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A B S T R A C T

Photocatalysis has been regarded as one of the promising approaches to solve environmental problems. Three-
dimensional graphene aerogel (3D GA) is a novel photocatalytic material with unique porous structure and
excellent intrinsic properties, which has been used as a catalyst to support and enhance the catalytic activity of
semiconductor. Here, the typical synthesis methods of 3D GA were summarized, such as hydrothermal, chemical
vapor deposition, and chemical oxidation, etc. Furthermore, the application of 3D GA based photocatalyst in the
degradation of organic pollutants is reviewed, especially different 3D GA based composite materials and their
degradation ability on organic dyes in wastewater as well as their biohazard in the ecosystems is critically
discussed. In addition, we discuss the challenges for large scale preparations of 3D GA and further improvement
for the degradation efficiency. It is expected that this review would be helpful for designing of highly efficient 3D
GA based photocatalyst composites.

1. Introduction

Water pollution has become a serious problem in this century

mainly due to the massive and uncontrolled discharge of organic
compounds, which lead to the deterioration of clean water and ex-
acerbate the water shortage [1–9]. A variety of organic pollutants, such
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as rhodamine B (RhB), methylene blue (MB) and phenolic compounds
have been widely used in textile, leather and other industrial manu-
facture [10]. Over the past few years, more than 100,000 different
kinds of organic dyes have been found, and their annual consumption is
about 36,000 tons [11]. Unfortunately, wastewater including organic
pollutants is one of the most difficult problems to solve. To date, several
methods have been developed including adsorption [12–17], coagula-
tion [18] and photocatalysis [19–21], which have been widely applied
in the area of organic dyes in sewage [22]. Among numerous techni-
ques, photocatalysis shows advantages in the following aspects: gentle
pH value of solution, mild reaction temperature, and high efficiency
[23]. Compared with other carbonaceous materials, the graphene has
some unique advantages [24,25]. Hasija et al. summarized noble metal
free doped g-C3N4 photocatalysts for water purification with defects
such as wide band-gap, small specific surface area, and high electron-
hole recombination rate, which leads to lower degradation rate [26].
Sharma et al. raised CQDs as electron mediator to enhance the photo-
catalytic activity of semiconductor [27]. They also reported PGCN/AgI/
ZnO/CQD composite via the hydrothermal method with bamboo leaves
[28]. Although remarkable progresses have been made, there are still a
number of key pathways that hinder the practical application of pho-
tocatalysis in organic pollutant wastewater treatment, especially in the
selection of high efficiency photocatalysts. Adsorption capacity of
contaminants plays a critical role in photo-degradation process [29].
Graphene has high surface area and displays excellent adsorption ca-
pacity and shows potential photocatalytic capacity [30]. Singh et al.
summarized graphene-based composite can serve as photocatalysts and
disinfectants [31]. Shandilya et al. reported EuVO4 coupling with F
doped graphene sheets presents great degradation property and stabi-
lity in water purification [32]. S and P co-doped Ag2CO3/GCN hetero-
junction photocatalyst was synthesized by Raizada et al. for DNP re-
moval efficiency via accelerated photocatalytic reactions [33].

Recently, three dimensional graphene aerogel materials (3D GA)
attracted communities’ attention [34] due to its porous structure and
excellent intrinsic properties [35]. Furthermore, 3D GA based photo-
catalysts composite has been recognized as a candidate material to
solve these above problems. During the preparation of 3D GA, partially
reduced graphene oxide (RGO) was polymerized by van der Waals
forces, p-p superposition and a large amount of water hydrogen
bonding to form a strongly cross-linked 3D graphene network [36]. The
strong crosslinking of 3D GA network may hinder the aggregation of
graphene and has abundant mass transfer pores [37]. Therefore, 3D GA
can be used as a catalyst support and enhance the practical application
potential of graphene in the following aspects: i) it can keep the com-
plete morphology after photocatalytic reaction；ii) it is easy to operate
and separate in practical application; iii) it can prevent the release of
graphene nanoparticles and decrease its environmental risk [38,39].
Due to these advantages, compared with graphene nanoparticles, 3D
GA has attracted widespread attention with the large increase in 3D GA
research articles (Fig. 1).

