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Denitrifying anaerobic methane
oxidation (DAMO) can concur-
rently reduce methane emissions
and nitrogen levels in aquatic envi-
ronments, but how useful is this
process? We propose the use of
DAMO-based technology as a tool
for sustainably operating waste-
water treatment plants (WWTPs).
Manipulating WWTPs Can
Mitigate Global Warming and
Water Eutrophication
Global warming and water eutrophication
(the bloom of blue-green algae caused by
an excessive supply of nutrients) are
widely recognized as serious environ-
mental problems worldwide. Methane,
with a global warming potential 20-fold
higher than that of carbon dioxide, is an
important greenhouse gas that accounts
for �20% of the global temperature
increase. Methane can be emitted from
many natural environments, such as
freshwater sediments and agricultural ori-
gins, and from several engineered sys-
tems such as waste landfills and
WWTPs. The eutrophication of freshwater
environments, which is partly attributed to
nitrogen from rainfall, agricultural dis-
charges, and WWTP effluents, has
become another serious global water
management issue. Among these sour-
ces, WWTPs are the only engineering
source that significantly contributes to
both global warming and water eutrophi-
cation. Engineers therefore have oppor-
tunities to mitigate these two global
environmental issues.

Currently, two main issues faced by
WWTPs are the shortage of carbon sour-
ces in wastewaters and their substantial
emission of greenhouse gases. With the
increasing human population worldwide,
more energy and resources are required,
and sustainably addressing the two
issues is therefore a big challenge. The
recently described DAMO process might
be the most promising solution if this
microbial process can be utilized and inte-
grated with other technologies in WWTPs
at full scale.

DAMO: An Important Microbial
Process for Nitrogen and Carbon
Cycles
The microbial process of DAMO, where
methane is oxidized anaerobically to pro-
vide electrons for denitrification, creates
an important link between the nitrogen
and carbon cycles [1]. The microorgan-
isms responsible reported to date include
‘Candidatus Methylomirabilis oxyfera’
(M. oxyfera), a bacterial group affiliated
with the candidate division NC10 (a group
of methane-oxidizing microorganisms),
and ‘CandidatusMethanoperedens nitro-
reducens’ ([114_TD$DIFF]M. nitroreducens), an archaeal
group related to anaerobic methanotro-
phic archaea [1–3]. The DAMO archaea
convert nitrate to nitrite using electrons
derived from methane, while the DAMO
bacteria reduce nitrite to nitric oxide and
then bioconvert nitric oxide to nitrogen
and oxygen via the inter-aerobic denitrifi-
cation pathway (Figure 1).

Three categories of mathematical models
have so far been proposed to better
Trend
understand the DAMO process (Figure 1).
The models are developed based on the
enrichment of DAMO bacteria (model A);
DAMO bacteria and ANAMMOX (anaero-
bic ammonium oxidation) bacteria (model
B); or DAMO bacteria–DAMO archaea–
ANAMMOX bacteria (model C); these
model structures thus contain different
microbial pathways. The definitions of
each of these kinetic and stoichiometric
matrices are detailed in the literature
[4–7].

Substrate concentrations (e.g., methane
and nitrite) and environmental parameters
(e.g., O2, temperature, and pH) affect the
DAMO process. For example, the nitrite
depletion rate increases as the methane
partial pressure increases from 1.8 kPa
to 8.9 kPa [8]. Overloading nitrite had a
toxic effect on the activity of [115_TD$DIFF]M. oxyfera;
the highest nitrite reduction rate of [115_TD$DIFF]M. oxy-
fera was measured at 2.29 mmol NO2

�
[114_TD$DIFF]-

N day�1 [9]. ANAMMOXbacteria compete
with M. oxyfera for available nitrite, and
therefore excess ammonium would risk
washing out [116_TD$DIFF]M. oxyfera because ANAM-
MOX bacteria have a higher affinity for
nitrite than theDAMObacteria [6].Methane
oxidation was not affected by oxygen
exposure, but denitrification in the DAMO
process was significantly affected as a
result of suppression of nitrite reductase
and nitrate reductase [10]. Oxygen expo-
sure could suppress the activity of [117_TD$DIFF]M. oxy-
fera by affecting protein/nucleic acid
synthesis and the cell division process.

