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A B S T R A C T

Understanding of how anaerobic digestion (AD)-related microbiomes are constructed by operational parameters
or their interactions within the biochemical process is limited. Using high-throughput sequencing and molecular
ecological network analysis, this study shows the succession of AD-related microbiome hosting diverse members
of the phylum Actinobacteria, Bacteroidetes, Euryarchaeota, and Firmicutes, which were affected by organic
loading rate (OLR) and hydraulic retention time (HRT). OLR formed finer microbial network modules than HRT
(12 vs. 6), suggesting the further subdivision of functional components. Biomarkers were also identified in OLR
or HRT groups (e.g. the family Actinomycetaceae, Methanosaetaceae and Aminiphilaceae). The most pair-wise link
between Firmicutes and biogas production indicates the keystone members based on network features can be
considered as markers in the regulation of AD. A set of 40% species (“core microbiome”) were similar across
different digesters. Such noteworthy overlap of microbiomes indicates they are generalists in maintaining the
ecological stability of digesters.

1. Introduction

In the past years the increased significance of the renewable energy
(mainly methane) recovered from anaerobic digestion (AD) has at-
tracted considerable interest in the application of this promising tech-
nology to wastewater, municipal waste sludge, urban organic waste or
new co-digestion feedstocks (Dareioti and Kornaros, 2014; Fitamo
et al., 2017; He et al., 2018; Wu et al., 2016; Xu et al., 2015). AD
technology supports the energy balance in wastewater treatment plants
which are energy consuming (Kundu et al., 2017). Previous studies
reported the methane generation strongly correlate with many AD
parameters. For example, organic loading rate (OLR), hydraulic reten-
tion time (HRT), pretreatment, temperature, pH, etc., have been con-
firmed to be associated directly with AD process (Gou et al., 2014;
Kumar et al., 2016; Xu et al., 2018; Ziganshin et al., 2016). Our pre-
vious study also showed that reactor’s stability and microbial metabolic
activity is strongly affected by OLR and HRT (Xu et al., 2015). Despite
the “black box” of AD is partially unraveled, however, as an important
microbial process, there is still more to be understood the crucial cor-
relations between microbial community structure and function for more
efficient and predictable AD performance.

During the biochemical pathways of AD, critical intermediates are
converted to methane via different microbial groups, including Archaea
and Bacteria (Dareioti and Kornaros, 2014; Fitamo et al., 2017; Xu et al.,
2018). Recent studies have used multiple advanced “-omics” technol-
ogies to profile the composition and variation of microbial community
in AD process (Anantharaman et al., 2016; De Vrieze et al., 2018;
Kundu et al., 2017; Qin et al., 2016; Xu et al., 2017). Former re-
searchers found that the variations of function microbes largely depend
on reactor design as well as many operational variables, such as tem-
perature, OLR or HRT (Gou et al., 2014; Razaviarani and Buchanan,
2014; Xu et al., 2018; Ziganshin et al., 2016). In a previous survey
across seven full-scale anaerobic digesters located in Europe, Riviere
et al., identified the phylum Chloroflexi, Betaproteobacteria, Bacteroidetes
and Synergistetes as the core members involve in AD of sludge (Rivière
et al., 2009). This study also shows current knowledge on the dynamics
between microbiomes and AD operation is still limited. Because the
microbial communities across AD steps (including hydrolysis, acid-
ogenesis, acetogenesis and methanogenesis) have been characterized to
host a high abundance of microbial diversity. Most of them are detected
at the low abundance (< 0.1%) of “rare biosphere” (Anantharaman
et al., 2016; Lynch, 2015), little reliable information is known about
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how such complex microbial communities in AD system are structured,
and how reactor parameters shape the inter-organism interactions
(Kundu et al., 2017; Razaviarani and Buchanan, 2014). This restricts
the understanding of microbial population and evolution, or which
keystone species affect AD process. This study proposes an assumption
about the “core microbiomes” that the species common to all or nearly
all AD conditions, which is essential component for methane production
or digesters stability. The minimal variation of “core microbiomes”
should be detectable from different dataset. These fundamental popu-
lations can be considered as marker species that reflecting the condi-
tions in AD digesters.

Furthermore, the previously operation taxonomic units (OTUs)-
based investigation of AD-related microbiomes mainly focused on how
individual member within each reactor is affected by different opera-
tional conditions (Wu et al., 2016). However, this approach can not
reveal the complex interactions that occur in microbial communities.
Because microbes cooperate within close metabolic interactions, pro-
viding each other with critical nutrients for their growth (De Vrieze
et al., 2016; Deng et al., 2012; Edwards et al., 2015). For instance, the
acetate that utilized by methanogenic Archaea for methane generation
mainly come from the fermentative Bacteria (Wu et al., 2016); while an
increase of ammonia concentration in AD digesters often caused a
transition of methanogenic pathway from acetoclastic to hydro-
genotrophic methanogenesis (De Vrieze et al., 2016). Thus, further
studies are required to focus on the microbial cooperation at the overall
community level, because it is expected to affect more to ecological
functions than individual members (Ma et al., 2016; Wu et al., 2016).
Nevertheless, it is a great challenge to identify the interactions within
microbial community because their vast diversity and uncultivated
status (Deng et al., 2012). Molecular ecological network analysis
(MENA) provides a new approach towards deducing microbial inter-
actions within the complicated communities, which has been success-
fully performed in various habitats, including soils, human gut and
oceans (Faust and Raes, 2012; Wu et al., 2016). This analysis can
identify the keystone species and their interactions with other taxa. It
helps to understand how synergistic biochemical reactions of AD-re-
lated microbiomes are affected by the different operational parameters.

