost all of the investigated NO_3^- and SO_4^{2-} concentrations (0.5–30
165	mM). However, higher concentrations of $CaCl_2$ and $MgCl_2$ electrolytes (30 mM)
166	resulted in cell death with approximately 26.7% and 22.4% of the total cells,
167	respectively, causing certain toxic effects on P. chrysosporium. Besides, higher levels
168	of dissolved Ag ⁺ concentrations were also observed in the presence of 30 mM Cl ⁻
169	electrolytes (Table 1). Thus, our data indicated that high Cl ⁻ concentrations might
170	drive AgNP dissolution, further exerting the increased toxicity to cells [1].

3.2. Dose-response effects of AgNP antimicrobial viability

172	Toxicity of AgNPs at various doses towards P. chrysosporium in various
173	electrolyte solutions was also evaluated (Fig. 2). In the absence of AgNPs/Ag ⁺ ,
174	activity of fungal cells was inhibited by monovalent electrolytes, but promoted
175	considerably by divalent electrolytes. As shown in Fig. 2A, remarkable stimulation in
176	<i>P. chrysosporium</i> survival is evoked by 1 and 10 μ M AgNPs in the presence of 2 mM
177	NaHCO ₃ buffer solution, with the increase of 53.2% and 25.7% in microbial viability
178	with respect to the control, respectively. On the contrary, adding $NaNO_3$ increased <i>P</i> .
179	chrysosporium survival by 8.0% and 57.8% at AgNP concentrations of 100 and 170
180	μ M, respectively, which were toxic to <i>P. chrysosporium</i> in the absence of NaNO ₃ . By
181	comparison, KNO3 affected insignificantly AgNP toxicity profiles. Obviously,
182	addition of monovalent electrolytes disrupted the stimulatory effects of low-dose
183	AgNPs, while tolerance of <i>P. chrysosporium</i> to high-dose AgNPs was greatly
184	improved by the presence of $\mathrm{Na}^{\scriptscriptstyle +}.$ These findings also suggested the preference of $\mathrm{Na}^{\scriptscriptstyle +}$
185	over K^+ to inhibition on the toxic properties of AgNPs, in line with the results
186	obtained in Fig. 1A.
187	Fig. 2B shows the toxic effects of AgNPs at various concentrations on <i>P</i> .
188	chrysosporium survival in the presence of divalent electrolytes. Survival of P.
189	chrysosporium increased by $84.1\%-123.0\%$ and $18.8\%-87.7\%$ for CaCl ₂ and
190	Ca(NO ₃) ₂ , and 23.8%–63.3% and 30%–35.2% for MgCl ₂ and MgSO ₄ , respectively.
191	However, MgSO ₄ addition caused a decrease in cell viability (23.9%–36.5%) relative
192	to the control under AgNP doses of 60–170 μ M. We found that the increases in <i>P</i> .
193	<i>chrysosporium</i> viability were basically greater in Cl^{-} solutions than in NO_{3}^{-} and SO_{4}^{2-}

194	solutions in the presence of Ca^{2+}/Mg^{2+} and AgNPs, as indicated in Figs. 1 and 2. The
195	lower viability of <i>P. chrysosporium</i> was observed in SO_4^{2-} electrolytes, likely due to
196	greater efficiency of SO_4^{2-} in countering the destabilizing effects of Ca^{2+} and Mg^{2+}
197	compared to Cl ⁻ [49]. More importantly, a noticeable higher increase in cell survival
198	was observed in Ca^{2+} electrolytes compared with Mg^{2+} electrolytes, indicating that
199	Ca^{2+} induced more effective cell protection than the same amount of Mg^{2+} did. This
200	could be explained by the fact that by comparison with Mg^{2+} , Ca^{2+} appeared to act as
201	a constituent of the structural components of microbes more frequently [50], and that
202	the propensity of Ca^{2+} to form complexes with citrate molecules on the surfaces of
203	AgNPs was higher than that of Mg^{2+} , as evident from a higher stability constant of
204	monodentate Ca ²⁺ -citrate complexes relative to monodentate Mg ²⁺ -citrate complexes
205	at 25 °C and ionic strength of 0 mM ($10^{1.4}$ versus $10^{1.0}$) [31,51]. Furthermore, higher
206	AgNP sizes and lower dissolved Ag^+ concentrations were observed in $CaCl_2$
207	electrolyte relative to $MgCl_2$ electrolyte (Fig. 3B and Table 1). These findings can also
208	indicate stronger interaction of Ca^{2+} with citrate coating than Mg^{2+} indirectly.
209	Combined with the observations in Fig. 2A and B, cell survival in Ca^{2+} and Mg^{2+}
210	electrolytes was much higher than that obtained in Na ⁺ and K ⁺ electrolytes, especially
211	at low concentrations of AgNPs, indicating that AgNP toxicity to P. chrysosporium
212	was reduced by Ca^{2+} and Mg^{2+} more effectively. The reduction of AgNP cytotoxicity
213	could be attributed to the fact that the presence of Ca^{2+} and Mg^{2+} partially neutralized
214	the surface charges of both negatively charged AgNPs and P. chrysosporium cells
215	through specific interactions with COO ⁻ of the adsorbed citrate molecules on AgNP

surfaces and biomacromolecules on the cell surfaces (Table S1). Ca^{2+}/Mg^{2+}

- neutralization caused the occurrence of partial aggregation of nanoparticles as well,
- leading to attenuation in direct contact between AgNPs and fungal cells [27].

