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a b s t r a c t

Quantifying the spatiotemporal distribution of water resources is still a key constraint onwater resources
management against the background of climate change and human activities. To investigate the inter-
action of climate variability and human activities on blue and greenwater scarcity (BW and GW-scarcity),
the soil and water assessment tool (SWAT) model was used to simulate BW and GW-scarcity and its
spatiotemporal distribution under scenarios of single or combined land-use change and climate vari-
ability. Multivariate statistical methods were used to identify the main factors affecting blue/green water
and confirm the hot spots of water management. Taking the rapidly-developing Xiangjiang River Basin
(XRB) in China as an example, where the urbanization rate increased from 42.15% in 2008 to 56.02% in
2018, the results showed that BW-scarcity was mainly affected by precipitation (r ¼ 0.425) and popu-
lation (r ¼ �0.612), while GW-scarcity was mainly affected by agriculture (r ¼ 0.429) and urban land
(r ¼ �0.593). The hot spot areas of blue and greenwater (BWand GW) shortage accounted for 29.7%, 4.6%
and 3.4% of the total area in the lower reach, middle reach and upper reach of XRB, respectively. The
rapid development of urbanization in the lower reach of the XRB caused serious shortage of BW and GW
resources. This study would provide useful information for water resources management in corre-
sponding human-water system. Future research should focus on how to optimize water resource allo-
cation upstream and downstream of the basin.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Freshwater is important to maintain the sustainable develop-
ment of ecological balance and anthropogenic activities. Under the
influence of climate variability, population growth and changing
lifestyles, water scarcity has become critical challenge worldwide
over the past few decades (Du et al., 2018; Hua et al., 2015; Liang
et al., 2018). It has been reported that human water demand
increased almost eight times as a result of doubled global popula-
tion and improved living standards in the past 100 years (Veldkamp
al Science and Engineering,

g), Hua.Zhang@tamucc.edu
et al., 2017). Therefore, in order to improve the effective utilization
of water resources, the evaluation and management of water re-
sources are mainly concentrated in BW and GW, which will help
policymakers to manage water resources rationally (Liang et al.,
2009; Yuan et al., 2019; Zhao et al., 2016). The BW is simulated
by combining both groundwater storage and surface water, while
GW represents the sum of soil water content and actual evapo-
transpiration (Johansson et al., 2016; Zhao et al., 2016). The BW is
mainly used for industrial production and agricultural irrigation
and the GW maintains crop production, forestry and terrestrial
ecosystems (Schyns et al., 2015). Therefore, the study of BW and
GW plays a vital role in maintaining ecosystem stability and global
food security, and has a positive effect on optimizing water re-
sources management in the basin (Zhao et al., 2016).

With the influence of population growth and climate variability,
the BW and GW-scarcity have become severe. The BW and GW-
scarcity are important evaluation indexes that are the water

mailto:liangjie@hnu.edu.cn
mailto:Hua.Zhang@tamucc.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2020.121834&domain=pdf
www.sciencedirect.com/science/journal/09596526
http://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2020.121834
https://doi.org/10.1016/j.jclepro.2020.121834