Can We Apply DAMO in WWTPs?
DAMO could remove methane and nitro-
gen concurrently without requiring expen-
sive electron donors such as acetate and
ethanol, and it therefore seems to be a
promising solution to the two issues faced
by WWTPs mentioned previously. How-
ever, can we employ it in WWTPs?
Although DAMO is still a developing tech-
nique without any full-scale applications
to date, several efforts have beenmade at
the bench scale. For example, Kampman
et al. incorporated a DAMO process into a
UASB (upflow anaerobic sludge blanket)
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Figure 1. Information about the Denitrifying Anaerobic Methane Oxidation (DAMO) Process, Including the Microorganisms Responsible, Relevant
Mechanisms, Mathematical Models, and Influencing Factors.
digester system and a nitritation reactor to
treat sewage. The UASB digester con-
verted organic substrates to methane
and produced ammonium via ammonifi-
cation, while the nitritation reactor sup-
plied the nitrite required by the DAMO
bacteria. In steady-state operation, this
process obtained a maximum nitrogen
removal rate of 37.8 mg N l�1

[115_TD$DIFF] [118_TD$DIFF]day�1

[11]. Zhu et al. enriched ANAMMOX
and DAMO bacteria in a laboratory-scale
reactor with the seed sludge taken from a
full-scale ANAMMOX bioreactor [12].
Furthermore, Shi et al. designed a mem-
brane biofilm reactor to enrich for both
ANAMMOX and DAMO microorganisms
[13]. Methane was delivered from the
interior of hollow fibers and an
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ANAMMOX–DAMO biofilm grew on
outer wall of the fiber. This bench-
scale reactor enriched the microbe
population to 20–30% DAMO bacteria,
20–30% DAMO archaea, and 20–30%
ANAMMOX bacteria, and achieved
nitrate and ammonium removal rates of
�190 mg N l�1 day�1

[118_TD$DIFF] and �60 mg N
l�1 day�1

[118_TD$DIFF], respectively [13]. All these
attempts indicate that DAMO has poten-
tial application in WWTPs.

How to Apply DAMO in WWTPs
We propose here two possible strategies
incorporating DAMO into either side-
stream or main-stream wastewater treat-
ment for the future operation of WWTPs
(Figure 2). In the side-stream concept
o. 9
(Figure 2A), wastewaters in the main
stream are treated by an activated
sludge-based bioreactor (e.g., an oxida-
tion ditch) in which most of the nitrogen,
phosphorus, and organic matter in the
wastewaters are removed. The excess
sludge is digested in an anaerobic
digester to stabilize the properties of the
sludge, reduce the volume of the sludge,
and produce the energy gas methane.
The digestion liquid usually contains
1000–1500 mg/l ammonium, constituting
10–20% of the WWTP total nitrogen. To
reduce the nitrogen level in the main-
stream line, we propose incorporating a
combined nitritation–DAMO–ANAMMOX
system into the side-stream line before
the digestion liquid is recirculated into
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Figure 2. Two Proposed Strategies for Incorporating DAMO into Wastewater Treatment for the Future Operation of WWTPs. (A) Incorporating the
DAMO process in the side stream; (B) incorporating the DAMO process in the main stream with either the traditional ‘activated sludge’ process (dashed line) or
advanced wastewater treatment technologies (solid line). The methane required in the DAMO–ANAMMOX reactor would be produced from the anaerobic digestion of
sewage sludge. We estimate that this production accounts for<10% of the total methane generated in the side-stream line, while it accounts for either<10% (dashed
line) or <50% (solid line) of the total methane generated in the main-stream line. The remainder methane can be utilized to generate electricity. In the main-stream line,
the DAMO process would be dominant in a DAMO–ANAMMOX reactor if the effluent from the traditional activated sludge process contains little ammonium.
Abbreviations: ANAMMOX, anaerobic ammonium oxidation; DAMO, denitrifying anaerobic methane oxidation; WWTP, wastewater treatment plant.
the main-stream line. In the nitritation
reactor, the ammonium in the digestion
liquid is partially converted to nitrite, and
the effluent is then further treated in the
DAMO–ANAMMOX co-culture reactor. In
such a reactor, DAMO archaea reduce
nitrate to nitrite while DAMO and the
ANAMMOX bacteria jointly reduce nitrite
to nitrogen gas. The maximal nitrogen
removal efficiency of nitritation–ANAM-
MOX is only �70% because nitrate
(which constitutes 11% of the total nitro-
gen) is an end-product of the ANAMMOX
reaction, and residual ammonium and/or
nitrite may remain in effluent when the
ideal molar ratio of 1.32 to 1 of nitrite
to ammonium is not produced by the
partial nitritation process. A combined
nitritation–DAMO–ANAMMOX system
might overcome the drawbacks of
nitritation–ANAMMOX.