3D GA has a great potential to deal with the degradation of organic
pollutants in wastewater. It should be noted that 3D GA also has a high
adsorption capacity for organic pollutants, which will help improve its
ability to degrade organic pollutants [40]. Many studies on 3D GA have
been published, but a comprehensive review of its application as a low-
cost photocatalyst to remove organic dyes in aqueous environments has
not been reported [41]. In this paper, the research progress of 3D GA is
summarized [42]. Various synthesis methods of 3D GA are briefly in-
troduced. Then, different 3D GA based photocatalysts as catalysts in the
environmental remediation are concluded. Environmental impact of 3D
GA is discussed. Finally, the challenge and perspectives for future de-
velopment are discussed. We hope that this paper would be helpful for
the designing and fabricating novel 3D GA based photocatalysts with
better performances in the near future.

2. Synthesis methods of 3D GA

Compared with the strict definition of monolayer graphene, 3D GA
mainly contains multilayer carbon atoms. 3D structure makes the pro-
gress of its synthesis more difficult. In order to satisfy the requirement
of application in organic dyes pollutants removal, it is imperative to
develop simple and efficient preparation methods. So far, the general
synthetic strategies reported in the literatures can be mainly classified
into several categories, including oxidation-reduction approach
[43,44], template-directed approach [45], chemical vapor deposition
approach [46], electrochemical synthesis approach [47] and other ap-
proaches. Oxidation-reduction is the most common method. Firstly, 3D
GA can be produced in quantity. Secondly, the reaction conditions are
relatively simple [48]. However, the chemical reduction method has
the advantages of simple reaction device, mild reaction conditions, and
easier to achieve large-scale production. Compared with the oxidation-
reduction method [49], chemical vapor deposition [50] and electro-
chemical reduction assembly has the advantages of fast reaction speed,
simple and easy to control [51]. According to different crosslinking
methods, it can be divided into physical crosslinking and chemical
crosslinking. The method of physical crosslinking can prepare GA under
mild conditions, but the physical crosslinking GA have low stability and
poor mechanical properties. The hydrothermal reduction method
avoids the introduction of non-carbon impurities because it does not
use binders and chemical additives. It is easy to operate, but the reac-
tion environment is relatively harsh [52]. In addition, from the eco-
nomic point of view, the secondary pollution by the redox method
needs treated. The freeze-drying involved in the operation is not eco-
nomical, and the drying at room temperature and pressure is more
suitable for industrialization. This section mainly introduces the
common methods of synthesizing 3D GA.

2.1. Hydrothermal reduction

In the past decade, hydrothermal reduction method has been found
to be an effective strategy for synthesized 3D GH [53,54]. 3D GA is
obtained by dehydrating of 3D GH (Fig. 2) [55]. Cross-linking agents
such as polymer [52,56], metal ions [57,58] were added into the GO
dispersions to form 3D GH. 3D GA can be obtained through direct
freeze-drying [59], electrochemical deposition [60,61] and cen-
trifugation. Freeze-drying method is the most commonly used method
due to its simple operation and easy conditions [62]. Yang et al. pre-
pared 3D GA composite by mixed WO3 with GO solution with freeze-
drying for 48 h. The results indicated that 3D GA can serve as a support,
improve light absorption, increase the catalyst surface area (from 46 to
57 m2 g−1), and promote the separation efficiency of charge carriers
[63].

Self-assembling based on the traditional hydrothermal reduction
method is a new way that caused much concern. Wu et al. [64] pro-
posed a new method to prepare self-assembled graphene hydrogel
(GHS) that interconnects three-dimensional networks with Cu nano-
particles. With this method, Cu (I) oxides were deposited on reduced
graphene oxide thin films and embedded in GHS (Fig. 3), and then GHS
was converted into 3D GA by freeze-drying method. The composition of
3D GA can be conveniently adjusted by changing the initial amount of
Cu nanoparticles or the concentration of GO suspensions. This method
can be used to promote the conversion of some parts of GO to RGO via
the oxidation of metal ions. The results exhibited that the structure
stability shows a trend of first high and then low and more particles
appear on graphene wafer with the increase of the initial amount of
metal nanoparticles (Fig. 4). In addition to copper ion, other oxidized
metal ions, e.g. Fe3O4 [65], and Fe2O3 also have the function of forming
three-dimensional network structure as crosslinking agents, which
proved the validity of using metal ions as a crosslinking agent.