J. Liang et al. / Journal of Cleaner Production 265 (2020) 1218342
consumption divided by the availablewater, which could be used to
identify geographic hotspots in water stress areas. To help balance
competing demands such as agricultural water, domestic water and
other uses, water managers often use hydrological models to
rationally allocate blue/green water resources (Veettil and Mishra,
2016). Since Faramarzi et al. (2009) first proposed the concept of
BW and GW, a large number of studies have examined the blue/
green water resources. For instance, Rost et al. (2008) used the
Lund-Potsdam-Jena managed Land (LPJmL) model to quantify the
historic blue/green water consumption in global irrigated agricul-
ture over 30 years. The SWAT was often used to simulate the effects
of land-use change and climate change on hydrology (Niraula et al.,
2015; Noori and Kalin, 2015; Shrestha et al., 2017). Many previous
studies proved that the SWAT was effective in simulating land-use
and climate change on hydrological change in many regional wa-
tersheds of the world (Du et al., 2018; Veettil and Mishra, 2018;
Zhou et al., 2013). Shrestha et al. (2017) used the SWAT model to
simulate the influence of climate variability on the BW and GW in
the Athabasca River Basin in Canada. Du et al. (2018) quantified the
relative effects of land use and climate changes on the BW and GW
dynamics over 80 years (1935e2014). These studies discussed the
effects of land-use change and climate variability on the spatio-
temporal distribution of BW and GW in the past period, but these
studies did not quantify the key factors affecting BW and GW
shortage and hotspots in water resources management, then were
lack of consideration on future land use and climate scenarios, and
did not explain the underlying mechanisms behind the changes of
BWand GW. Results showed that the change of BWand GWmay be
attributed to the notable precipitation change and land use change,
respectively. Land use change and climate variability have impor-
tant effects on the spatiotemporal distribution of blue/green water
resources. For example, urban development leads to an increase in
impervious surface (Giri et al., 2018) and in turn reduces ground-
water recharge, while climate change (such as temperature and
precipitation) affects streamflow and evapotranspiration. The
spatial distribution of BW was mainly affected by population and
climate change, and the spatial distribution of GW was mainly
affected by agricultural and urban land (Veettil and Mishra, 2018).
The influence of land use and climate change on the spatiotemporal
distribution of BW and GW is synergistic or antagonistic, that de-
pends on the actual social development and geographical condi-
tions of the study area. However, the joint and relative effects of
future climate change and land use on spatiotemporal distribution
of BW and GW, as well as its scarcity, are still poorly understood,
despite its recognized importance (Giri et al., 2018). When it comes
to the BW and GW-scarcity, which is more important for water
resource management in the rapid developing region in the scope
of corresponding human-water systems, the problems are more
complicated, for more social factors may be incorporated in the
system.

The Xiangjiang River is one of the largest tributaries of the
Yangtze River and the main source of water supply for the Hunan
Province (Chen et al., 2018; Zuo et al., 2015). The XRB is a typical
agricultural area and urbanization has developed rapidly in recent
years, which the urbanization rate has increased from 42.15% in
2008 to 56.02% in 2018 (An et al., 2019). With the rapid develop-
ment of urbanization, the amount of water withdrawal increased
significantly and the ecological water demand reduced greatly in
the past 40 years, which negatively affected the sustainable
development of society. Therefore, in order to improve the effective
use of BW and GW and help decision makers manage water re-
sources reasonably, studying the blue/green water resources in the
XRB is necessary for facilitating the sustainable use of water re-
sources and protecting the stability of river ecosystems in central
China (Zhao et al., 2016; Zuo et al., 2015). The objectives of this
work are to: (1) calibrate and validate SWAT model on a monthly
time step with the uncertainty analysis, (2) quantify the single and
combined effects of future land-use change and future climate
variability on blue/green water resources and their scarcity in XRB
and (3) analyze the key factors affecting the change of BWand GW-
scarcity.

2. Study area and data

2.1. Study area

The 94,660-km2 XRB (Fig. 1) is located in Hunan Province in
central China (24�3800600 Ne28�4002300 N and 110�3001400

Ee114�1500000 E). It is a tributary of the Yangtze River with an
elevation of 21e1953 m which is gradually decreasing from
southwest to northeast. This region has an East Asian monsoon
climate. The annual average temperature is 17.2 �C and average
annual precipitation is 1450 mm. Precipitation from April to June
accounts for 40e45% of the annual precipitation, compared to 18%
from July to September. Since reform and opening up, water supply
and demand was unbalanced among available water resources,
economic society and environment, which led to the growing
conflicts among different water users in XRB. There was a serious
shortage of water resources in China, that per capita water re-
sources is only about 25% of the world’s per capita water resources
(Hoekstra and Mekonnen, 2012). Accordingly, an accurate assess-
ment of water resources in the XRB is of great significance to water
resources planning and management.