To address these questions, this study presents a detailed char-
acterization of the AD-related microbiomes by high throughput se-
quencing (HTS) approach and network analysis by running three AD
reactors under controlled conditions of OLR and HRT. The purpose is
the extensive recognition of ecological roles of AD parameters to shape
microbial majority. This was achieved by: (1) using HTS targeting mi-
crobial communities to cover different operational periods from three
AD reactors. (2) comparing microbial distribution and dynamics under
different OLR and HRT conditions. (3) correlating the variation of in-
dividual microbe within ecological network.

2. Materials and methods

2.1. Preparation of substrates and feedstock materials

The seed sludge (SS) and feedstock materials including municipal
waste sludge (MWS), raw food waste (FW) with high a concentration of
fat, oil and grease (FOG) were collected from several locations in China,
as described in (Xu et al., 2015). The most commonly used substrates of
MWS and FW for AD has been widely documented to enhance biogas
production or nutrient balance (Kumar et al., 2016; Xu et al., 2015).
FOG was separated from raw FW using a cement compressor and
Soxhlet extraction method. The MWS and post-treated FW (considered
as no FOG) were smashed into small particles using an electric food
grinder (XTL-767, IFAVORITE) and mixed with a TS ratio of 1: 1. The
mixture of MWS and post-treated FW was identified as “substrates” in
the following parts. Materials used in this study was characterized in
terms of common AD physico-chemical properties (see Supplementary
data). The detail analytical methods and values are described in (Xu

et al., 2015).

2.2. AD experiment procedure

AD experiment was conducted in nine (R1, R2, R3 in triplicates)
continuously stirred reactors (CSTR) with 2.0 L working volume over
120 days at a mesophilic condition. Each reactor was operated under
different OLR and HRT conditions across 4 periods (Table 1). R1 was
operated under invariable OLR (3 g VS L−1 d−1, only the substrates)
and HRT (20 day) as the control. R2 received a gradient increasing OLR
from 4.5 to 6.7 g VS L−1 d−1 (performed by adding different FOG
contents in co-digestion with the substrates) in 4 periods with a con-
stant HRT=20 day. R3 received the OLR as R2 but HRT=15 day.
Samples from each reactor were periodically collected for the routine
chemical analysis, including biogas production, pH, chemical oxygen
demand (COD), total solids (TS), volatile solids (VS), volatile fatty acids
(VFA), alkalinity (ALK), total carbon (TC) and total nitrogen (TN), etc.
Detailed information of the set-up and start-up of each reactors can be
found in the previous work (Xu et al., 2015). Performance data of ty-
pical processes (such as the begin, mid-term and end of each period)
used in this study are summarized in Supplementary data.

2.3. DNA extraction and high-throughput sequencing

For the HTS analysis, 90 samples from R1, R2 and R3 were collected
on day 1, 18, 30, 40, 57, 72, 85, 91, 109, 120 to cover the whole di-
gestion process. All samples were: (1) stabilized using 50% (v/v) al-
cohol, (2) flushed three times with 0.1M Na3PO4 (pH=8), (3) vor-
texed at maximum speed for 5min in the sodium dodecyl sulfonate
reagent to thoroughly lyse, (4) genomic DNA was extracted from
∼1.0 g of each in triplicates according to the instructions of FastDNA

Table 1
Summary of experiment setups and OTU numbers in R1, R2 and R3.

Sample Period HRT (d) Phylum (59) OTUs shared ratio (detected OTUs’
number)

Class
(155)

Order
(259)

Family
(318)

Genus
(645)

R1-1 I 20 76% 65% 60% 74% 44%
R1-18 I 20 75% 59% 51% 64% 33%
R1-30 I 20 75% 57% 49% 58% 30%
R1-40 II 20 76% 62% 53% 61% 35%
R1-57 II 20 71% 41% 35% 52% 25%
R1-72 III 20 64% 49% 43% 52% 29%
R1-85 III 20 69% 59% 52% 64% 40%
R1-91 IV 20 64% 52% 46% 57% 32%
R1-109 IV 20 69% 64% 54% 66% 40%
R1-120 IV 20 73% 57% 50% 64% 38%

R2-1 I 20 81% 70% 64% 75% 45%
R2-18 I 20 81% 63% 56% 69% 45%
R2-30 I 20 66% 53% 45% 58% 34%
R2-40 II 20 46% 43% 38% 56% 29%
R2-57 II 20 61% 48% 43% 62% 30%
R2-72 III 20 61% 55% 46% 63% 37%
R2-85 III 20 59% 46% 37% 56% 27%
R2-91 IV 20 64% 53% 44% 58% 31%
R2-109 IV 20 64% 55% 44% 59% 31%
R2-120 IV 20 63% 49% 41% 56% 28%

R3-1 I 15 80% 66% 58% 67% 39%
R3-18 I 15 85% 58% 51% 60% 31%
R3-30 I 15 68% 56% 47% 62% 36%
R3-40 II 15 61% 41% 36% 49% 27%
R3-57 II 15 59% 49% 47% 60% 37%
R3-72 III 15 58% 48% 41% 57% 34%
R3-85 III 15 63% 55% 47% 65% 39%
R3-91 IV 15 61% 54% 46% 58% 32%
R3-109 IV 15 64% 58% 51% 63% 35%
R3-120 IV 15 66% 55% 49% 62% 36%
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SPIN Kit for Soil, (5) the extracted DNA was determined for con-
centrations and quality using a NanoDrop spectrophotometer, (5) all
qualified DNA were dissolved in Tris buffer (∼150 ng uL−1) for the
downstream polymerase chain reaction (PCR).