219

3.3. Effects of different electrolytes on AgNP stability

When monovalent or divalent electrolytes (30 mM) were added into various 220 concentrations of AgNP suspensions for 24 h, the average hydrodynamic size of 221 AgNPs was determined to estimate nanoparticle stability (Fig. 3). Upon exposure to 222 higher concentrations of AgNPs (100-170 µM), NaNO3 caused a 1.8-2.3-fold 223 increase in nanoparticle average size relative to their corresponding average sizes in 224 buffer solutions, whereas a negligible increase was measured in AgNP size under 225 stress of 60 µM AgNPs (Fig. 3A). KNO₃ did not affect the average sizes of AgNPs, 226 227 except for a decrease in the average size under 10-µM AgNP stess. Presumably, monovalent electrolytes maintained and enhanced the nanoparticle stability, especially 228 in K^+ electrolytes. However, Ca^{2+}/Mg^{2+} electrolytes induced a significant increase of 229 2.9-11.5 folds in the average size of AgNPs compared to their corresponding sizes in 230 the buffer (Fig. 3B). In comparison with Ca^{2+} electrolytes, lower AgNP sizes were 231 evoked by MgSO₄. The rise in AgNP average size in the presence of divalent 232 electrolytes suggested potential aggregation/agglomeration of AgNPs [52], which was 233 consistent with the changes in *P. chrysosporium* viability in Figs. 1 and 2. 234

235 3.4. Effects of different electrolytes on microbial tolerance to Ag^+

Numerous studies have shown that antimicrobial properties of AgNPs primarily

237	stem from dissolved Ag ⁺ , which can effectively inactivate a wide variety of microbes.
238	To discern the specific contribution of monovalent and divalent electrolytes to AgNP
239	toxicity, the antimicrobial assays of Ag^+ ions were carried out under the conditions of
240	the same electrolyte solutions (Fig. 4). As noted in Fig. 4A, survival of <i>P</i> .
241	chrysosporium exposed to 3 μ M Ag ⁺ was enhanced upon addition of 50 mM NaCl
242	and 10 mM Na ₂ SO ₄ , increasing by 10.2% and 9.3% relative to the control,
243	respectively. However, P. chrysosporium survivals in 500 mM NaCl and Na ₂ SO ₄
244	solutions were only 30.0% and 51.7%, respectively. These results indicated that
245	toxicity of Ag ⁺ cannot be counteracted by adding excess Cl ⁻ and SO ₄ ²⁻ . Another
246	possibility was that salt shock (osmotic stress) led to a decrease in cell activity at the
247	higher Na ⁺ concentrations. Furthermore, NaNO ₃ amendment did not markedly affect
248	Ag ⁺ antimicrobial ability. Similarly, no significant alteration in antimicrobial activity
249	was observed with the addition of K^+ , except for treatments with 10 mM KNO ₃ and
250	500 mM KCl/KNO ₃ /K ₂ SO ₄ (Fig. 4B).
251	Survival of fungal cells in the presence of Ag^+ and divalent electrolytes is
252	presented in Fig. 4C and D. The results indicated that <i>P. chrysosporium</i> viability
253	under the same ionic strengths followed the order: in $SO_4^{2-} > Cl^- > NO_3^-$ electrolyte
254	solutions, without obvious variations over a series of Ca^{2+} and Mg^{2+} concentrations
255	investigated. Additionally, in the absence of electrolytes, a concentration of 3 $\mu MAg^{\scriptscriptstyle +}$
256	diminished the microbial survival, causing 53.7% of the total cells being killed (seen
257	in section 3.6, Fig. 6B). By contrast, it was found that SO ₄ ²⁻ and Cl ⁻ exhibited a

stimulatory effect on microbial viability with respect to Ag^+ alone and that toxic

259	effects of Ag^+ to cells can be negligibly influenced by NO_3^- . It is widely accepted that
260	Ag ⁺ bioavailability is hindered by forming complexation and/or precipitation with
261	SO_4^{2-} and Cl^- in the media, e.g., relatively insoluble Ag_2SO_4 and $AgCl$ molecules.
262	Additionally, it is well-known that Cl ⁻ has a relatively lower solubility product
263	equilibrium constant than SO ₄ ²⁻ ($K_{sp-AgCl} = 1.8 \times 10^{-10}$ and $K_{sp-Ag2SO4} = 1.2 \times 10^{-5}$) [2].
264	And in comparison with Ag ₂ SO ₄ , the solubility product constant of AgCl was
265	exceeded by our tested concentrations (1.8×10^{-7}), indicating that the formation of
266	AgCl was much more stable than Ag ₂ SO ₄ . In that case, more significant toxicity
267	reduction should be observed by Cl^{-} , rather than SO_4^{2-} , which was obviously opposite
268	to the findings in the present work. Comparison of their stability constants and
269	potential to reduce Ag ⁺ toxicity suggested that for the higher Cl/Ag molar ratios, it
270	was likely for the formation of soluble $AgCl_{(aq)}$ or $AgCl_2^-$, as well as $AgCl_3^{2-}$ and
271	$AgCl_4^{3-}$ below the precipitation potential, because the toxicity of Ag^+ was not
272	completely removed by the addition of Cl^{-} [2]. This speculation can be verified by
273	observation in distribution of total Ag content in Fig. S1. Total extracellular Ag
274	content was considerably suppressed to an undetectable level upon addition of
275	CaCl ₂ /MgCl ₂ into AgNP and Ag ⁺ suspensions (Fig. S1A and B). However, an increase
276	in total intracellular Ag content was observed upon $CaCl_2$ amendment of Ag ⁺ ; by
277	contrast, total intracellular Ag content under AgNP exposure was not detected (Fig.
278	S1 C). Unlike Cl ⁻ , mitigation of SO_4^{2-} on toxic effects of Ag ⁺ probably originated from
279	the complexation of SO_4^{2-} with Ag^+ , and the aqueous and unstable complexes might
280	lead to a fluctuation in microbial survival to a certain extent.