Besides metal ions, there are some other cross-linking agents which
can form 3D GA. Hydrothermal reduction method has been proved to
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be an effective method for the synthesis of 3D GA. This method has its
limitations, such as the production of many harmful by-products, acidic
waste liquid, etc. In addition, how to choose a cross-linking agent and
control the reaction conditions is another problem.

2.2. Chemical vapor deposition (CVD) of 3D GA

Template guidance is another effective method to construct 3D
graphene structures. Template guidance method can generate a three-
dimensional porous graphene network with any specific shape and
structure of 3D scaffold or layered membrane [66], which is helpful to
improve the fast electron transfer between active material and col-
lector. This method is helpful for the synthesis of graphene with large
size, controllable shape [67,68]. The size of 3D GA synthesized in this
way depends on the substrate material of template and the control of
experimental temperature. In principle, CVD is template guidance.
Chen et al. [48] have proved that the template guiding CVD method is
an effective method for the synthesis of graphene foam (GFs) with
three-dimensional microjunction (Fig. 5).

In this method, highly interconnected nickel from three-dimen-
sional scaffolds is used as a sacrificial template to grow wrinkled gra-
phite films by decomposing methane (CH4) at 1000 °C on atmospheric

pressure. After etching the bottom nickel with inorganic acid, a con-
tinuous, interrelated 3D GF was obtained, which has ultralow density of
5 mg cm−3 and high specific surface area up to 850 m2 g-1. The GF
made by this method is a whole 3D network graphene, which is dif-
ferent from the 3D structure formed by the small CMG chip. Its medium
charge carriers can pass through the structure of high quality con-
tinuous graphene grown by CVD and move rapidly with small re-
sistance. This CVD method showed great versatility in controlling gra-
phene frame structure. For example, the size and pore structure of GFs
can be adjusted by using different nickel foams, while the average
number of the layers, the specific surface area and the density of GFs
can be controlled by changing the concentration of CH4. Besides, cel-
lulose nanofiber (CNF), was used as a raw material dispersant and
modified with CVD technique to obtain super-hydrophobic aerogels
with low density and high porosity in the other fields [69].

2.3. Chemical reduction method of 3D GA

Compared to hydrothermal reduction that need cross-linkings, inert
gas at high temperatures or a reducing environment [70], chemical
reduction is simpler, which generally use a convenient reductant, such
as hydrazine, Vitamin C, sodium ascorbate and other reagents [71–74].

Fig. 1. Numbers of yearly publications about photocatalyst for wastewater since 2000, the inset shows the number of papers published per year on graphene aerogel-
based photocatalyst since 2000 from web of science.

Fig. 2. 3D GA prepared by hydrothermal reduction process.
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Besides that, the reductant of the chemical reduction can also be acid or
base [75,76].

Chen et al. [77] showed a one-step chemical reduction process that
combines GO with hydroiodic acid as the reductant to obtain 3D GA.
However, during the reduction process of the graphene-based mate-
rials, graphite layers fold due to the π-π interactions, leading to a de-
crease of the specific surface area of the material. Compared with the
hydrothermal method, chemical vapor deposition and electrochemical
synthesis methods are more environmentally friendly.

3. Application of 3D GA based-photocatalysts in the treatment of
organic pollutants

In recent years, photocatalysis with inexhaustible solar energy for
organic dyes in wastewater has been widely implemented and applied
in practical applications. However, in the past years, the traditional
photocatalytic powder has defects like low efficiency in the recovery

process. In order to realize the application of photocatalyst in practical
application and reduce the overall production cost, fixing the photo-
catalyst on the suitable support is an important step. Therefore, GA
photocatalyst has become a new type of high-efficient recoverable
photocatalyst.

