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Abstract: To explore the approach for furt ancing the dye removal performance

of polydopamine (PDA) coate , a novel composite of PDA-kaolin with
reduced graphene oxide @ization (PDA-rGO-kaolin) was synthesized and
selected as a | bent for methylene blue (MB) removal. The BET
characteristic analys% showed that the introduction of rGO significantly increased the
surface area of PDA-kaolin by 3.1 times. A series of comparative experiments on
PDA-kaolin and PDA-rGO-kaolin towards MB removal in various conditions were
carried out. Adsorption experiment indicated that PDA-rGO-kaolin was more
satisfactory for MB removal. Kinetic analysis showed that the adsorption followed a

pseudo-second-order kinetic model. The adsorption behavior could be better

described by Langmuir isotherm model. Compared with PDA-kaolin,
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PDA-rGO-kaolin showed higher maximum adsorption capacity towards MB (39.663
mg/g). Furthermore, the adsorption of MB molecules on adsorbents was spontaneous
and endothermic process according to thermodynamic experiment. Moreover,
PDA-rGO-kaolin showed a good regeneration performance for MB removal. These
results show that the introduction of graphene is a feasible and efficient method to
improve the adsorption performance of PDA coated kaolin composite.

Keywords: Polydopamine; Reduced graphene oxide; Kaolin; Methylene blue;
Adsorption performance. %

Introduction

Environment pollution is one of the most urgent pr s worldwide. The elimination
of various contaminants, such as aromatic 1-3], heavy metals[4-7], and
organic dyes[8-11], in environment ista osystem and human health. To date,
the common technologies emp e removal of these contaminants include
adsorption[12-15], membrage fiklration[16], oxidative process[17-19], and biological
treatment[ZO-ZZ]ﬁ@se mentioned approaches, adsorption has been regarded
as an efficient and \ttractive method in pollutant removal due to its properties of
low-cost, high-efficiency, and easy-design[23,24]. Organic dyes are the most
abundant, visible, and hazardous contaminants in wastewater, which can impede the
penetration of sunlight and endanger the survival of aquatic organisms[10, 25-28].
Therefore, the dye removal from water bodies is necessary. Currently, kaolin, one of
the common clay minerals, has been used as adsorbent for wastewater treatment[29].
Compared with other commercial or synthetic adsorbents[11,30,31], the application of
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kaolin has advantages in terms of low-cost, abundant availability, and eco-friendly,
which can bring vast economic and environmental benefits to wastewater
industries[32]. Nonetheless, the application of kaolin alone in wastewater treatment
may not be satisfactory due to its relative low adsorption capacity[29,33]. This low
adsorption efficiency of methylene blue (MB) on kaolin has also been observed in our
previous work[34]. Thus, it is necessary to seek efficient strategy to activate kaolin.
Mussel-inspired chemistry is an emerging strategy for the surface modification on
various solid materials[ 35]. A number of studies ha onstrated that
polydopamine (PDA) coating, the self-polymerization o ine in alkaline or
oxidants, is a universal surface functionalizatio ent to various materials. For
example, Cheng et al. (2013) explored the p@ e of PDA coated graphene in

2D and 3D architectures as adsorbengs”i tant disposal[36]. Yan et al. (2015)

prepared PDA coated electrosp@ yl alcohol)/poly(acrylic acid) membranes
and found that the as-prepa@m ranes exhibited efficient adsorption performance

towards methyl ang et al. (2014) synthesized PDA decorated magnetic
nanoparticles (FesOXPDA) and applied the as-prepared materials for the removal of
multiple pollutants in environmental remediation[38]. Yu et al. (2014) successfully
prepared PDA coated zeolite powder at different reaction time and investigated the
removal performance towards copper ions[39]. Huang et al. (2016) utilized PDA
coating as a platform to further conjugate with poly-(sodium p-styrenesulfonate
hydrate) (PSPSH) on the surface of kaolin. They examined the removal of MB by the

as-prepared functionalized kaolin, while a comparative study towards the PDA
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modified kaolin was missed[29]. In our study, we firstly demonstrated that the
removal of MB was significantly enhance by kaolin with PDA modification. These
results collectively showed that mussel-inspired modification indeed could enhance
the wastewater treatment performance. However, the PDA coating may decrease the
surface area of material, which will impede the application of PDA and decrease the
maximum removal capacity towards pollutants in some extent[36,39]. In order to
minimize its drawbacks and maximize its application potential, therefore, it is
important to explore a feasible approach to further improve th ater treatment
performance of PDA coated materials.