3.5. Dose-response effects of Ag⁺ on cell viability

282	Influences of monovalent and divalent electrolytes on Ag ⁺ dose-response toxicity
283	against P. chrysosporium are presented in Fig. 5. A similar trend as for different
284	amount of AgNPs in the presence of KNO3 was observed for dose-response curves of
285	Ag^+ in microbial viability with monovalent electrolytes (Fig. 5A). NaNO ₃ and KNO ₃
286	did not significantly affect the toxic effects of Ag ⁺ towards cells, except for the
287	inhibition at low Ag ⁺ concentrations (0–1 μ M) that showing a stimulatory effect in the
288	absence of electrolytes, and their corresponding EC ₅₀ values were statistically
289	undistinguishable ($p > 0.05$) (EC ₅₀ : 1.4 vs 4.9 μ M) relative to buffer exposure (EC ₅₀ :
290	4.6 μ M). In contrast to NaNO ₃ /KNO ₃ electrolytes, the presence of CaCl ₂ (EC ₅₀ : 8.2
291	μM), MgCl_2 (EC_{50}: 12.4 μM), and MgSO_4 (EC_{50}: 7.8 μM) alleviated the toxic action
292	of Ag ⁺ at concentrations of 0–3 μ M to some extent (Fig. 5B). Nevertheless, <i>P</i> .
293	chrysosporium survival upon Ca(NO ₃) ₂ amendment was still depressed, similar to that
294	upon amendments of NaNO ₃ and KNO ₃ . These results demonstrated that
295	antimicrobial toxicity of Ag^+ to <i>P. chrysosporium</i> was evidently enhanced by NO_3^-
296	under low doses of Ag ⁺ , regardless of monovalent or divalent cations, but was
297	inhibited upon addition of Cl^2 and SO_4^{22} electrolytes. Upon further increases in Ag^+
298	concentrations, the microbiocidal effects of Ag^+ on <i>P. chrysosporium</i> were not easily
299	subjected to the influence of all the monovalent and divalent electrolytes, probably
300	due to the bioavailability and cytotoxicity of the formation of soluble and/or unstable
301	silver species. Moreover, on the basis of EC_{50} values, Ag^+ ions were about $28 \times more$
302	toxic to <i>P. chrysosporium</i> than AgNPs in the buffer solutions (Figs. 2A and 5A) (EC ₅₀ :

303 4.6 vs 126.9 μM).

304	Besides, the toxicity of AgNPs and Ag ⁺ to <i>P. chrysosporium</i> presented a
305	time-dependent decrease, and in contrast with divalent electrolytes, monovalent
306	electrolytes elicited a more significant decrease in cell survival (Fig. S2). Meanwhile,
307	under AgNP stress, there was no significant difference in LiP activities between the
308	samples in NaNO ₃ /KNO ₃ /MgSO ₄ and buffer solutions; however, LiP activity was
309	significantly stimulated upon addition of Ca(NO ₃) ₂ , CaCl ₂ , and MgCl ₂ (Fig. S3A). A
310	significant stimulation in LiP activity was also induced after addition of
311	CaCl ₂ /MgCl ₂ /MgSO ₄ into Ag ⁺ solutions. NO ₃ ⁻ electrolytes insignificantly influenced
312	LiP activity upon exposure to Ag^+ , relative to those in the control and buffer. The
313	alterations of MnP activity under stresses of AgNPs and Ag ⁺ with various electrolytes
314	were similar to those of LiP (Fig. S3B). Coupled with the analyses of influences of
315	different electrolytes on microbial tolerance to $AgNPs/Ag^+$ and dose-response effects
316	of AgNP/Ag ⁺ on cell viability, predictably, it was also observed that higher viabilities
317	under AgNP exposure were induced by divalent electrolytes with the preference of
318	Ca^{2+} over Mg^{2+} , compared to monovalent electrolytes. And viability of <i>P</i> .
319	<i>chrysosporium</i> treated with low-dose Ag ⁺ was indeed inhibited by NO ₃ ⁻ electrolytes,
320	but was enhanced by Cl ⁻ and SO ₄ ²⁻ electrolytes.
321	3.6 AgNP/Ag ⁺ toxicity in the presence of mixture of mono and divalent electrolytes
322	Tolerance of <i>P</i> chrysosporium to AgNPs and Ag ⁺ showed an apparent disparity
222	in the answer of sinch and combined chester later of NeNO, and Co(NO). (Fig. ()
323	In the presence of single and combined electrolytes of NaNO ₃ and Ca(NO_3) ₂ (Fig. 6).
324	As shown in Fig. 6A, the antimicrobial effectiveness of AgNPs can be enhanced by

325	500 mM NaNO ₃ alone,	, 10 mM Ca(NO ₃) ₂ alone,	and the combination of the two;
-----	---------------------------------	--	---------------------------------

- however, introduction of 100 mM Ca(NO₃)₂ into 500 mM NaNO₃ solutions mitigated
- the toxicity of AgNPs to *P. chrysosporium*. Thus, the dominance of Ca(NO₃)₂ at high
- 328 concentrations in controlling AgNP behaviors (e.g. aggregation) in this mixture can be
- 329 concluded. In marked contrast to the observations made under AgNP stress, negligible
- impacts of NaNO₃ and Ca(NO₃)₂, separately and in combination, on Ag^+
- antimicrobial effects were observed in Fig. 6B.