The key steps to create the unique macroscopic structure and porous
properties of 3D GA in the photoredox catalysis process are absorption,
charge separation and transfer, and the role of active material have
been proved in the production of 3D GA [78]. The role of 3D GA in
photocatalytic oxidation catalysis is diverse (Fig. 6). Firstly, 3D GA has
favorable conductivity and multi-dimensional electron transmission
path, so it can be used as an ideal optoelectronic medium to promote
the separation of photogenerated electron-hole pairs. In addition, the
porous structure and abundant surface functional groups make 3D GA
as a template to inhibit the aggregation and overgrowth of semi-
conductors, thus exposing more active sites for catalytic surface reac-
tions. 3D GA can be directly used as photocatalysts to produce thermal

Fig. 3. (A) Photographs of the formation process for the graphene hydrogels with 25 mL of GO suspension (2 mg/mL) in the presence of Cu (0.1 g); (B) Low- and (C)
high-magnification SEM images; (D) TEM and (E) high-resolution TEM images of the graphene hydrogel; (F) XRD pattern of the prepared aerogel. Reprinted with
permission from Ref. [65]. Published by Journal of Materials Chemistry A.

Fig. 4. Photographs of (A) GHs and (B) corresponding aerogels dried from the hydrogels prepared using different amounts of Cu nanoparticles. The amount of Cu
used for preparation of GHCu-1 -GHCu-3 shown in (A) and (B) was 0.01, 0.05 and 0.1 g. SEM images of the GAs using different amounts of Cu nanoparticles: (C, D)
0.01 g; (E, F) 0.05 g; (G, H) 0.1 g. The inset in F is a high resolution SEM image of Sample GACu-3. (I) the Raman spectra of GAs with 0.01 and 0.1 g. Reprinted with
permission from Ref. [65]. Published by Journal of Materials Chemistry A.
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free electrons under light [79].
The excellent adsorption ability and unique monolayer structure of

3D GA can be achieved via constructing composite photocatalyst [80].
As shown in Fig. 7, one strategy is to combine prefabricated 3D GA with
photoactive components (e.g. semiconductors), which is the most
common method used in the field of organic pollutants degradation.
The other strategy is to mix the precursors of GR (e.g. GO) with the
soluble precursors of photoactive materials (such as metal salts) and
then further process to form 3D GA-based composite photocatalysts.

In this section, we will demonstrate the application of photo-
catalysts based on 3D GA in eliminating organic matter in water
(Fig. 8), including metal semiconductor aerogel photocatalyst, carbon-
nitrogen composite photocatalyst and other composite photocatalyst.

3.1. 3D GA/metal oxide photocatalysts composite

In this process, GA accelerates the separation of photoelectrons from
vacancies, promotes the electron transfer, thus improving the de-
gradation efficiency. In recent years, semiconductor heterojunction
photocatalyst (SHPS) has achieved many important research results
[81]. Similar with nano CuO/carbon nanotube composites, a C@TiO2

catalyst was also developed [82–85].

3.1.1. Fundamental principles of 3D GA/metal oxide heterojunction
photocatalysts

Due to the development of photocatalytic condition and enhance-
ment of semiconductor heterojunction structure, photocatalysis is more
favorable when combined with graphene and 3D GA [85]. From a

photochemical point of view, semiconductor photocatalysts initiate
oxidation and reduction reactions under light radiation (Fig. 9). Better
crystalline and fewer defects can usually minimize the trapping state
and recombination sites, thus improving the efficiency of photo-
generated charge carriers for the required light reactions. In the fol-
lowing section, the preparation and applications of 3D GA semi-
conductor in the removal of organic dyes in wastewater will be
described and critically discussed.

3.1.2. 3D GA/metal oxide photocatalysts for organic pollutants degradation
Recently, 3D GA and other semiconductor materials have been ap-

plied in surface modification [86–88]. Typically, 3D GA-based semi-
conductor systems showed higher pollutants adsorption ability, wider
light absorption range, quicker charge separation and mass transfer,
and thus they favor in improving the degradation efficiency of photo-
catalyst [89,90]. The comparison of different typical 3D GA-based
semiconductor composites for pollutants degradation was listed in
Tables 1 and 2.

Zhang et al. [91] prepared 3D GA/TiO2 composites via a facile one-
pot route. The result shows that optimized sample exhibits the best
performance of RhB removal and the final degradation rate is as high as
98.7 %. After five successive cycles, the degradation rate is still in 70.0
%. The results imply that the TiO2-GA composites are efficient in the
removal of organic pollutants.