Excitingly, the discovery of graphene opens u new opportunity to solve the

above-mentioned problems. As is well know e materials have been widely

applied in environmental fields due tg &1
Importantly, the graphene mod@

performance[43,44]. Howeger, tge synthesis of graphene usually involves the use of

e physicochemical properties[40-42].

an greatly enhance the pollutant removal

toxic or hazardo ea@agents in the reduction of graphene oxide[45]. Thus, a
green approach for e graphene synthesis is necessary. Herein, dopamine can act as
not only an environmental-friendly reducing agent for preparing graphene but also a
capping agent to decorate the resulting material. However, the studies on the
modification of graphene and dopamine on clay materials are limited. Thus, the
application of PDA-reduced graphene oxide as surface capping agent on kaolin in the
wastewater treatment is worth exploring.

In this study, the main objective was to explore the approach for further enhancing

4
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dye removal by PDA modified material. Thus, reduced graphene oxide modified
kaolin with PDA coating (PDA-rGO-kaolin) was successfully prepared. Moreover, a
comparative experiment was carried out to investigate the removal performance of
PDA-kaolin and PDA-rGO-kaolin towards dye removal. Batch experiments were
conducted to compare the adsorption process and behavior of both PDA-kaolin and
PDA-rGO-kaolin towards MB at different solution conditions. We deem that this
work will provide a theoretical basis for the design and application of novel
PDA-coated materials in environmental field. %

Materials and methods

Materials

Graphene oxide (GO) was firstly prepared [ to the modified Hummers

method, which was used for the synt &uced graphene oxide [34,46]. Kaolin

% ilane (APTMS) as linkage, dopamine

hydrochloride (DA) as @am and wrapping agent, tris(hydroxymethyl)

aminomethane (Wd all other chemicals were purchased from Sinopharm

chemical reagent C¥, Ltd, China. Distilled water was used for the preparation of

(Al2Si20gH4), 3-aminopropyl-

solutions in all experiments.

Synthesis of PDA-rGO-kaolin composites

In order to obtain the PDA-rGO-kaolin composites, the GO-kaolin composites (3:20,
w/w) were prepared firstly according to our previous study [34]. Then, the obtained
GO-kaolin composite (1 g) and 500 mg DA were immersed into 250 mL of 10 mM
Tris-HCI solution (pH=8.5) and dispersed by sonication for 30 min. Afterwards, the
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mixture was stirred vigorously at 60 <C for the reduction of GO for 24 h, and the
resultant black PDA-rGO-kaolin was filtered and washed with distilled water for
several times and dried in a vacuum oven at 50 <T for 24 h [45,47]. The PDA coated
kaolin was prepared by mixing DA and kaolin without the interaction of GO.
Characterizations

The surface morphology and chemical compositions of PDA-kaolin and
PDA-rGO-kaolin composites were characterized using Transmission Electron
Microscope (TEM) (JEOL, Japan) and X-ray photoelectron &ge opy (XPS) on
ESCALAB 250Xi (Thermo Fisher Scientific, USA), respe he specific surface
area was measured based on Brunauer-Emmett-Tel ET) method using nitrogen as
absorbent. Thermogravimetric analysis (TGA@ ed out using thermoanalytical

equipment (SDT Q600, USA) at a heafin i of 10 T/min from 20 to 800 T at

nitrogen atmosphere. Raman r re obtained on a LabRam-010 Raman

spectrometer (Jobin Yvon, @)

at a wavelength Z@he zeta potentials of samples in solution under different

; the laser excitation was provided by an Ar+ laser

pH conditions wer&§ measured by a zeta potential meter (Zetasizer Nano-ZS90,
Malvern).