Besides, in order to visualize the influence of $Ca(NO_3)_2$ on AgNP/Ag⁺

antimicrobial efficacy in the presence of mixture of mono and divalent electrolytes,

membrane damage of *P. chrysosoporium* cells was determined after uniform dyeing

with propidium iodide. In the presence of 500 mM NaNO₃, weaker red fluorescence

under AgNP stress was shown when *P. chrysosporium* was exposed to 100 mM

 $Ca(NO_3)_2$ in comparison to 10 mM $Ca(NO_3)_2$ (Fig. S4A and B). This implied that

- addition of high-concentration Ca(NO₃)₂ triggered less loss of plasma membrane and
- improved viability of *P. chrysosporium* exposed to AgNPs. However, an opposite
- 340 phenomenon was observed under stress of Ag^+ (Fig. S4C and D). Meanwhile, it was
- also found that *P. chrysosporium* cells showed stronger red fluorescence after addition
- of 100 mM $Ca(NO_3)_2$ into the Ag⁺ solution as well as 500 mM NaNO₃ than that
- 343 challenged with 10 mM $Ca(NO_3)_2$. Apparently, addition of high-level $Ca(NO_3)_2$ in the
- 344 presence of NaNO₃ lowered AgNP cytotoxicity, leading to unobvious damage of
- 345 plasma damage, in agreement with the observations of Fig. 6.
- 346 The results from Figs. 6 and S4 manifested that environmental electrolytes

347	modulated the toxicity of AgNPs and Ag ⁺ via specific chemical interactions
348	differentially, thus affecting their relative contributions to antimicrobial activity.
349	Furthermore, it was found that higher dissolved Ag ⁺ concentrations were obtained in
350	the electrolytes of 500 mM NaNO3 and/or 10 mM Ca(NO3)2, and that there was a
351	larger hydrodanamic size in the mixture of 500 mM NaNO3 and 100 mM Ca(NO3)2
352	relative to those in the buffer (Table S2). Predictably, lower survival of <i>P</i> .
353	<i>chrysosporium</i> possibly arose from a large amount of Ag ⁺ released from AgNPs in the
354	presence of monovalent cations and/or low concentrations of divalent cations.
355	However, AgNP aggregation might be predominantly induced under higher
356	concentrations of divalent cations, thereby showing higher P. chrysosporium survival.
357	3.7. Effects of electrolytes and HA coexistence on $AgNP/Ag^+$ toxicity
358	NOM may exist together with various cations and anions in natural or engineered
359	aquatic and soil systems. Here, the comprehensive effects on antimicrobial efficacy of
360	AgNPs and Ag ⁺ caused by combination of HA and electrolytes were investigated (Fig.
361	7). The microbial viabilities of samples in the HA alone and AgNP alone systems
362	were slightly higher than that in the control (Fig. 7A). The decreased viability of P .
363	chrysosporium in electrolyte solutions (except MgSO ₄) without HA was observed
364	under AgNP stress relative to the control. But the mixture of HA and NaCl, Na ₂ SO ₄ ,
365	
	$Ca(NO_3)_2$, $CaCl_2$, or MgCl ₂ electrolytes greatly improved the viability. The
366	observations suggested that HA addition could weaken the enhanced antimicrobial
366 367	Ca(NO ₃) ₂ , CaCl ₂ , or MgCl ₂ electrolytes greatly improved the viability. The observations suggested that HA addition could weaken the enhanced antimicrobial efficacy of AgNPs in these electrolyte solutions. Huang et al. [5] found that HA might

369	physicochemical properties and dissolution behavior of nanoparticles. Mitigation of
370	AgNP toxicity by HA was possibly because the adsorption of HA onto the surfaces of
371	AgNPs and P. chrysosporium hindered their direct interaction and/or uptake of
372	AgNPs by fungal cells [53–55]. Considering negatively charged functional groups
373	present on HA macromolecules, HA coating on AgNPs and cells also increased the
374	electrostatic and steric repulsive forces between them due to the more negative
375	surface charges. Meanwhile, the adsorbed HA could inhibit Ag ⁺ release on account of
376	blockage of active sites, oxidant competition, reduction reactions, or complexation [5].
377	In addition, Ca^{2+} and Mg^{2+} have also been found to promote HA adsorption onto
378	AgNP surface [49]. Complexation of Ca^{2+}/Mg^{2+} with COO ⁻ on HA and AgNP
379	surfaces could probably neutralize their negative charged, leading to weaker repulsion
380	between AgNPs and fungal cells and making AgNP contact with and bind to fungal
381	cells easier. However, the coating of HA might play a greater role in decreasing the
382	probabilities of direct contact and interaction between nanoparticles and cells, thus
383	alleviating the antimicrobial toxicity of AgNPs [5,49]. Remarkably, the enhancement
384	of AgNP toxicity to P. chrysosporium was observed in NaNO3 and KNO3 electrolytes
385	without HA; however, the coexistence of HA and NaNO ₃ /KNO ₃ aggravated the
386	toxicity of AgNPs more significantly, which could be interpreted by the formation of
387	relatively smaller and more stable particles after addition of HA [56,57]. The results
388	also indicated that the antimicrobial toxicity of AgNPs towards P. chrysosporium in
389	the presence of a mixture of HA and NaNO ₃ /KNO ₃ might be additive.