Yu et al. fabricated 3D GA/BiOBr using a two-step hydrothermal
method [92]. The 3D GA/BiOBr exhibited a much higher reaction rate
constant than pure BiOBr [93,94]. Among them, 3D GA/BiOBr with
RGO weight ratios of 10 wt% sample showed the highest photocatalytic
activity, which was 3.5 times that of pure BiOBr [95].

After that, Liu et al. also proposed a brief one-step solvothermal
method to obtain 3D GA/Bi2MoO6, which made Bi2MoO6 (BMO), an
efficient photocatalysts with a controllable size, uniformly distributed
in the 3D porous structure [96]. The photocatalytic rate of 3D GA/
Bi2MoO6 for MB removal was about 2.1 times higher than BMO, which
reached up 98.3 % in 100 min. Zhang et al. [97] synthesized Fe2O3-
TiO2-GA magnetic photocatalyst by one-step hydrothermal method and
freeze-drying method, which prevented the agglomeration of other
nanoparticles in the recovery process to some extent. And the metal-
metal heterojunction structure of Fe2O3-GA was formed with TiO2. The
experimental results show that the adsorption and degradation effi-
ciency of RhB dye by 25 wt% Fe2O3-GA is the highest (97.7 %). After 4

Fig. 5. Flow chart of template directed CVD method. Reprinted with permission from Ref. [48]. Published by Nature materials.

Fig. 6. Four directions in the application of graphene aerogel.
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cycles, the removal rate remained above 81.8 %. This showed that the
3D GA semiconductor composite had positive visible light-driven pho-
tocatalytic activity for the removal of organic pollutants.

3.2. 3D GA/g-C3N4 photocatalysts

Recently, g-C3N4 is a very attractive photocatalyst for organic pol-
lutants degradation since it absorbs visible light [98]. In particular, g-
C3N4 has excellent chemical stability and a promising application
prospect in the field of photocatalysis. However, high electron hole
recombination, low specific surface area and low photo absorption ef-
ficiency largely limit its catalytic performance. To overcome these
shortcomings, g-C3N4/GA with the synergistic effect of g-C3N4 and GA
provided a new feasible solution for visible light catalyst with high
performance. In particular, the good conductivity of GA inhibited the
electron-hole recombination of g-C3N4 and improved the utilization
rate of visible light by multiple light reflections on the connected open
skeleton [99].

3D GA/g-C3N4 (CNGA) was prepared via simple hydrothermal

method as reported by Tong et al. [100]. The morphology, structure
and properties of 3D GA, g-C3N4 nanoparticles and CNGA were char-
acterized in details. 3D GA/g-C3N4 composite has strong mechanical
resilience under complex hydrological conditions and is suitable for
photocatalyst restoration. The composite has a connected, porous 3D
GO structure and crystalline CN exists in it (Fig. 10). Crystalline CN has
graphitization construction, high thermal and chemical stability, and
semiconductor electronic structure [101], which can promote the
treatment of catalytic reaction.

Wan et al. conveniently prepared C3N4/GOA by freezing casting
C3N4 and GO together and researched their performance as micro-
scopical photocatalysts with different shapes and sizes [103]. They
found that C3N4/GA with extra optical density (3∼5 mg cm−3), pho-
tochemical properties and high adsorption capacity. Besides, this
method can be used in the preparation of other two-dimensional ma-
terials (e.g, MoS2, BN)/GA catalysts, which can lay a foundation for the
future application of industrial photocatalysis. He et al. also fabricated
a ternary 3D aerogel by a two-step facile hydrothermal method. Herein,
RGO is regarded as the framework, modified with carbon quantum dots

Fig. 7. Schematic illustration of the fabrication strategies of 3D GA-based photocatalysts. Reprinted with permission from Ref. [34]. Published by Journal of
Materials Chemistry A.

Fig. 8. Study on 3D GA-based photocatalyst.
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and g-C3N4 nanosheet. The degradation removal ratio of MO for this
ternary composite was 91.1 % within 4 h, which is 7.6 times than g-
C3N4 [104].