Adsorption experiments

The basic dye, MB was chosen as the model pollutant and a 500 mg/L of MB stock
solution was prepared for the following adsorption experiments. In order to measure
the dye concentration, a standard curve of MB solution was obtained at 664 nm by
using a UV-vis spectrophotometer (UV-2550, SHIMADZU, Japan). Batch adsorption
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experiments were carried out by adding 40 mg adsorbent into 50 mL MB solution and
shaken for 24 h (180 rpm, 27 £1 <C) at a water bath shaker. The suspensions were
then filtered through 0.45 pm membrane filter to measure the final dye concentration.
The effect of initial dye concentrations varied from 5 to 40 mg/L was investigated and
an initial dye concentration of 20 mg/L was chosen for the following experiments.
The effects of solution pH (3.5 to 11.0), adsorbent dosage (0.4 tol.6 g/L), and

temperatures of solution at the desired values (17, 27, 37, and 47 <C) on the MB

removal were studied. To analyze the experiment data, the remv iciency (R) and
adsorption capacity (Qe (mg/g)) of PDA-kaolin and P aolin composites
towards MB were calculated according to followin ations, respectively:

Cy-C,
R= x100% (1)

% Q)
Co-C
Qe:( €y (2) &

m

where Co and C. are the initi librium concentrations (mg/L) of MB in

solution, respectively. V (Lgandgn (g) represent the volume of dye solution and the

mass of adsorbe euga dye solution.

Results and discuszn

Characterization of PDA-kaolin and PDA-rGO-kaolin

In this work, PDA-rGO-kaolin material was synthesized through a two-step route.
Previously, the GO sheets were attached to APTMS modified kaolin due to
electrostatic interactions [47]. Afterward, the reduction of GO to rGO occurred after
the addition of dopamine as reduction agent. Simultaneously, PDA-rGO-kaolin

composite was formed due to the self-polymerization of dopamine to PDA [45].
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According to previous studies[29,45], the potential synthetic process is presented in
Scheme 1. As the low adsorption performance of raw kaolin on MB solution has been
demonstrated in our previous work [34], thus we focused on the comparison of dye

removal performance between PDA-kaolin and PDA-rGO-kaolin as adsorbents in this

study.

APTMS

—> C?

H
HZ
Kaolin N
GO &@ PDA-rGO-kaolin

Scheme 1. Synthetic process of PD aolin composite.

After coating treatments, % changes of kaolin could be observed by TEM

images as shown in Fj usly, a narrow covering layer could be observed in
the surface of ka ig. 1a) after PDA coating (Fig. 1b), which confirmed the
successful self-polymerization of dopamine onto the surface of kaolin [33,38]. Fig. 1c
presented the corresponding TEM image of PDA-rGO-kaolin. The surrounding sheets
(shown in red circle) were obvious, which did not appear in other images,
demonstrating the successful contact of graphene sheets with kaolin flakes [45]. The
graphene sheets could support a large surface area for kaolin, which was verified by

the measurement of BET surface area. Compared with the surface area of raw kaolin

powder (9.65 m?/g), the surface area of PDA-kaolin composite decreased to 8.62 m?/g.
8
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The decrease of surface area by PDA coating was also reported in PDA-zeolite
particles [39]. In contrast, the surface area of PDA-rGO-kaolin increased significantly
to 35.35 m?/g, increased by 3.1 folds in comparison with that of PDA-kaolin. These
results revealed that the graphene modification could improve the limitation of PDA

coating.

- * ‘:‘J‘W ’i ‘
Fig. 1. TEM images of raw kaolin (a), PDA-ka , and PDA-rGO-kaolin (c).

Insets (a, b): the corresponding TEM im w h magnification.

From the TGA curves in Fig. 2 Id be seen that raw kaolin presented only
1.59% weight loss at 800 %ei t loss in raw kaolin was attributed to the
weight loss of hydroxyf gro r adsorbed gases on kaolin [48]. The weight loss of
PDA-kaolin incre 10.33% after the surface modification of kaolin with PDA,
owing to the decomposition of PDA from the PDA-kaolin surface [39,49]. Distinct
weight loss (27.78%) of PDA-rGO-kaolin was observed due to the thermal
decomposition of labile oxygen-containing groups on graphene as reported in
previous studies [50-52]. The differences of TGA curves suggested the successful
PDA and PDA-rGO coating on the kaolin surface. Raman spectra can be used as a

sensitive detection method to determine the chemical structure of carbonaceous

materials. Fig. 2b showed the Raman spectra of PDA-kaolin and PDA-rGO-kaolin
9
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composites. Compared with PDA-kaolin, a relatively obvious D band was observed
on the Raman spectrum of PDA-rGO-kaolin composite. It has been reported that the
D band represents the sp® defects in carbon[43], indicating the successful introduction

of rGO in composite combining with the XPS analysis.

a b
100

95

904

85

Weight (%)

G band

Intensity (a.u)

80 4

——kaolin
——PDA-kaolin
= PDA-rGO-kaolin

754

70

T T T T T T T T
0 100 200 300 400 500 600 700 800 1200 1400 1600

Temperature (C) R shift (cm'1)

Fig. 2. (a) TGA analysis of raw kaolin, PDA- PDA-rGO-kaolin composites;

(b) Raman spectra of PDA-kaolin and P kaolln composites.