2.2. Data

The inputs of the SWAT model included topography, soil, land
use, and weather data. We used the 90-m SRTM data obtained from
Geospatial Data Cloud (2018) for delineating streams and sub-
basins. The data of soil and land use were used to generate the
Hydrologic Response Units (HRUs) in the SWAT. The observed daily
streamflow from 2008 to 2017 at the Xiangtan, Zhuzhou, Hengshan,
Hengyang and Guiyang hydrological stations were simulated by
using the SWAT model (Faramarzi et al., 2013). The per capita
comprehensive water consumption in 2050 was assumed to be the
same as that of 2015. The population per county in 2050 was
estimated based on average fertility andmortality trends from 2015
to 2018, which was obtained from Hunan Provincial Bureau of
Statistics. The redundancy analysis (RDA), cluster analysis (CA), and
Pearson correlation analysis (PCA) required blue/green water
scarcity, population, urban land, agriculture, forest, precipitation,
and temperature data. And the last five of indexes came from the
output of SWAT model. The blue/green water and blue/green water
scarcity were detailed in section 3.1 below. The applications and
sources of these data were listed in Table 1. The abbreviations for
each phrase in an alphabetical order were listed in Table S4 in
Supporting Information.

3. Methodology

As shown in Fig. 2, the research framework of this study con-
sisted of three main components: 1) establishing the SWAT hy-
drological model and predicting the spatial distribution of blue/
green water resources, 2) building future land use and climate
scenarios and calculating the blue/green water resources in
different scenarios, and 3) determining the key factors which af-
fects the quantity and distribution of blue/greenwater resources by
using multivariate statistical methods. The data requirements, data
sources, and processes were described in detail below.



Fig. 1. Location of the study area, hydrological stations and weather stations (Left), and spatial location of counties in the Xiangjiang River Basin (Right).

Table 1
Data used (inputs) for SWAT model development.

Data used Resolution Source Description

Land use 1000m Resource and Environment Data Cloud Platform The land use type data layer in 2005 and 2015
Topography 90m Geospatial Data Cloud a Digital Elevation Model
Soil 1:1000000 Cold and Arid Regions Science Data Center at Lanzhou b The detailed soil composition
Meteorological data Daily National Meteorological Information Center The daily temperature and precipitation from 2006 to

2017
Future climate data 1000 m Downscaled global climate model (GCM) data from CMIP5 (IPPC

Fifth Assessment) c
The daily temperature and precipitation in 2050
(average for 2041e2060)

Streamflow data Daily Hunan Provincial Department of Water Resources The streamflow data from 2008 to 2017
Population Person Hunan Provincial Bureau of Statistics d Population at the county level in 2015
Per capita comprehensive water

consumption
m3/year Hunan Provincial Water Resources Communique e Per capita comprehensive water consumption in 2015

a Source: http://www.gscloud.cn/.
b Source: http://westdc.westgis.ac.cn/.
c Source: http://www.worldclim.org/.
d Source: http://tjj.hunan.gov.cn/.
e Source: http://slt.hunan.gov.cn/.
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3.1. Hydrologic modeling framework

3.1.1. SWAT model calibration and performance evaluation
The SWATwas a physically-based, semi-distributed hydrological

model that was developed by the United States Department of
Agricultural (USDA). It operated at daily time steps (Veettil and
Mishra, 2018). The model had great advantages of simulating wa-
ter quality, water quantity and plant growth in different manage-
ment practices. However, this model required more module data to
import and more accurate data was needed, which made it difficult
to collect and organize data (Tuo et al., 2018). According to the size
of the watershed area and the sub-watershed identification of the
SWAT model, we divided the XRB into 53 sub-basins and 354 HRUs
in this research. By identifying the attribute conditions of land use
and soil at the HRU scale, the model can address the patterns of
streamflow and groundwater processes to enhance simulation
accuracy. The water balance equation of the SWAT model is as
follows (Awan and Ismaeel, 2014):