Pure graphene is not a photocatalyst actually [105]. However, the
N-doping of graphene showed light absorption [106]. The formation of
N-Ti-O bonds was similar to the reduced GO, which may lead to the
formation of localized states in the band gap of TiO2 and narrow the
band gap [107]. The presence of carbon in graphene derivatives re-
duced the reflection of light and enhanced the absorption of visible
light. The catalytic performance of the coupling of 3D GA with g-C3N4

can be significantly increased by controlling the synergies [108]. In-
spired by these works, the multifunctional aerogels with high visible
photocatalytic activity and petroleum adsorption ability was obtained
by converting C3N4 powder into macro aerogels. This experiment de-
monstrated that pure nitrogen doping of GA photocatalysts was fea-
sible. Tong et al. evaluated that photocatalytic activity of CNGA sam-
ples under visible light irradiation by the degradation of MO (Fig. 11a).
The degradation rate of CNGA2 was the highest, which was about 6.0
times of that of g-C3N4. At the same time, the loss of photocatalytic
activity of CNGA in the four-cycle decomposition process is not obvious
(Fig. 11c), which indicates that the metal-free photocatalyst has good
stability. Compared with pure g-C3N4, the degradation efficiency of MO
was much higher in all CNGA samples under the same conditions, in-
dicating that there was a synergistic effect between g-C3N4 and GA.
Besides, g-C3N4 acted as a photocatalyst in CNGA samples to generate
electron-hole pairs under visible light, while GO not only formed a 3D

porous aerogel skeleton, but also facilitated photoelectron transfer.
Compared with the composite doped by nitrogen and semiconductor,
pure nitrogen modified GA still has a gap in catalytic oxidation.

3.3. GA modified by other complex materials

3.3.1. Ternary semiconductors heterojunction
Metal oxide semiconductors (MOS) have advantages of high oxi-

dation ability, low toxicity and positive chemical stability, and they
have become ideal materials for the degradation of organic pollutants.
However, due to the fast recombination of photo-generated charge
carriers, the photocatalytic efficiency remains to be further improved.
g-C3N4 with N-bridged triazine repeat units is a kind of metal-free
photocatalyst with excellent thermochemical stability, electronic and
optical structure [110,111]. Various strategies have been studied, in-
cluding combination with other semiconductor or carbon materials,
doping of metal and/or nonmetallic ions, formation of heterojunction
etc [112–115]. Therefore, hybridizing with a suitable support may
solve this problem.

For example, Table 1 shows GA-based catalysts, the catalytic rate of
g-C3N4/BiOBr/RGO [116] and g-C3N4-TiO2-GA [117] was 66 % and 98
% in 60 min, respectively, which was much higher than the pure ni-
trogen doping catalyst because of the stereoscopic layered porous
structure and synergism in the ternary system. Similarly, a Cu2O/g-
C3N4/GA was prepared by Yang et al. Cu2O/g-C3N4/GA obtained 96 %
of MB and 83 % of MO removal efficiency in 80 min, which indicated

Fig. 9. Schematic diagram of semiconductor photocatalysis principle: (I) the formation of charge carriers by a photon; (II) carriers’ recombination to release heat
energy; (III) reduction pathway; (IV) oxidation pathway.

Table 1
Photocatalytic degradation of RhB Organic Dyes in Water with several graphene aerogel based photocatalysts.

Photocatlyst (mg) Pollutant (mg/L) Light source(W) Degradation Time (min) cycle Cyclic effect Ref

Ag2O/ALG-rGO(30) RhB(5) 500 W Xe lamp 96 % 150 5 89% [119]
Bi2WO6/GA(20) RhB(10) 300 W Xe lamp 99.6 % 45 ND ND [120]
BiOBr/RGO aerogel RhB 300 W Xe lamp over 68 % ND 5 68 % [121]
CeO2/RGA RhB 150 W Xe lamp 85 % 120 3 No significant changes [122]
BiOBr/RGO RhB 300 W Xe lamp 50 % 60 ND ND [92]
g-C3N4-TiO2-GA(5) RhB(20) 500 W Xe lamp 98.40 % 60 4 75.60% [117]
Fe2O3-TiO2-GA(5) RhB(20) 500 W Xe lamp 97.70 % 60 4 81.80 % [97]
W18O49-RGO RhB 500 W Xe lamp 100 % 25 30 No significant changes [123]
TiO2-GA(5) RhB(20) 300 W Xe lamp 98.7 % 180 5 70% [91]
3D Ag/Ag@Ag3PO4/GA (7.5) RhB(15) 400 W Xe lamp 100.0 % 15 6 No significant changes [124]
3D g-C3N4/BiOBr/RGO RhB 300 W Xe lamp 66 % 60 3 No significant changes [116]
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that the Cu2O/g-C3N4 heterojunction based on RGO can enhance visible
light absorption [118].