Bar-coded primer pair were selected to target the variation fragment
of 16S rRNA genes using 515F/907R (Kuczynski et al., 2011). PCR
amplification was conducted with a final volume of 20 μL following
previously study (Xu et al., 2018). The amplification cycles followed
with an initial denaturation at 98 °C for 1min, 30 cycles of denaturation
at 98 °C for 10 s, 50 °C annealing for 30 s and 72 °C for 30 s extension. A
final extension at 72 °C for 5min was included before holding at 4 °C.
PCR raw products were purified using the GENECLEAN Turbo Kit (MP
Bio, USA). The qualified PCR pure products were sent for Illumina
Hiseq sequencing (Xu et al., 2018). Sequencing data was submitted to
the National Center of Biotechnology Information (NCBI) with an ac-
cession number SUB2118508.

2.4. Construction of networks

This study hypothesizes that there is a potential for acquiring con-
sortia that are involved in AD process by generating partitioned-net-
work modules of differentially abundant OTUs. This work constructed
an association-based network, which is similar to gene co-expression
approach, to identify of the “key node” of microbial consortia by re-
vealing the non-random but strong correlations (Faust and Raes, 2012;
Wu et al., 2016). The construction of correlation-based network used
the data matrix of abundant OTUs (top 100) at genus level across 90
samples. The pairwise Pearson correlation index was calculated by SPSS
(v. 19.0). The profile of nodes and links based on correlation matrix was
identified by Cytoscape (v. 3.3.0). A random matrix theory (RMT)-
based approach was also performed to capture the topological features
of networks across period I-IV among three reactors (Deng et al., 2012;
Deng et al., 2016). Briefly, only the OTUs detected in more than 80%
samples were selected to calculate the Spearman rank correlation ma-
trix. A series of cut-off value from 0.01 to 0.95 were applied to obtain a
specific and non-random threshold value. The network topological
features including average degree, average path, betweenness, clus-
tering coefficient, density, geodesic distance, geodesic efficiency, links
number, nodes number and transitivity were calculated in MENA online
pipeline (http://ieg4.rccc.ou.edu/mena/).

2.5. Statistical analysis

Raw sequencing data was filtered and analyzed using the QIIME (v.
1.7.0) (Caporaso et al., 2010). OTUs were clustered at 97% similarity by
searching the UPARSE (Haas et al., 2011). Less abundant OTUs (< 80%
of the samples) detected in this study were filtered to minimize the
impact of rare OTUs (Wu et al., 2016). Shannon index was calculated
using R package. Weighted principal coordinates analysis (PcoA),
principal analysis (PCA), heatmap analysis and Welch’s-test were per-
formed using the Statistical Analysis of Metagenomic Profiles (STAMP,
http://kiwi.cs.dal.ca/Software/Main_Page). Differential analysis by
Welch’s-test inverted at 95% with P-value < 0.05. Relative abundance
of selected OTUs was normalized to Z-value using the SPSS (v. 19.0).
Dendrogram of top OTUs was clustered using the average neighbor
method (UPGMA) in Cluster (v. 3.0). Venn analysis was performed
using the Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.
html).

3. Results and discussion

3.1. General performance of AD

This study constructed different CSTR reactors under controlled
OLR and HRT conditions (Table 1). Briefly, both R1 and R2 operated
with HRT=20 day, but R1 received a constant OLR of 3 g VS L−1 d−1

as the control, whereas R2 received the OLR ranging from 4.5 to
6.7 g VS L−1 d−1 in the following 4 periods. R3 operated under the
same OLR as R2 whereas with a shorter HRT=15 day. Generally, the
daily biogas production in R1 was stabilized at ca. 540mL g−1 VS d−1