In addition, the element com main functional groups were analyzed by
XPS measurement, which @ er verify the successful coating. As shown in
survey scan of F|g 3a) and component analysis (Table 1), the typical
characteristic elemeWs of kaolin such as Al, Si, and O were observed in the modified
kaolin composites. However, the peaks of Si and Al nearly disappeared owing to the
PDA coating inhibited the penetration of XPS, indicating that the surface of kaolin
was fully covered by PDA polymer [38]. In addition, a new peak at ~399 eV
corresponding to N1s element was observed in the XPS spectra of modified kaolin,

indicating the growth of PDA polymer on the surface of kaolin [39]. To further

understand the relative contents of core groups, the C1s spectra of PDA-kaolin and

10
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PDA-rGO-kaolin were deconvoluted into several peak components (Fig. 3b). The C1s
core-level spectrum of PDA-kaolin can be curved into four peak components at 284.6,
285.3, 286.1, and 288.0 eV, which signified the presence of C-C, C-N, C-O, and
C=0 groups, respectively [45,52]. The appearance of O-C=0 peak component at
288.8 eV in the C1s core-level spectrum of PDA-rGO-kaolin was derived from the
partially reduced GO [45]. Furthermore, the ratio of C—C group and the percentage of

C atom on PDA-rGO-kaolin were higher than that on PDA-kaolin, which also

indicated that graphene sheets were introduced into kaolin co

a b
C1s O1s PDA-kaolin
N1s PDA-kaolin
- Si2p
% [ Azg
s i
0 200 400 600 280 288 286 284 282
Binding energy (eV) Binding energy(eV)
Fig. 3. XPS surveyf(a Cls core-level spectra (b) of PDA-kaolin and

PDA-rGO-kaolin

Table 1 Element compositions and atom ratios of PDA-kaolin and PDA-rGO-kaolin

samples
Atom percentage (%)
Samples ]
Cls N1s O1ls Si2p Al2p
PDA-kaolin 64.055 7.536 25.563 1.818 1.989
PDA-rGO-kaolin 65.269 7.849 23.755 1.457 1.671

Effect of contact time and adsorption kinetics

It could be observed from the Fig. 4 that the removal efficiency and adsorption
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capacity of PDA-rGO-kaolin were higher than that of PDA-kaolin. As seen from Fig.
4a, the adsorption rate became slow gradually with time until a state of equilibrium
was acquired. Nevertheless, the adsorption of MB by PDA-rGO-kaolin was more
rapid than that by PDA-kaolin at the initial stage, and the application of
PDA-rGO-kaolin could shorten the needed time to reach equilibrium. The enhanced
dye adsorption by PDA-rGO-kaolin was ascribed to its higher surface area and more

available surface active sites for adsorption[53]. The results indicated that the

introduction of rGO was beneficial for the adsorption of %ules on kaolin

composite.
100
a
././'r '
n/./

80 L .
g / L
g - o
> '}

E 60 / ./'/
€ |/ /
i

E >

§ul/

=
=]
—

b ! = PDA-kaolin
’ + PDA-rGO-kaolin

- - - Pseudo-first-order

204
—— Pseudo-second-order

T T T T T T T T T
0 4 8 12 6 24 0 4 8 12 16 20 24

Til Time (hour)

Fig. 4. Effect of confgct time on MB removal (20 mg/L, pH=7.0) by PDA-kaolin and
PDA-rGO-kaolin at 27 <C (a). The fitted kinetics models from experiment data: the
dash lines and solid lines represent pseudo-first-order and pseudo-second-order
models, respectively (b).