In the description of the relevant literature, as proved by other
studies, semiconductor structure had a higher electron transport rate
and more reaction sites were exposed in a 3D network with a mesh-like
structure, in which nitrogen ions were interdigitated with each other.

3.3.2. MOF modified GA
Metal-organic framework (MOF) is a porous crystal material with

large specific surface area, ordered arrangement and controllable pore
size, which is used for gas storage and water purification, and has a

broad application prospect in catalyst and drug carrier [125]. Roeffaers
et al. reported the photocatalytic activity of Fe (III) based MOFs such as
MIL-101 (Fe), MIL-100 (Fe) and MIL-88B (Fe) in the decolorization of
RhB [126].

However, when MOF is used in separation, absorption and catalytic
applications, the stability and reuse of MOF is a major challenge [127].
To solve that, 3D GA provides an ideal mechanical support material.
Mao et al. reported a new method about self-assembly of MOFs [128].
Compared with single 3D GA aerogels, ZIF-8/3D GA showed good oil
absorption and photocatalytic degradation ability. When ZIF-8/RGA
catalyst was added, the concentration of MB decreased rapidly to 51.8

Table 2
Photocatalytic degradation of other organic dyes in Water with several graphene aerogel based photocatalysts.

Photocatlyst(mg) Pollutant (mg/L) Light source Degradation Time (min) Ref

Ag2O/ALG-rGO(30) OII (10) 500 W Xe lamp 93 % 60 [119]
CeVO4/GA MB 500 W Xe lamp 98.00 % 18 [129]
TiO2/GA MB 500 W Xe lamp 90 % 30 [130]
TiO2/rGO-GA MO U-visible light 98 % 240 [131]
BiOBr/RGO MO U-visible light 80 % 60 [92]
TiO2 Nanocrystals/GA MO U-visible light 90 % 180 [132]
S-TiO2-3DGA(5) MO(6) Ultraviolet light 83.9 % 90 [133]
W18O49-RGO MO U-visible light 100.00 % 25 [123]

Fig. 10. (A) Mechanism of the CN/GOA hybrid synthesis, (a-e) Digital image, SEM image, TEM images and HRTEM images; (f) HAADF image and C and N elemental
mapping; (B) XRD patterns of samples. Reprinted with permission from Ref. [102].
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%, which indicated that the catalyst had higher degradation efficiency
compared to pure 3D GA.

3.3.3. Other metal oxide modified GA
Nanowires emerged as a unique composite material. Li et al. pre-

pared a tungsten oxide reduced graphene aerogel (W18O49-rGA)by a
simple hydrothermal method [123]. Compared with pure W18O49 na-
nowires, the photocatalytic efficiency of the W18O49-rGA was sig-
nificantly improved for the degradation of RhB and other five different
organic dyes (i.e. reactive black 39, reactive yellow 145, weak acid
black BR, methyl orange, and weak acid yellow G.). The results showed
that the degradation activity of RhB was 98 % in 15 min. And the
photocatalytic efficiency of W18O49-rGA on six dyes remained above 90
% after 30 cycles.

Nanosheets have been described as another unique composite ma-
terial. Xu et al. prepared a 3D GA/Bi2WO6 by using Bi2WO6 nanosheets
and RGO as building materials, and the catalytic activity is studied by
the degradation of RhB [120]. In the experiments, a series of Bi2WO6/
GA(BWGA)composites were prepared by changing the mass fraction of
GO in the composites. BWGA-0.03 could completely degrade RhB
within 45 min (99.6 % degradation), whereas the Bi2WO6 nanosheets
degrades 80 % of RhB. In general, nanowires are more efficient than
MOFs in the catalytic decomposition of organic dyes in aquatic solution.
The main reason is that MOFs material itself has some limitations in the
field of catalysis.