(see Supplementary data). The gradually increased OLR to
5.2 g VS L−1 d−1 (period II) in R2 and R3 led to the increased biogas
production (reached 862 and 715mL g−1 VS d−1, respectively). Then,
biogas production in R2 (335mL g−1 VS d−1) and R3
(321mL g−1 VS d−1) both decreased to lower than R1
(540mL g−1 VS d−1) at OLR of 6.7 g VS L−1 d−1 condition (period IV).
The conversion of macromolecules of substrates (e.g. carbohydrates,
proteins or lipids) into methane mainly via hydrolysis, acidogenesis and
methanogenesis processes. The organic matters are hydrolyzed and
further degraded by microbes to generate VFAs, such as acetic/pro-
pionic/butyric/iso-butyric acids. Methanogens, the sole producer of
methane, have a higher affinity with acetic acid and they can’t utilize
other non-acetic VFAs for methane production directly (Zhong et al.,
2012). In the most common one-stage AD reactors, the hydrolysis and
acidogenesis steps possess a short time that pH would drop to ca. 6.5,
then it recovers to a suitable range about 6.6–7.4 for methanogens due
to the sufficient buffering capacity of alkalinity (ALK). It is well re-
cognized that the VFA/ALK ratio (usually < 0.4) is a reliable indicator
for the digester stability (Xu et al., 2015). Most of OLR-related re-
searches believe that if the digesters received a high OLR (e.g.>
5 g VS d−1), pH will decline to the irreversible level (such as 4.0) due to
the fast rate of hydrolysis and acidogenesis steps. Finally, methane
production process will decrease or even fail because methanogens are
inhibited by the excessive acidification (Fitamo et al., 2017; Zhong
et al., 2012). However, this study did not observe a significant pH drop
(around 7.4) or VFA accumulation (< 600mg L−1) in R2 and R3 when
receiving a high OLR (period IV, OLR=6.7 g VS L−1 d−1) (see
Supplementary data). The lower biogas production at high OLR con-
dition in this study is more likely due to the adsorption of lipids com-
ponents onto sludge microaggregates or the accumulation of toxicant
from food waste (such as the high salinity), which may preclude the
substrates utilization by microorganisms (Zhao et al., 2016).

3.2. Diversity of AD-related microbial community

The variable region of microbial 16S rRNA gene was amplified and
sequenced using Illumina Hiseq 2500 platform. A total of 5,746,922
sequences was obtained. The average number of raw reads is ca. 63,854
per sample. After de-nosing, the high-quality reads were clustered into
microbial OTUs at 97% similarity. Based on the assigned OTUs across
all samples from R1, R2 and R3 across the whole periods, the general
distribution of microbial community composition is summarized in
Table 1. At the phylum level, the shared sequences range between 46
and 85%. While at the genus level, only 25–45% of the entire com-
munity are shared, indicating the strong microbial diversity among the
reactors. Most of the microbes find in these samples require further
understanding to clarify their specific role in the different AD process.

To investigate how different OLR (R1 vs. R2) and HRT (R2 vs. R3)
might affect the AD-related microbiome, samples from three reactors
across the whole digestion periods were collected for the quantitative
analysis of microbial diversity and composition. Evaluation of α-di-
versity (within-sample diversity index) reveals a significant difference
in three reactors (Fig. 1-a). Results find that R1 has the highest Shannon
diversity. When introducing a higher organic matter as co-substrate
with MWS to R2 and R3, the microbial diversity both decreased. Si-
milarly, several studies reported a reduction in microbial diversity
(such as Shannon diversity) using high OLR of urban organic waste
(comprising FW, grass clippings and garden waste) as co-substrates
(Fitamo et al., 2017; Zhou et al., 2017). It is suggested that an increase
of VFAs concentration resulted by the higher amount of lipids and
proteins in organic waste will inhibit the growth of microorganisms
(Fitamo et al., 2017). However, it is not accordance with this study,

R. Xu et al. Bioresource Technology 262 (2018) 184–193

186

http://ieg4.rccc.ou.edu/mena/
http://kiwi.cs.dal.ca/Software/Main_Page
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html


because the higher VFAs in R2 (556mg L−1) and R3 (541mg L−1) than
R1 (455mg L−1) are only observed in period II temporally. Ad-
ditionally, the result of Shannon index shows the microbial diversity in
R3 is lower than R2. Considering the higher daily effluent volume in R3
(133mL d−1) than R2 (100mL d−1) to maintain a constant HRT value
(R3= 15 day, R2= 20 day), thereby leading to many rare micro-
organisms were flushed away. Fig. 1-b confirms the R3 (5695 ± 37)
has a lower number of microbes than R1 (5906 ± 35) and R2
(5832 ± 33). A low HRT is desirable to reduce the investment cost and
reactor volume, but washout usually takes place when the doubling
time of the microbes are shorter than the HRT. Various microbes in-
volved in the AD process have different generation times, ranging from
several hours to days (Schmidt et al., 2014). These features suggest the
non-adherent microbes are less resistant to the washout due to a shorter
HRT, finally leads to reactor inefficiency or inhibition of methane
production in R3 (see Supplementary data).

3.3. General distribution of microbial community

Unconstrained PcoA of weighted UniFrac distances were used to
evaluate the quantitative succession of microbial community structure
in three reactors from period I to IV (Fig. 2). The measurement based on
weighted UniFrac considers the abundance of each taxa, which is better
to understand the rare members (Edwards et al., 2015). A total of
67.1% variation of microbial community composition is explained by
PcoA 1 (49.3%) and PcoA 2 (17.8%), respectively. There are slight
shifts in R1, because the samples are clustered closely over time when
feeding with a constant OLR. The clustering pattern of microbiomes
from R1 are most like each other despite 4 periods. However, for R2 and
R3, the samples are clearly separated across the two axes along with
different periods, indicating there are significant distinctions in the

microbial community structure. The separation pattern in R2 and R3 is
consistent with the OLR increasing, because the adaption of AD-related
microbes is required to the introduction of new feedstocks over time.
Another possible reason could be the change of sludge characters
during a long-time operation. For example, the accumulation of by-
products of feeding substrates, such as the salt derived from food waste,
can inhibit the AD process of sludge (Zhao et al., 2016). PcoA results
also describe the different HRT (R2=20 day vs. R3=15 day) is the
second impact on the variation of microbial community, based on the
similarity of distribution patterns. Because the HRT was reported to be
one of the most critical conditions that affecting microbial ecology
(Dareioti and Kornaros, 2014; Vasquez et al., 2017).