390	For better understanding of the effects of Ca^{2+}/Mg^{2+} and HA addition on
391	AgNPs/Ag ⁺ stimulation for microbial growth, SEM measurements on the surfaces of
392	control, fungi after treatment with AgNPs alone and combined treatment with AgNPs,
393	Ca^{2+}/Mg^{2+} and HA were conducted (Fig. 8). All the SEM images exhibited network
394	surface structures with smooth mycelia and void spaces between the hyphae. Analysis
395	of AgNP treatment exhibited widened hyphae loaded with some crystal particles
396	compared to the control (Fig. 8A and B). After addition of Ca^{2+}/Mg^{2+} and HA, more
397	vigorous and compact mycelia attached with fewer crystals were observed in the
398	presence of AgNPs in Fig. 8C and D. It reflected that Ca^{2+}/Mg^{2+} and HA addition
399	contributed to stimulation of AgNPs for microbial growth possibly because of the
400	reduction in direct contact, interaction, and uptake of AgNPs/Ag ⁺ with cell
401	components.
401 402	components. Besides, in Ag^+ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and
401 402 403	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA,
401 402 403 404	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and
401 402 403 404 405	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the
401 402 403 404 405 406	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the two electrolytes, there was no dramatic change in <i>P. chrysosporium</i> viability under
401 402 403 404 405 406 407	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the two electrolytes, there was no dramatic change in <i>P. chrysosporium</i> viability under Ag ⁺ stress in all the electrolytes with and without HA addition. Furthermore, adding
401 402 403 404 405 406 407 408	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the two electrolytes, there was no dramatic change in <i>P. chrysosporium</i> viability under Ag ⁺ stress in all the electrolytes with and without HA addition. Furthermore, adding HA prominently improved the survival of <i>P. chrysosporium</i> in MgCl ₂ solution, but
401 402 403 404 405 406 407 408 409	components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the two electrolytes, there was no dramatic change in <i>P. chrysosporium</i> viability under Ag ⁺ stress in all the electrolytes with and without HA addition. Furthermore, adding HA prominently improved the survival of <i>P. chrysosporium</i> in MgCl ₂ solution, but resulted in a slight inhibitory effect on microbial activity in CaCl ₂ solution. Therefore,
401 402 403 404 405 406 407 408 409 410	Components. Besides, in Ag ⁺ solutions, the survival of <i>P. chrysosporium</i> in Ca(NO ₃) ₂ and MgCl ₂ solutions with HA was increased by 52.3% and 114.3% over those without HA, respectively (Fig. 7B). The difference in <i>P. chrysosporium</i> survival in Ca(NO ₃) ₂ and MgCl ₂ was presumably due to complexation of Cl ⁻ with Ag ⁺ . However, apart from the two electrolytes, there was no dramatic change in <i>P. chrysosporium</i> viability under Ag ⁺ stress in all the electrolytes with and without HA addition. Furthermore, adding HA prominently improved the survival of <i>P. chrysosporium</i> in MgCl ₂ solution, but resulted in a slight inhibitory effect on microbial activity in CaCl ₂ solution. Therefore, the effects of Cl ⁻ present in solutions on Ag ⁺ toxicity may not be the dominant factor.

412	Mg^{2+} possibly induced a stronger complexation with HA than Ca^{2+} in Ag^+ solution,
413	which was contrary to the previous findings of a lower affinity of Mg^{2+} to COO ⁻ of
414	NOM compared to Ca^{2+} [49,58]. Further studies must be conducted to further explore
415	direct evidence involved. By contrast, for AgNPs, no evidence of a stronger affinity of
416	Mg^{2+} for HA was observed. It was implied that the impacts of divalent electrolytes
417	and NOM might be strongly dependent on the metal species present and that AgNPs
418	could bind to NOM more strongly than Ag ⁺ .
419	In a word, the toxicity of AgNPs and Ag^+ has been affected differentially by
420	common electrolytes and HA in aquatic systems, further altering their relative
421	contribution to antimicrobial capacities. Previous studies have reported that the
422	interactions of nanoparticles with plasma membranes may lead to particle aggregation,
423	dissolution, and restructuring at the nanomaterial surfaces and play a key role in the
424	antimicrobial effects [59–62]. In this study, combined with SEM observations in Fig.
425	8, the enhanced AgNP stimulation for microbial growth upon addition of Ca^{2+}/Mg^{2+}
426	and in the presence of HA could be attributed to reduction in direct contact,
427	interaction, and uptake of $AgNPs/Ag^+$ with cell components due to the formation of
428	new surface coatings and particle aggregation. However, antimicrobial performance
429	of AgNPs was enhanced in the presence of monovalent electrolytes, particularly K ⁺ ,
430	which might be associated with AgNP dissolution. The action would further aggravate
431	a large amount of Ag^+ release and direct contact/interaction between AgNPs and P.
432	chrysosporium cells.

4. Conclusions

434	In the present study, monovalent electrolytes, especially K ⁺ , enhanced the
435	antimicrobial efficacy of AgNPs, while an obvious promotion in AgNP stimulation of
436	microbial activity was observed in divalent electrolytes. Ca ²⁺ induced more effective
437	tolerance of <i>P. chrysosporium</i> to AgNPs than the same concentrations of Mg^{2+} did.
438	For combination of monovalent and divalent electrolytes, the dominating factor for
439	AgNP antimicrobial capability was divalent cations. Collectively, it was hypothesized
440	that the major factors responsible for AgNP cytotoxicity towards P. chrysosporium
441	were direct contact/interaction and specific reactions between nanoparticles and cells.
442	The enhanced AgNP toxicity in monovalent electrolytes mainly arose from the
443	aggravated nanoparticle-microbe interplay, resulting in Ag ⁺ dissociation. However,
444	the reduced direct contact and interaction of AgNPs/Ag ⁺ with cell components due to
445	aggregation, complexation, and HA surface coating greatly mitigated the
446	antimicrobial activity of AgNPs in the presence of divalent electrolytes and HA. The
447	observations here have great implications for better understanding in ecotoxicity of
448	nanomaterials in natural water systems.