Commonly, pseudo-first-order and pseudo-second-order kinetic models are used to

analyze the adsorption process. The fitted kinetic curves (Fig. 4b) obtained from

experiment data were based on two non-linear forms as Eqgs (3) and (4),
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respectively:[33]

0,=0,(1-¢1") ©)
ngit

1+k2Qel

0,= (4)

where Q: (mg/g) and Qe (mg/g) are the adsorption capacity of adsorbent towards dye
solution at different contact time (t) and equilibrium time, respectively. ki (h) and k;
(g mgt h') are the pseudo-first-order and pseudo-second-order rate constant,
respectively.

Table 2 Kinetic parameters for the adsorption of MB %A-kaolin and

PDA-rGO-kaolin

Pseudo-first-order Pseudo-second-order
Samples Qecan 1 R2 al) k2 R?
(mglg)  (h™) (mglg)  (gmg™h)
PDA-kaolin 17.51 0.784 6 19.03 0.0548 0.950
PDA-rGO-kaolin 21.64 1 780 22.78 0.1042 0.933

The kinetic parameters inclu cgrr¥ation coefficients (R?), ki, ko, and calculated
Qecany are displayed in | viously, the pseudo-second-order kinetic model for
the adsorption -kaolin and PDA-rGO-kaolin showed better regression
coefficient for the  kinetic data (R> = 0.950 and 0.933, respectively) than
pseudo-first-order kinetics model (R? = 0.860 and 0.780, respectively). Thus, the
adsorption of MB on composites could be better described by the
pseudo-second-order model. According to the assumption of pseudo-second-order
kinetic model[29,54], it inferred that the removal of MB by PDA-kaolin and

PDA-rGO-kaolin adsorbents might be chemical adsorption [55].

Effect of initial dye concentration
13
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To investigate the effect of initial dye concentration on the removal of MB, the
adsorbent dosage was set as 0.8 g/L. As shown in Fig. 5, similar decreasing trends of
MB removal were observed. At higher initial MB concentration, PDA-kaolin and
PDA-rGO-kaolin could get lower removal efficiency. The dye removal for 5-40 mg/L
of MB was 84.32%-50.77% by PDA-kaolin. However, the corresponding MB
removal efficiency reached 97.28%-77.13% at same MB concentration using
PDA-rGO-kaolin as adsorbent. Generally, MB molecules at higher concentration
solution will occupy more active sites on the adsorbents an e saturation of

active sites, thereby reducing the adsorption efficiency [21,

100

<

60

Removal efficiency (%)

—=a— PDA-kaolin
—»— PDA-rGO-kaolin

50

30 40
entmtion of MB (mg/L)

Initial
Fig. 5. Effect of initial dye concentration on the MB removal by PDA-kaolin and
PDA-rGO-kaolin composites.

Effect of adsorbent dosage

An increased trend of dye removal with the increase of adsorbent dosage was
observed from Fig. 6. Compared with the low dosage of adsorbent, high dosage of

adsorbent possessed larger surface area and provided more adsorption sites at constant

dye concentration, resulting in a lower dye concentration residual in the solution[12].
14
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The removal efficiency of MB has already reached 93.66% by PDA-rGO-kaolin at a
dosage of 0.8 g/L, whereas only 78.16% of MB was removed by PDA-kaolin at the
same adsorbent dosage. Even if the PDA-kaolin dosage increased to 1.6 g¢/L, the
removal efficiency of MB was still lower (about 90%) than that of PDA-rGO-kaolin
at 0.8 g/L. Apparently, the dye removal by PDA-rGO-kaolin was more superior than

that by PDA-kaolin.

100

. &,

e
Q
&
5 70+
=
[ -
I
3 60+
E
[]
1’4
50 - /
7 —=—PDA
—s—PDA-rGO
40 T T T T L
0.4 0.6 0.8 1.0 1.2
Dosage of adsorbents
Fig. 6. Effect of adsorbent d n Jhe removal of MB.