3.4. Changes of microbial abundance

There are remarkable variations in the specific AD-related members.
Changes of the relative abundance of different microbes in three re-
actors across whole time are presented in Fig. 3. Considering the main
OTUs, 9 phyla have greater proportions in all samples (> 1%), which
are identified as the dominant members of microbial community. These
dominant groups are similar with the previous studies about sludge
anaerobic digesters (Fitamo et al., 2017; Rivière et al., 2009). Among
them, four phyla, named Actinobacteria, Bacteroidetes, Euryarchaeota
(Archaea), and Firmicutes (alphabetical), show clear dynamics as a re-
sponse to the different OLR and HRT, as marked in Fig. 3. Micro-
organisms classifying to phylum Proteobacteria (31–32%) and Actino-
bacteria (25–28%) are dominated at the beginning (day 1).
Proteobacteria decreases to less than 10% in the following AD process
among three reactors. During the AD of constant feedstocks in R1, the
relative abundance of Actinobacteria remains predominant through the
whole process, but Actinobacteria depletes to minor groups R2 and R3

Fig. 1. With-in sample diversity (α-diversity) in three reactors along with the AD process, evaluated by (a) Shannon index and (b) Observed species number. The top
and bottom of each box indicate 75% and 25% quartiles. The horizontal lines within boxes indicate median. The individual X marks indicate the outliers.

Fig. 2. Weighted principal coordinates analysis (PcoA) depicts the microbial communities are separable by OLR and HRT in R1, R2 and R3. Samples from different
periods are represented by colorful symbols. The oval indicates a cluster pattern whereas the arrow indicates a succession pattern. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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when the rectors are fed with higher OLR co-substrates (except for the
period IV). This result may indicate Actinobacteria is less favorable to
the high lipids condition, which could be due to the increasing of OLR
condition. Previous study also reported the phylum Actinobacteria,
which is critical for cellulose degradation and hydrolysis, deteriorated
at a shorter HRT (e.g. 10 day) condition (Wei et al., 2017). It agrees
with this study, because the abundance of Actinobacteria is always lower
in R3 (HRT=15 day) than R2 (HRT=20 day).

The R2 and R3 have greater proportions of the phyla Firmicutes
(56%) and Euryarchaeota (49%) than R1 in period II and III. Firmicutes
has been reported to utilize a wide range of substrates including cel-
lulose, proteins and pectin (Fitamo et al., 2017). The predominance of
Firmicutes in R2 and R3 can be interpreted as a higher feedstock with
the OLR increasing from 4.5 to 6.7 g VS L−1 d−1. Because previous
study has reported that the phylum Firmicutes can degrade refractory
cellulose into short-chain acids during AD process, such as acetate or
propionate (Carballa et al., 2015). The higher amount of organic mat-
ters in R2 and R3 supplied more substrates for microbes, thus enriching
the abundance of Firmicutes. Besides, Euryarchaeota dominates in the
archaeal kingdom (>99%), which is a well-known group participated
in methane generation. From period I to IV, the relative abundance of
Euryarchaeota increased 10-fold (from 4% to 40–50%) in R2 and R3.
The enrichment of Euryarchaeota is according with a higher methane
production in R2 and R3 (see Supplementary data).

3.5. OLR and HRT shape distinct and overlapping microbial community

The relative abundance of top OTUs belonging to family level in
different reactors and different periods is shown in Fig. 4-a. To elim-
inate the dimension, the original data of relative abundance (sequence
numbers proportion) was normalized by Z-value. Considering the 90
samples, about 95 out of 317 OTUs (at family taxonomy) are identified
as dominant members. There are noteworthy overlaps in abundant
OTUs among three reactors, as 38 out of 95 OTUs (40%) detected in R1
also remained relatively consistent in R2 and R3. These members show
a similar distribution across the different reactors, which are denoted as
the “core microbiome” in this study. Results indicate that the compo-
sition of core members consists a representation of OTUs independent
of OLR or HRT conditions. The concept of “core microbiome” is defined
as the smallest but functionally indispensable components of the total
microbiome (Mendes et al., 2013; Qin et al., 2016). They play as gen-
eralists under different AD operation parameters and maintains the
ecological stability of digesters. A recent study also observed a “core
microbiome (59% of the total 16S rRNA gene sequences)” from three
full-scale digesters in a wastewater treatment plant (Ran et al., 2016;

Ran et al., 2017). It should be noted that nearly all the “core micro-
biome”, as well as the α-diversity (Fig. 1-a), decreased along with the
AD process, indicating a limited elasticity in maintaining stability of
microbial community. Additionally, there is a set of 57 OTUs (60%)
mainly belonging to the phyla Actinobacteria, Firmicutes and Bacter-
oidetes that are differentially changed in R1, R2 and R3, which are
denoted as the “variable microbiome” in this study. The significant
variation is according with previous result (Fig. 3), suggesting the
functional redundancy in microbial communities across different op-
erational conditions is higher than previous thought (Qin et al., 2016;
Rivière et al., 2009). This indicates that only a small percentage of
microbes are required to provide a series of ecological services to AD,
here termed as the “core microbiome (averaged relative abundance
ranging from 14%∼19% in R1, R2 and R3)”.