449 Acknowledgements

- 451 of China (81773333, 51579099, 51521006, and 51508186), the Program for
- 452 Changjiang Scholars and Innovative Research Team in University (IRT-13R17), the
- 453 Hunan Provincial Natural Science Foundation of China (2016JJ3076), and the
- 454 Opening Project of Henan Provincial Key Laboratory of Water Pollution Control and
- 455 Rehabilitation Technology (CJSP2018010).

```
21
```

References

457	[1]	B.A. Chambers, A.R. Afrooz, S. Bae, N. Aich, L. Katz, N.B. Saleh, M.J. Kirisits,
458		Effects of chloride and ionic strength on physical morphology, dissolution, and
459		bacterial toxicity of silver nanoparticles, Environ. Sci. Technol. 48 (2014)
460		761-769.
461	[2]	C. Levard, E.M. Hotze, G.V. Lowry, G.E. Brown, Environmental transformations
462		of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol. 46
463		(2012) 6900-6914.
464	[3]	K. He, G. Chen, G. Zeng, Z. Huang, Z. Guo, T. Huang, M. Min, J. Shi, L. Hu,
465		Applications of white rot fungi in bioremediation with nanoparticles and
466		biosynthesis of metallic nanoparticles, Appl. Microbiol. Biotechnol. 101 (2017)
467		4853-4862.
468	[4]	J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y.
469		Liang, Removal of cationic dyes from aqueous solution using magnetic
470		multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater. 164
471		(2009) 1517-1522.
472	[5]	T. Huang, M. Sui, X. Yan, X. Zhang, Z. Yuan, Anti-algae efficacy of silver
473		nanoparticles to Microcystis aeruginosa: Influence of NOM, divalent cations, and
474		pH, Colloids Surf. A 509 (2016) 492-503.
475	[6]	X. Li, J.J. Lenhart, Aggregation and dissolution of silver nanoparticles in natural
476		surface water, Environ. Sci. Technol. 46 (2012) 5378-5386.

477	[7] Y. Zhang, G.M. Zeng, L. Tang, J. Chen, Y. Zhu, X.X. He, Y. He, Electrochemical
478	sensor based on electrodeposited graphene-Au modified electrode and nanoAu
479	carrier amplified signal strategy for attomolar mercury detection, Anal. Chem. 87
480	(2015) 989-996.
481	[8] J. Liu, R.H. Hurt, Ion release kinetics and particle persistence in aqueous
482	nano-silver colloids, Environ. Sci. Technol. 44 (2010) 2169-2175.
483	[9] Z. Guo, G. Chen, G. Zeng, Y. Ming, Z. Huang, L. Jiang, C. Peng, J. Wang, Z.
484	Xiao, Are silver nanoparticles always toxic in the presence of environmental
485	anions? Chemosphere 171 (2017) 318-323.
486	[10]Z.M. Xiu, Q.B. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Negligible
487	particle-specific antibacterial activity of silver nanoparticles, Nano Lett. 12 (2012)
488	4271-4275.
489	[11]Y. Zuo, G. Chen, G. Zeng, Z. Li, M. Yan, A. Chen, Z. Guo, Z. Huang, Q. Tan,
490	Transport, fate, and stimulating impact of silver nanoparticles on the removal of
491	Cd(II) by Phanerochaete chrysosporium in aqueous solutions, J. Hazard. Mater.
492	285 (2015) 236-244.
493	[12]X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of
494	biochar for the removal of pollutants from aqueous solutions, Chemosphere 125

- 495 (2015) 70-85.
- 496 [13] J.H. Deng, X.R. Zhang, G.M. Zeng, J.L. Gong, Q.Y. Niu, J. Liang, Simultaneous
- 497 removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene
- 498 oxide nanocomposite as an adsorbent, Chem. Eng. J. 226 (2013) 189-200.

499	[14]M. Chen, P. Xu, G. Zeng, C. Yang, D. Huang, J. Zhang, Bioremediation of soils
500	contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides,
501	chlorophenols and heavy metals by composting: Applications, microbes and
502	future research needs, Biotechnol. Adv. 33 (2015) 745-755.
503	[15]C. Zhang, W. Wang, A. Duan, G. Zeng, D. Huang, C. Lai, X. Tan, M. Cheng, R.
504	Wang, C. Zhou, W. Xiong, Y. Yang, Adsorption behavior of engineered carbons
505	and carbon nanomaterials for metal endocrine disruptors: Experiments and
506	theoretical calculation, Chemosphere 222 (2019) 184-194.
507	[16]C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W.
508	Xiong, M. Wen, X. Wen, L. Qin, Highly porous carbon nitride by supramolecular
509	preassembly of monomers for photocatalytic removal of sulfamethazine under
510	visible light driven, Appl. Catal. B 220 (2018) 202-210.
511	[17] D. He, C. Zhang, G. Zeng, Y. Yang, D. Huang, L. Wang, H. Wang, A
512	multifunctional platform by controlling of carbon nitride in the core-shell
513	structure from design to construction, and catalysis applications, Appl. Catal. B
514	258 (2019) 117957.
515	[18]H. Zhou, S. Wu, Y. Zhou, Y. Yang, J. Zhang, L. Luo, X. Duan, S. Wang, L. Wang,
516	D.C.W. Tsang, Insights into the oxidation of organic contaminants by iron
517	nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell:
518	Catalyzed Fenton-like reaction at natural pH, Environ. Int. 128 (2019) 77-88.
519	[19] M. Li, L.Z. Zhu, D.H. Lin, Toxicity of ZnO nanoparticles to Escherichia coli:
520	mechanism and the influence of medium components, Environ. Sci. Technol. 45