Effect of solution pH

The removal of M A kaolin and PDA-rGO-kaolin was investigated at the dye
solution pH in the range of 3.5-11.0. As shown in Fig. 7a, the removal efficiency of
MB by PDA-kaolin and PDA-rGO-kaolin showed a similar increase trend with the
increase of pH, which is in agreement with other reports[38,57]. The increased
adsorption suggested that one of the contributions to adsorption resulted from
electrostatic attraction between adsorbent and dye molecules[58]. As seen from Fig.
7b, the zeta potentials of PDA-kaolin and PDA-rGO-kaolin under varied pH solution

were determined. For cationic dye, the adsorbent surface with more negative charge
15
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should have a higher removal efficiency of MB. However, PDA-rGO-kaolin with
lower negative charge adsorbed more MB molecules, which might be ascribed to the
strong w-w interactions between rGO and MB molecules in addition to electrostatic
attraction.[34] Thus, the proposed adsorption mechanism of MB molecules on
PDA-rGO-kaolin is illustrated in Scheme 2[41,52,53]. In summary, the adsorption of
MB was pH-dependent and the increase of solution pH was beneficial to the

adsorption of MB on PDA-kaolin samples.

100 p——— 10 -
. a
./
5 / / 04
-
? 80 . » /
e - -
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z E
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g 5. %
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40 T -
—a— PDA-kaolin —s— PDA-kaolin
—e— PDA-rGO-| —s— PDA-rGO-kaolin
30 T T 0 T T T T
4 6 8 10 2 4 6 8 10 12

pH

pH
Fig. 7. (a) Effect of solu'g%m he removal of MB by PDA-kaolin and

PDA-rGO-kaolin conposit and (b) Zeta potentials of PDA-kaolin and

PDA-rGO-kaolin pH solution.
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Scheme 2. Proposed adsorption mechanism of MB molée PDA-rGO-kaolin
composite.

Effect of temperature and adsorption thermod@

Thermodynamic experiment result (EiQ. owed that higher temperature was

favorable for the adsorption of A-kaolin and PDA-rGO-kaolin. This result

indicated that the adsorptio@ons were endothermic in nature.

26 4.5

O :
¥/ |
/ -

224

Qe (mg/g)

-
@™
L

16

—a— PDA-kaoclin = PDA-kaolin

14 —s— PDA-rGO-kaolin 05 * PDA-rGO-kaolin
, . T : !
200 300 310 320 0.0031 0.0032 0.0033 0.0034 0.0035
Temperature (K) 1T (1K)

Fig. 8. Effect of temperature on the adsorption of MB by PDA-kaolin and
PDA-rGO-kaolin samples: adsorption capacity at different temperatures (a) and
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thermodynamic analysis (b).
Several important thermodynamic parameters change in Gibb’s free energy (4G°),

entropy (45°) and enthalpy (4H°) are calculated from the following equations [59].

Ink, = 2 - 42 5)
AG’=AH"-TAS’ (6)

where Kgq is calculated from Qe/Ce. T is absolute temperature in Kelvin (K), and R is
the universal gas constant (8.314 kJ/(mol K)). 4H° and 45° are determined from the
slope and intercept of the Van’t Hoff plots of InKg v r%l/T (Fig. 8b),
respectively.

Table 3 Thermodynamic parameters for the adsor of MB onto PDA-kaolin and

PDA-rGO-kaolin samples

GO AH® A8°
Samples Temperatur,

(kJ/mol)  (kJ/mol) (kJ/(K mol))

-1.773

PDA-kaolin 3 -3.813
57.387 0.204

() 10 -5.835

320 -7.893

290 -3.898

PDA-rGO-kaolin 300 -6.378
310 -8.858 68.022 0.248

320 -11.338

As listed in Table 3, the changes of thermodynamic parameters could be observed.
The decreasing trend of 4G° values with the increase of temperature indicated that

higher temperature was more favorable for the adsorption. The negative value of AG°

18
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and positive values of 4H° suggested that the adsorption process of MB onto two
adsorbents was spontaneous and endothermic process. Furthermore, the positive
values of 45° reflected some structural changes in dye and adsorbents and implied the
increased degrees of the randomness at the adsorbate-adsorbent interface during the
adsorption[29,60].

Adsorption isotherms

Adsorption isotherms, especially the two common isotherm models such as
Freundlich and Langmuir isotherms, play important roles in dqicigag the interaction
pathway to solid-solution adsorption system[29,53,61]. 0 models can be

expressed in non-linear forms as follows:

@ &
0,K.C,
0,= Tt Q)Q

0,=KzC)/"

(8)

where Kr [(mg /MQYA and n are the adsorption equilibrium constant of
Freundlich isothern§y model. The Qm (mg/g) and K. (L/mg) are the theoretical
maximum adsorption capacity of adsorbent and Langmuir isotherm constant,
respectively. The fitted curves of Langmuir and Freundlich isotherms could be seen

from Fig. 9.
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Fig. 9. Adsorption isotherms of MB by PDA-kaolin and PDA-rGO-kaolin samples;
the data from experiment have been fitted by Langmuir (so iz%and Freundlich
(dash lines) isotherm models.