Collectively, the overall set of “core microbiome” and “variable
microbiome” is defined as the pan-microbiome in this study, which is
similar to the pan-genome (Tettelin et al., 2005; van Tonder et al.,
2017). This study suggests that the size and composition of “core mi-
crobiome” does not vary by dataset among different collections of AD
samples and their minimal variation is detectable. However, it would be
more accurate to define a representative “core microbiome” if a larger
number of samples and various operational parameters (e.g. ammonia
concentration, temperature, substrate, or even geographical locations)
are considered. Besides, as predicted in Fig. 4-a, results show that the
relative abundance of several methanogenic archaea (e.g. the family
Methanosarcinaceae and Methanosaetaceae) from “variable microbiome”
is higher in the R2 and R3 than R1. Typically, methanogenic archaea
are classified as either hydrogenotrophic or acetoclastic groups based
on the substrate (molecular hydrogen or acetic acid) they consumed as
the energy. In a traditional AD process, 70% methane was generated via
acetoclastic groups under stable reactor conditions (Hu et al., 2015).
The acetoclastic methanogens has been reported to increase when OLR
was increased, because a higher amount of acetate can be fermented
from the substrates, finally resulting in a higher methane yield
(Razaviarani and Buchanan, 2014). Methanosarcinaceae and Methano-
saetaceae are a family of the Methanosarcinales, which belonged to the
acetoclastic methanogenic archaea. The enrichment of Methanosarci-
naceae and Methanosaetaceae was accompanied by 80–95% increases in
methane production in R2 (381 L) and R3 (351 L) than R1 (195 L) due
to the higher OLR (Xu et al., 2015). These features can be linked to the
importance of acetoclastic methanogens for a stable operation and
methane generation in the AD reactors.

Venn analysis shows the characterization of core/variable micro-
biome using OTU counts (at genus level) from early stage and later
stage (Fig. 4-b). Results reveals three reactors have discrepancy in

Fig. 3. Bubble diagrams of phyla relative abundance observed during the whole AD process in (a) R1, (b) R2 and (c) R3. Bubble size correlated with relative
abundance of each phyla. Groups with significant difference are marked by rectangles.
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abundant OTUs. On day 40, three reactors shared a significant overlap
of abundant OTUs (152 counts), possibly representing a core micro-
biome for the AD process. Whereas with the prolonging of AD, only
29 OTUs (mainly Anaerolinea, Brevibacillus, Clostridium and Spor-
osarcina, alphabetical) can be simultaneously found among three re-
actors on day 91. Specifically, the number of shared OTUs between R1
and R2 significantly decreased from 161 to 43. Also, the number be-
tween R2 and R3 decreased from 175 to 41. In comparison, R2 and R3
exhibit higher enrichment ratios of distinct OTUs (from 22 to 90 and 37
to 61, respectively) than R1 (depleted from 52 to 49), indicating the
OLR and HRT created the unique environment as well as R2 and R3

formed their own microbial community as a response.
The depletion level within shared OTUs varies by OLR and HRT. To

explain which OTUs accounted for the operational conditions in OLR
group (R1 vs. R2) and HRT group (R2 vs. R3), differential analysis was
applied to reveal the significant variation (Welch’s-test inverted at 95%,
P-value < 0.05) between the abundant OTUs (at family level) (Fig. 4-
c). The biomarkers are mainly identified as Actinomycetaceae, Metha-
nosaetaceae, Ruminococcaceae in OLR group. The mean proportion of
Methanosaetaceae and Ruminococcaceae was two-times abundant in R2
than R1. Ruminococcaceae is identified as a representative member
within the phylum Firmicutes in anaerobic condition, which can degrade

Fig. 4. Overall evaluation pan-microbiome including the overlapping (“core microbiome”, marked as green) and distinct (“variable microbiome”, marked as yellow)
members. (a) Heatmap depicts the composition of dominant OTUs (at family level) in R1, R2 and R3. The relative abundance of each OTU is normalized by Z-value.
The intensity of blue depends on the Z-value of each OTU in different samples. The sort of rows is clustered using average neighbor method (UPGMA) at the threshold
of 0.75. (b) Venn analysis calculates the numbers of overlapping/distinct OTUs counts that are depleted/enriched among three reactors from day 40 to day 91. (c)
Differential analysis reveals the biomarkers in OLR group (R1 vs. R2) and HRT group (R2 vs. R3), using the Welch’s-test (two sided) at the confidence interval of 95%
(P-value < 0.05). Bar chart indicates the mean proportion (%) of each OTU in the reactors. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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a wide range of substrates (e.g. cellulose and proteins) (Fitamo et al.,
2017). The enrichment of Ruminococcaceae in R2 confirms the higher
amount of proteins and fats in the increasing OLR condition. Besides,
the traditional AD process mainly generated methane via the acet-
oclastic methanogen pathway (De et al., 2012) under low acetic acid
condition. Methanosaetaceae is profiled as a aceticlastic species that has
a higher affinity for acetic acid than other common methanogenic ar-
chaea, such as the order Methanomicrobiales and Methanosarcinaceae
(Yuan et al., 2014). The higher abundance of Methanosaetaceae can be
attributed to the higher acetic acid that degraded from higher organic
matters in R2, resulting a higher methane production with the in-
creasing OLR (see Supplementary data). Moreover, 12 OTUs are found
to be significantly affected by HRT condition. The biomarkers mainly
consisting the family GZKB119, Pseudomonadaceae, Peptococcaceae and
Methanomicrobiaceae are enriched in R3. Methanomicrobiaceae are pro-
filed as typical methanogens members that using H2/CO2 and formate
as substrates. It is reported that stressful conditions (e.g. decreased
HRTs in R3, or sudden loading shocks, temperature variations, am-
monium accumulation, etc.) can promote the abundance of Methano-
microbiaceae with a shift from aceticlastic methanogens (e.g. Methano-
saetaceae) to syntrophic acetate oxidation followed by
hydrogenotrophic methanogens (e.g. Methanomicrobiaceae) (Werner
et al., 2014). A similar study also confirmed the further reduction of
HRT to 1.5 days resulted in the predominance of hydrogenotrophic
methanogens (Schmidt et al., 2014). Not surprisingly, the HRT caused a
less effect on microorganisms than OLR. Because the mean abundance
profile of biomarkers in HRT group ranged from 0 to 0.2%, which is
much rare than OLR group (ranging from 0 to 25.7%). The discrepancy
of effect size caused by OLR and HRT agrees with previous analysis
(Figs. 1–4-b), indicating OLR variation shaped a more diverse micro-
biome in R2 than R3.