In the main-stream concept, the DAMO–
ANAMMOX reactor could be utilized
either as a post-treatment unit or even
as the core unit for sustainable WWTP
operation, depending on the treatment
process used (Figure 2B). For con-
ventional WWTPs using the traditional
‘activated sludge’ process, the DAMO–
Trend
ANAMMOX reactor could be used as a
post-treatment unit without retrofitting
existing activated sludge installations
(Figure 2B, dashed line). The effluent of
the traditional ‘activated sludge’ process
generally contains relatively high levels of
nitrate and some residual ammonium,
and both could be removed in the added
DAMO–ANAMMOX reactor without either
extra oxygen input or additional expensive
electron donors such as acetate or
methanol.

There is growing understanding that
WWTP operation should be shifted
s in Biotechnology, September 2017, Vol. 35, No. 9 801



toward sustainable paradigms that either
are energy-neutral or output energy, and
therefore themain-stream deammonifica-
tion-based process is the more promis-
ing technology. The DAMO–ANAMMOX
reactor would be at the heart of main-
stream deammonification (Figure 2B,
solid line). First, most of the organic mat-
ter (�80%) and phosphorus (�90%) in
wastewater is absorbed and stored in
the high-rate activated sludge-based
bioreactor [14]. The ammonium-rich
effluent is then treated in a nitritation
reactor to partially convert ammonium
to nitrite [15]. Finally, the nitritation efflu-
ent is further treated in the DAMO–

ANAMMOX reactor. Using this approach,
the DAMO-based technologies have sig-
nificant potential for the sustainable oper-
ation of WWTPs.

The Way Forward
To make DAMO suitable for field applica-
tion, the following issues should be
addressed in the future.

(i) Further understanding the microbial
behaviors of DAMO microorganisms.
To accelerate the cultivation period of
DAMO microorganisms and increase
reaction rates, efforts will be necessary
to further elucidate the physiology,
mechanisms, and kinetics of the known
[119_TD$DIFF]M. oxyfera and M. nitroreducens spe-
cies, identify other microbes potentially
carrying out DAMO process, and explore
the interaction between DAMO microor-
ganisms and other microbial groups.

(ii) Scaling up DAMO to a practical level.
The biggest challenge is how to concur-
rently scale up the system size to a real-
world level while achieving practically use-
ful reaction rates and performances. In
addition, the gas generated by the
digester also contains other components
such as CO2 and H2S, and thus their
impact on DAMO needs to be considered
in field situations.

(iii) Better controlling the DAMO hybrid
process. In engineered systems,
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reasonable coordination between DAMO
and other units such as activated sludge
unit and nitritation is crucial for the suc-
cessful application of such emerging
technology. Such a combined system
requires delicate optimization of both sys-
tem design and process operation, and
mathematical modeling and advanced
monitoring/control strategiesmay be use-
ful in this regard. However, this could
increase the construction investment, a
factor that will need to be evaluated in
the future.
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Ethnobotany (the scientific study of
traditional plant knowledge) has
aided the discovery of important
medicines. However, as single-
molecule drugs or synergistic mix-
tures, these remedies have faced
obstacles in production and analy-
sis. Now, advances in bioreactor
technology,metabolic engineering,
and analytical instrumentation are
improving the production, manipu-
lation, and scientific understanding
of such remedies.
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