4. Environmental impact of 3D GA

Graphene is an important raw material for the synthesis of GA. With
its growing widespread application in many industries, we cannot ig-
nore its hazards. If graphene nanoparticles enter surface or subsurface
water, they have a negative environmental impact due to sharp edges
which can hurt cells. Graphene nanoparticles form unstable precipitates
in the aquatic environments and therefore are harmful to living mi-
croorganisms, plants, animals and humans. A research team from
Brown University examined the potential toxicity of graphene material
to human cells and jagged edges of graphene nanoparticles were found
very sharp and strong, which easily penetrated into human skin as well
as the cell membrane of immune cells [134]. Besides, if graphene sheet
up to 10 microns, it can be completely absorbed by cells as shown in
Fig. 12.

Many studies on the potential toxicity of graphene have been re-
ported. [135]. The toxicity of 3D GA particles in vivo mainly depends on
their dose and size. Biocompatibility studies using mice showed that
intravenous injection of low-dose graphene oxide (0.1 mg) and
medium-dose graphene oxide (0.25 mg) did not cause detect toxicity,
while high-dose graphene oxide (0.4 mg) resulted in chronic toxicity on
mice [136]. In another study, different forms of graphene, such as

polymeric graphene solution, polydisperse graphene solution and gra-
phene oxide solution, were injected directly into the lungs of mice. 3D
GA induced mitochondria to produce reactive oxygen species, activated
inflammatory and apoptotic pathways, and leaded to severe and per-
sistent lung injury, while the lung injury of mice treated with graphene
aggregation and dispersion was not obvious [137]. Besides, Hui et al.
reported that the effects of GA on the body vary with size. Large par-
ticles ranging from 1 to 5 microns to 110−500 nm accumulated in the
lungs, while smaller particles got trapped in the liver of mice [138].
Furthermore, graphene nanosheets can induce pulmonary inflamma-
tion, thromboembolism, and immune responses in mice after being
injected into a vein [139]. The over-production of hydroxyl radicals and
the formation of oxidizing cytochrome c intermediates is responsible for
the toxicity properties.

Even though our knowledge of the toxicology of graphene nano-
particles like GA is still limited. To reduce their environmental risk, one
of the feasible solution is the recycle of graphene nanoparticles. It is
worth noting that the GA discussed in this review has a reduced en-
vironmental hazard due to its good recovery and high elasticity, higher
recoverability and recyclability comparing to pure graphene or other
types of graphene nanomaterials. Still, more studies are required to
assess the environmental risk of graphene nanoparticles like GA, and to
reduce their negative impact on the human body and the aquatic eco-
systems.

5. Summary and outlook

In conclusion, this work summarized recent progress on the synth-
esis of 3D GA and 3D GA photocatalyst composites. Many methods
including hydrothermal, CVD, and chemical oxidation have been ex-
plored for their syntheses. GA is a valuable material known for its ty-
pical 3D porous skeleton, large specific surface area and high adsorp-
tion capacity. With π-π interlaminar stacking and hydrogen bonding,
GA has high interconnection, good conductivity and other valuable
characteristics. 3D GA photocatalyst has been applied in photocatalytic
degradation of organic pollutants. Coupling 3D GA with semi-
conductors can dramatically improve the photocatalytic activity.

Despite the bright future of 3D GA-based materials, there are some
issues should be taken into consideration:

(1) Compared with traditional GA modification methods, composite
modified GA based photocatalyst has a great advantage in the
wastewater treatment, but the corresponding cost is also higher.
The next step is to improve the experimental process of GA based
photocatalyst via proper modification methods like nanowire
porous nanoplate. And the cost can be reduced via recycling ma-
terials and improving test methods.

(2) For commercial applications, 3D GA has good recyclability, how-
ever, the cost of the instrument in the operation steps and potential
secondary pollution still need to concern. In the synthesis process,
the energy consumption for making graphene aerogels should be
reduced. For example, freeze-drying is not economical, while
drying at normal temperature and pressure is more suitable for
industrialization.

(3) Additionally, the threat to local ecosystems caused by GA based
photocatalyst needs further attention. Graphene molecules can da-
mage the cell tissues of plants and animals, and precipitate with
heavy metals. Therefore, trace, estimate and control of the 3D GA-
based photocatalysts in the ecosystem and environments are re-
quired.
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permission from Ref. [109]. Published by ACS.
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