3.6. Identification of the networks of AD-related microbiomes

To explore the co-occurrence interactions within partner-groups,
this study applied molecular ecological network to characterize AD-
related microbiomes across time-series data under different OLR and
HRT (Fig. 5). Because the most advantage of AD technology is the
generation of methane, this work mainly focused on the identification
of consortia involved in methane generation, including 3 fermentative
bacteria (the phyla Actinobacteria, Bacteroidetes and Firmicutes) and 1
methanogenic archaea (the phylum Euryarchaeota). Considering the
advantages of calculation procedure and noise tolerance of raw data,
the correlation-based network was selected. Briefly, the two-sides
Pearson test determined the pairwise correlations between abundant
OTUs from the OLR group (R1 vs. R2) and HRT group (R2 vs. R3). Then,
the significantly correlated components (P-value < 0.05, r > 0.8)
were selected to construct the molecular ecological networks. Because
different microorganisms share a strong syntrophic relationship, so that
no partner can conduct a metabolic task exclusively. Network correla-
tions suggest the co-colonization and niche overlap within the micro-
biomes (Faust and Raes, 2012). The positive correlation usually in-
dicates a similar behavior of microbial adaptation (Edwards et al.,
2015). In total, 12 and 6 modules were identified in OLR-network and
HRT-network, respectively. The main modules could be interpreted as
different function components within microbial community (Deng
et al., 2016). The degree of modularity in OLR-network is higher than
the HRT-network, suggesting the further subdivision of AD-related
microbiomes into function components (Wu et al., 2016). Accordingly,
microbial communities prefer to cluster together within each module
and their distribution become less even over time, resulting a higher
bio-diversity in the reactor (R2 > R3, Fig. 1). In fact, bio-diversity is
important to maintain the stability of digesters when facing the shock of
operation variables, such pH, OLR or temperature (Wittebolle et al.,
2009). Because the diverse members are more likely to vary with each
other asynchronously, providing chances to maintain the stability of

digesters (Kundu et al., 2017). Thus, microbial communities rely less on
the dominant groups if they are highly diverse and digesters will be less
distracted by the operation variables (Wittebolle et al., 2009). In this
study, the higher biogas production was confirmed by the higher
modularity and Shannon diversity in R2 than R3.

In the generated nodes, OLR-network and HRT-network have a si-
milar targeted phyla nodes number (42% vs. 44%). The rest nodes
mainly belong to the phyla Chloroflexi, Proteobacteria and Synergistetes.
Such commonly detectable nodes/links suggest there is a flexible group
behaves as super-generalists in different AD conditions (Wu et al.,
2016). In addition, the phylum Firmicutes was identified as the top
connection node in OLR-network (14/63) and HRT-network (15/59).
Previous studies suggested that the hub OTUs identified by network
method are significant in maintaining the stability or efficiency of AD
reactors (Wu et al., 2016). This study found that the dynamic of Fir-
micutes was positively correlated with biogas production (r > 0.62, P-
value < 0.05). This confirmed with the fact that Firmicutes is known as
a fermentative member for the degradation of organic substrates, in-
dicating their critical roles in the acetogenic metabolism with a final
product of acetate (Fitamo et al., 2017; Rincón et al., 2008). Besides,
results also indicate OLR and HRT conditions have shaped two AD-
microbiomes due to the significantly different interactions from two
networks. In a survey of granular sludge-based reactors, Kundu et al.
also observed the organic and hydraulic shocks resulted in different
level of tolerance of microbial communities (Kundu et al., 2017). In the
pair-wise links, OLR-network (126 links) an HRT- network (151 links)
only shares 12 links (4.5%), such as Methanosphaera-Azospira and
Pseudomonas-Methanosphaera. The rare links number shared between
OLR and HRT networks might due to the temporary interactions or
ecological drift of microbial communities (Edwards et al., 2015). Ad-
ditionally, network analysis provides an overview that the less abun-
dant OTUs (light blue nodes in Fig. 5) also significantly contributes to
interaction of AD-related microbiomes, such as the genus Methanospir-
illum, Methanosphaera, Bacillus and Geobacter. Result shows that me-
thane production process is affected not only by dominant micro-
organisms, but also by rare members. Qin et al. as well as reviewed the
less abundant taxa should not be overlooked because they are crucial in
maintaining the community functions (Qin et al., 2016). Further work
is required to better understand the important roles of these rare mi-
crobes (Xu et al., 2017).