Table 4 Parameters of adsorption isotherms MB onto PDA-kaolin and

PDA-rGO-kaolin samples

Freundlich Langmuir model

Samples K

F Q/n R? Qn “ R
[(mg/gxg@ (mglg)  (Limg)

0.361 0.864 28.414 0.362  0.960

PDA-kaolin @
PDA-rGO-kaolin <17| 0.351 0.952 39.663 1.114 0.971

According to t ion coefficient of these two fitted models in Table 4, it can
be found that the experiment data was better fitted by Langmuir isotherm models than
Freundlich isotherm models. Besides, the calculated Qm values from Langmuir
isotherm models for PDA-kaolin (28.411 mg/L) and PDA-rGO-kaolin (39.663 mg/L)
were more close to the corresponding experiment data (25.385 and 38.565 mg/L,
respectively). It also indicated that the adsorption of MB on adsorbents was better

explained by Langmuir model. Furthermore, by comparison of the maximum

adsorption capacities obtained in this study with some previously reported studies of
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various adsorbents for MB removal (Table 5), it can be inferred that the as-prepared
PDA-rGO-kaolin adsorbent was better than many other adsorbents. However, the
adsorption capacity of PDA-rGO-kaolin composite towards MB solution was still not
high. Therefore, more efforts should paid to improve the application of modified clay
materials as adsorbents in wastewater treatment.

Table 5 Maximum adsorption capacity (Qm) of MB by various adsorbents in other

reports
Adsorbents Qm (Mg/g) efegences
Raw kaolin 13.99
Zeolite 22 [12]
Magnetic multi-wall carbon nanotube 15.87 [58]
Biochar 8
: [44]
Graphene coated biochar
Bentonite [50]
Kaolin-GO [34]
PDA-rGO-kaolin 9.663 In this study

Regeneration performance ()

The regeneration rfo@ of an adsorbent is necessary for its practical application
in terms of econonycal benefits. According to the above results, PDA-rGO-kaolin
adsorbent was selected to investigate the potential regeneration ability for MB
removal due to its higher adsorption capacity towards MB. After adsorption, the
adsorbent was put into acidic ethanol solution under stirring for 30 min, followed by
filtration and washing processes to remove MB. Then, the adsorbent was dried and
used for the next cycle of adsorption experiment. The regeneration performance of

PDA-rGO-kaolin adsorbent is presented in Fig. 10a. The adsorption efficiency was
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gradually declined with the proceed of regeneration experiment, which was similar
with previous reports due to the loss of active adsorption sites[29,34]. However, the
adsorption efficiency of MB after five cycles still remained 84%. Therefore, the
application of PDA-rGO-kaolin as adsorbent for dye removal showed good

regeneration performance.

100

80+

60
40

204

Removal efficiency (%)

T T
1 2
Cyci es

Fig. 10. Adsorption of MB on PDA-r &n five cycles.
Conclusions @

In this study, the PDA agd reguced graphene oxide modified kaolin composite
(PDA-rGO-kaoli a ssfully prepared by a facile method, and this composite
showed excellent dy§ removal performance. The adsorption results suggested that the
adsorption of MB by the PDA-rGO-kaolin was obviously more superior than that by
PDA-kaolin. The enhancement of MB removal was attributed to the increased surface
area and adsorption active sites. Furthermore, the increase of solution pH could
enhance the adsorption of MB. The kinetic and isotherm fitted curves indicated that
the adsorption could be better described by pseudo-second-order kinetics model and
Langmuir isotherm model, respectively. Additionally, the adsorption was favorable at
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higher temperature. PDA-rGO-kaolin as adsorbent showed a good regeneration
performance for MB removal. Findings of this work can provide a basis for further
designing novel PDA coated clay materials for various environmental applications.
On the other hand, this as-prepared composite was difficult to be separated from
aqueous solution, thus much work should be conducted to improve the practical
application in future research.
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