- 521 (2011) 1977-1983.
- 522 [20] X. Jin, M.H. Li, J.W. Wang, C. Marambio-Jones, F.B. Peng, X.F. Huang, R.
- 523 Damoiseaux, E.M.V. Hoek, High-throughput screening of silver nanoparticle
- stability and bacterial inactivation in aquatic media: influence of specific ions,
- 525 Environ. Sci. Technol. 44 (2010) 7321-7328.
- 526 [21] F. Long, J.L. Gong, G.M. Zeng, L. Chen, X.Y. Wang, J.H. Deng, Q.Y. Niu, H.Y.
- 527 Zhang, X.R. Zhang, Removal of phosphate from aqueous solution by magnetic
- 528 Fe–Zr binary oxide, Chem. Eng. J. 171 (2011) 448-455.
- 529 [22]M. Tejamaya, I. Römer, R.C. Merrifield, J.R. Lead, Stability of citrate, PVP, and
- PEG coated silver nanoparticles in ecotoxicology media, Environ. Sci. Technol.
 46 (2012) 7011-7017.
- 532 [23] A. Deonarine, B.L.T. Lau, G.R. Aiken, J.N. Ryan, H. Hsu-Kim, Effects of humic
- substances on precipitation and aggregation of zinc sulfide nanoparticles, Environ.
- 534 Sci. Technol. 45 (2011) 3217-3223.
- 535 [24] J.W. Anderson, L. Semprini, T.S. Radniecki, Influence of water hardness on silver
- ion and silver nanoparticle fate and toxicity toward *Nitrosomonas europaea*,
- 537 Environ. Eng. Sci. 31 (2014) 403-409.
- 538 [25]H.Y. Zhang, V. Oyanedel-Craver, Evaluation of the disinfectant performance of
- silver nanoparticles in different water chemistry conditions, J. Environ. Eng. 138
 (2012) 58-66.
- 541 [26]L.R. Pokhrel, B. Dubey, P.R. Scheuerman, Natural water chemistry (dissolved
 542 organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and

- 543 antimicrobial activity of citrate functionalized silver nanoparticles, Environ. Sci.
- 544 Nano 1 (2014) 45-54.
- 545 [27]Z.M. Xiu, J. Ma, P.J.J. Alvarez, Differential effect of common ligands and
- 546 molecular oxygen on antimicrobial activity of silver nanoparticles versus silver
- 547 ions, Environ. Sci. Technol. 45 (2011) 9003-9008.
- 548 [28]X. Li, J.J. Lenhart, H.W. Walker, Dissolution-accompanied aggregation kinetics
 549 of silver nanoparticles, Langmuir 26 (2010) 16690-16698.
- 550 [29] J. Liang, Z. Yang, L. Tang, G. Zeng, M. Yu, X. Li, H. Wu, Y. Qian, X. Li, Y.
- 551 Luo, Changes in heavy metal mobility and availability from contaminated
- wetland soil remediated with combined biochar-compost, Chemosphere 181
- 553 (2017) 281-288.
- [30] K. Afshinnia, M. Baalousha, Effect of phosphate buffer on aggregation kinetics of
- citrate-coated silver nanoparticles induced by monovalent and divalent
- electrolytes, Sci. Total Environ. 581-582 (2017) 268-276.
- 557 [31] M. Baalousha, Y. Nur, I. Römer, M. Tejamaya, J.R. Lead, Effect of monovalent
- and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver
 nanoparticles, Sci. Total Environ. 454-455 (2013) 119-131.
- 560 [32]X. Liu, X. Jin, B. Cao, C.Y. Tang, Bactericidal activity of silver nanoparticles in
- 661 environmentally relevant freshwater matrices: influences of organic matter and
- chelating agent, J. Environ. Chem. Eng. 2 (2014) 525-531.
- 563 [33] S. Wagner, A. Gondikas, E. Neubauer, T. Hofmann, F. von der Kammer, Spot the
- 564 Difference: Engineered and Natural Nanoparticles in the Environment--Release,

- 565 Behavior, and Fate, Angew. Chem. Int. Ed. 53 (2014) 12398-12419.
- 566 [34] V.K. SharMa, K.M. Siskova, R. Zboril, J.L. Gardea-Torresdey, Organic-coated
- silver nanoparticles in biological and environmental conditions: fate, stability and
- toxicity, Adv. Colloid Interface 204 (2014) 15-34.
- 569 [35]C. Zhang, C. Lai, G. Zeng, D. Huang, C. Yang, Y. Wang, Y. Zhou, M. Cheng,
- 570 Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic

sulfamethazine from aqueous solution, Water Res. 95 (2006) 103-112.

- 572 [36] Y. Zhang, Y.S. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic
- 573 matter and divalent cations on the stability of aqueous nanoparticles, Water Res.
- 574 43 (2009) 4249-4257.
- 575 [37] K.L. Chen, S.E. Mylon, M. Elimelech, Enhanced aggregation of alginate-coated
- iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and
- 577 barium cations, Langmuir 23 (2007) 5920-5928.
- 578 [38] H. Zhang, J.A. Smith, V. Oyanedel-Craver, The effect of natural water conditions
- on the anti-bacterial performance and stability of silver nanoparticles capped with
 different polymers, Water Res. 46 (2012) 691-699.
- [39] M. Li, S. Pokhrel, X. Jin, L. Mädler, R. Damoiseaux, E.M.V. Hoek, Stability,
- bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in
 aquatic media, Environ. Sci. Technol. 45 (2011) 755-761.
- 584 [40] T.K. Kirk, E. Schultz, W.J. Connors, L.F. Lorenz, J.G. Zeikus, Influence of
- culture parameters on lignin metabolism by *Phanerochaete chrysosporium*, Arch.
- 586 Microbio. 117 (1978) 277-285.

587	[41]Z. Huang, G. Chen, G. Zeng, Z. Guo, K. He, L. Hu, J. Wu, L. Zhang, Y. Zhu, Z.
588	Song, Toxicity mechanisms and synergies of silver nanoparticles in
589	2,4-dichlorophenol degradation by Phanerochaete chrysosporium, J. Hazard.
590	Mater. 321 (2017) 37-46.
591	[42]Z. Huang, P. Xu, G. Chen, G. Zeng, A. Chen, Z. Song, K. He, L. Yuan, H. Li, L.
592	Hu, Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and
593	effect on the production of extracellular secretions of Phanerochaete
594	chrysosporium, Chemosphere 196 (2018) 575-584.
595	[43] A. Chen, G. Zeng, G. Chen, L. Liu, C. Shang, X. Hu, L. Lu, M. Chen, Y. Zhou, Q.
596	Zhang, Plasma membrane behavior, oxidative damage, and defense mechanism in
597	Phanerochaete chrysosporium under cadmium stress, Process Biochem. 49 (2014)
598	589-598.