3.7. Correlation of network topological characteristics and AD parameters

Relationships among network topological features (including
average degree, average path, betweenness, clustering coefficient,
density, geodesic distance, geodesic efficiency, links number, nodes
number and transitivity), microbial community features (Shannon di-
versity, abundance of Firmicutes, Actinobacteria, Euryarchaeota,
Bacteroidetes, Methanomethylovorans and Methanomassilicoccus) and AD
variables were further analyzed by PCA and Pearson correlation
methods (Fig. 6). In order to capture the network topological features,
this study constructed 12 networks (N1-12) based on time-lagging RMT
approach using 90 samples due to the different periods. RMT threshold
values ranges from 0.31 to 0.89. Details of network characteristics were
summarized in Supplementary data. Biogas production, VFA/ALK ratio
and pH were selected as AD variables in this study because these critical
parameters correlated with methane yield and reactor stability, which
are the first thing people paid attention to (Xu et al., 2015). A total of
73.3% variation can be explained by two components (50.8% for PC 1
and 22.5% for PC 2, see Supplementary data). Results show that VFA/
ALK ratio was strongly correlated with transitivity (r > 0.68, P-
value < 0.05) and clustering coefficient (r > 0.61, P-value < 0.05).
pH was mainly correlated with links number (r < -0.81, P-value <
0.01). But biogas production shows a few correlations with nodes
number, links number and clustering coefficient (r < 0.38). Moreover,
the network topological features also correlated with the dynamics of
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AD-related members. For example, the geodesic distance, betweenness
and average path were positively correlated withMethanomethylovorans
(r > 0.64, P-value < 0.05). While average degree, clustering coeffi-
cient, geodesic efficiency and density were negatively correlated with
Actinobacteria and Methanomethylovorans (−0.80 < r < −0.51, P-
value < 0.05). Although Methanomethylovorans is suggested as im-
portant member in the microbial communities’ network, however,
Methanomethylovorans is profiles as an uncultured strain and comprised
less than 0.04% in all samples (Gagliano et al., 2017). The specific
function of Methanomethylovorans in anaerobic digestion remains to be
characterized.

Overall, this work has proved OLR and HRT would exert different
impacts on microbial ecology and disposal capacity of the digesters,
which may further affect the investment decisions on AD facilities. The
network of modules revealed the known taxonomies to be involved in
methane production, as well as many additional unknown OTUs.
Although many of the detectable OTUs from network modules have
limited available information in terms of taxonomic or function, results
still show that an OTU correlation-based network approach helps to
recapitulate microbial associations from empirical data. Although HTS
broadened the understanding to the culture-independent microbes from
a complex system, it is essential to evaluate how the potential error can
impact the results of biological relevance. Because such “comparative
metagenomics” largely relies on the reliable annotation of sequencing
reads against the reference databases. It also should be noted that the
statistical significance is usually used to filter uninteresting statistical
properties with some criterions for biological relevance. Thus, the ob-
served statistical significance of enrichment or depletion in this study
requires more approaches to validate their biologically relevant (e.g.

the differentiation that comes from those truly taxonomic or ecological
phenomenon). Further larger-scale studies on the identified keystone
species would be informative to enhance AD performance and effi-
ciency, such as identifying the novel microbial associations, bioaug-
menting the key members, establishing a mathematical modeling based
on structure–function, or developing proper tools to interpret micro-
biological data for routine monitoring by the engineers (Briones and
Raskin, 2003; Carballa et al., 2015; Ferguson et al., 2016; Ferguson
et al., 2014; Kundu et al., 2017; Tale et al., 2015). With the purpose of
increasing biogas production, it is possible to use the information re-
garding the “core microbiome” to design a robust co-culture system of
synthetic microbial comminutes, which can bridge the gap between
basic research and practical application.

4. Conclusions

This study presents new approaches toward understanding the
evolution of AD-related microbiomes and the operational parameters
that influence them. Structures of the phyla Actinobacteria,
Bacteroidetes, Euryarchaeota, and Firmicutes were largely affected by
OLR and HRT. AD-related microbiomes are more homogeneous than
previous thought, because a set of 40% core OTUs are similar in the
digesters irrespective of the OLR or HRT. The most connected node of
Firmicutes are positively correlated with biogas production based on
network topological features. Priority regulation of keystone members
within microbial networks will encourage future developments of AD
design to increase methane production or operation stability.

Fig. 5. Molecular ecological networks reveal the OTUs modules associated with methane generation taxonomies (Actinobacteria, Bacteroidetes, Firmicutes and
Euryarchaeota) are affected by: (a) OLR and (b) HRT. Each node represents 1 OTUs belonged to 4 phyla that mainly involved in methane generation. Color intension
(from light to dark) of node represents the mean abundance (from low to high) profile of selected OTU. Nodes are connected by the pairwise interactions (links).
Weight of link indicates a strong Pearson correlation (r > 0.8, P-value < 0.01) that shared between OTUs.
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