- 599 [44]L.R. Pokhrel, C.P. Andersen, P.T. Rygiewicz, M.G. Johnson, Preferential
- 600 interaction of Na^+ over K^+ with carboxylate-functionalized silver nanoparticles,
- 601 Sci. Total Environ. 490 (2014) 11-8.
- 602 [45]C.M. Zhao, W.X. Wang, Size-dependent uptake of silver nanoparticles in

603 *Daphnia magna*, Environ. Sci. Technol. 46 (2012) 11345-11351.

- 604 [46] A.R. Gliga, S. Skoglund, I.O. Wallinder, B. Fadeel, H.L. Karlsson,
- 605 Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role
- of cellular uptake, agglomeration and Ag release, Part. Fibre Toxicol. 11 (2014)
- 607 11.
- 608 [47] O.J. Osborne, S. Lin, C.H. Chang, Z. Ji, X. Yu, X. Wang, S. Lin, T. Xia, A.E. Nel,

- Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines
 of adult zebrafish, ACS Nano 9 (2015) 9573-9584.
- 611 [48]L.Q. Chen, L. Fang, J. Ling, C.Z. Ding, B. Kang, C.Z. Huang, Nanotoxicity of
- silver nanoparticles to red blood cells: size dependent adsorption, uptake, and
- hemolytic activity, Chem. Res. Toxicol. 28 (2015) 501-509.
- 614 [49] J. Liu, S. Legros, F. Von der Kammer, T. Hofmann, Natural organic matter

615 concentration and hydrochemistry influence aggregation kinetics of

- functionalized engineered nanoparticles, Environ. Sci. Technol. 47 (2013)
- 617 4113-4120.
- [50] A.Z. Sahalan, A.H. Abd Aziz, H.H. Lian, M.K. Abd Ghani, Divalent Cations
- (Mg²⁺, Ca²⁺) Protect Bacterial Outer Membrane Damage by Polymyxin B. Sains
 Malays. 42 (2013) 301-306.
- [51] K.A. Huynh, K.L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone
- 622 coated silver nanoparticles in monovalent and divalent electrolyte solutions.
- 623 Environ. Sci. Technol. 45 (2011) 5564-5571.
- 624 [52]Z.Z. Huang, K. He, Z.X. Song, G.M. Zeng, A.W. Chen, L. Yuan, H. Li, L. Hu, Z.
- 625 Guo, G.Q. Chen, Antioxidative response of *Phanerochaete chrysosporium*
- against silver nanoparticle-induced toxicity and its potential mechanism.
- 627 Chemosphere 211 (2018) 573-583.
- [53] W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B.B. Huang,
- Impact of humic/fulvic acid on the removal of heavy metals from aqueous

solutions using nanomaterials: a review. Sci. Total Environ. 468-469 (2014)

631 1014-1027.

- [54] J. Wan, G. Zeng, D. Huang, L. Hu, P. Xu, C. Huang, R. Deng, W. Xue, C. Lai, C.
- ⁶³³ Zhou, K. Zheng, X. Ren, X. Gong, Rhamnolipid stabilized nano-chlorapatite:
- 634 Synthesis and enhancement effect on Pb- and Cd-immobilization in polluted
- 635 sediment. J. Hazard. Mater. 343 (2017) 332-339.
- [55] X. Ren, G. Zeng, L. Tang, J. Wang, J. Wan, Y. Liu, J. Yu, H. Yi, S. Ye, R. Deng,
- 637 Sorption, transport and biodegradation–An insight into bioavailability of
- 638 persistent organic pollutants in soil. Sci. Total Environ. 610-611 (2018)
- 639 1154-1163.
- [56] J. Fabrega, S.R. Fawcett, J.C. Renshaw, J.R. Lead, Silver nanoparticle impact on

bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci.

- 642 Technol. 43 (2009) 7285-7290.
- [57] G.E. Schaumann, A. Philippe, M. Bundschuh, G. Metreveli, S. Klitzke, D.
- 644 Rakcheev, A. Grun, S.K. Kumahor, M. Kuhn, T. Baumann, F. Lang, W. Manz, R.
- 645 Schulz, H.J. Vogel, Understanding the fate and biological effects of Ag- and
- 646 TiO₂-nanoparticles in the environment: The quest for advanced analytics and
- 647 interdisciplinary concepts. Sci. Total Environ. 535 (2015) 3-19.
- [58] A.K. Pandey, S.D. Pandey, V. Misra, Stability constants of metal-humic acid
- complexes and its role in environmental detoxification. Ecotoxicol. Environ. Saf.
- 650 47 (2000) 195-200.
- [59] H.S. Malekkhaiat, M. Malmsten, Membrane interactions and antimicrobial effects

of inorganic nanoparticles. Adv. Colloid Interface Sci. 248 (2017) 105-128.

- 653 [60] Z. Huang, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, K. He, Z. Song, L. Hu, M.
- Peng, T. Huang, G. Chen, Differential behaviors of silver nanoparticles and silver
- 655 ions towards cysteine: Bioremediation and toxicity to *Phanerochaete*
- *chrysosporium*. Chemosphere203 (2018) 199-208.
- 657 [61] P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C.
- Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater
- treatment: a review. Sci. Total Environ. 424 (2012) 1-10.
- 660 [62] P. Xu, G.M. Zeng, D.L. Huang, C. Lai, M.H. Zhao, Z. Wei, N.J. Li, C. Huang,
- 661 G.X. Xie, Adsorption of Pb(II) by iron oxide nanoparticles immobilized
- 662 *Phanerochaete chrysosporium*: equilibrium, kinetic, thermodynamic and
- 663 mechanisms analysis. Chem. Eng. J. 203 (2012) 423-431.