SWn ¼ SW0 þ
Xn

k¼1

�
Pday;k

� Qsurf ;k � Ea;k

�Wseep;k

� Qgw;k

�

(1)

where SW is the soil water content on day k (mm), n is the time
(days). Pday;k ; Qsurf ;k ;Ea;k, Wseep;k and Qgw;k are precipitation, sur-
face streamflow, actual evapotranspiration, seepage, and return
flow, respectively.

http://www.gscloud.cn/
http://westdc.westgis.ac.cn/
http://www.worldclim.org/
http://tjj.hunan.gov.cn/
http://slt.hunan.gov.cn/


Fig. 2. Schematic of integrated modeling framework for blue/green water analysis in the Xiangjiang River Basin.
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SWAT Calibration and Uncertainty Programs (SWAT-CUP) is
used to calibrate the parameters of the SWAT model (Wang et al.,
2019). By adjusting the model parameters, the accuracy of the
model can be improved to better reflect the hydrological process of
interest. The SWAT simulations of XRB in this study consisted of the
warming-up period (2006e2007), the calibration period
(2008e2012), and validation period (2013e2017). Streamflow ob-
servations at five hydrological stations in Xiangtan, Zhuzhou,
Hengshan, Hengyang, and Guiyang were used for calibration and
validation. The coefficient of determination (R2), Nash-Sutcliffe
efficiency coefficients (NS) and percent bias (BIAS) were used as
measures to evaluate the accuracy of the SWAT model (Wang et al.,
2019). Normally the values of R2 and NS were generally considered
to be greater than 0.50, the value of BIAS was less than or equal to
±20%, then the SWAT calibration results on a monthly scale were
acceptable (Awan and Ismaeel, 2014).
3.1.2. Evaluation of blue water and blue water scarcity
The BW is simulated by combining both groundwater storage

and water yield (WYLD). Groundwater storage is the difference
between total amount of water recharge to aquifers (GW_RCHG)
and the amount of water from aquifer that contributes to the main
channel flow (GW_Q). Water yield is the amount of water leaving
the HRU and entering the main channel (Rodrigues et al., 2015;
Veettil and Mishra, 2016). The BW-scarcity is the ratio of the blue
water withdrawal to blue water availability (Veettil and Mishra,
2016). The blue water withdrawal is calculated from surface wa-
ter or groundwater resources.

In this study, the amount of blue water extracted was obtained
from county-level water conservancy agencies. The total amount of
water withdrawal accounted for 95.6% of surface water and 4.4% of
groundwater. Among the different water abstraction sectors, the
agricultural irrigation, industrial water and household water use
accounted for the largest proportion, accounting for 57.3%, 17.4%
and 15.4%, respectively (Table S3). The total water withdrawal in
each county was estimated by multiplying the total population in
each county by the per capita comprehensive water consumption.
It could be used to simulate the water scarcity in 2050.

As the over exploitation of blue water resources may damage
local river ecosystem, the Environmental Flow Requirement which
represents that the lowest required streamflow to maintain the
healthy ecosystem of stream is equal to 80% of the annual
streamflow (Rodrigues et al., 2015; Veettil and Mishra, 2016). More
than 20% of the BW being extracted may cause ecological degra-
dation (Veettil and Mishra, 2018).

The calculations for Environmental Flow Requirement, Blue water
availability, and BW-scarcity are as follows (equation (2), (3) and (4))
(Giri et al., 2018; Rodrigues et al., 2015).

Environmental Flow Requirement ¼ 0:8 mean streamflow

(2)

Blue water availability ¼ streamflow

� Environmental Flow Requirement

(3)

BW

� scarcity

¼ Blue water withdrawal=Blue water availability

(4)

where streamflow is the monthly stream flow (m3=s). Blue water
withdrawal indicates the combined water consumption of all de-
partments of county n at time t.
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3.1.3. Evaluation of green water and green water scarcity
The GW consists of greenwater storage (soil water content) and

green water flow (evapotranspiration). The GW is simulated as the
sum of soil water content (SW) and evapotranspiration (ET)
(Rodrigues et al., 2015; Schuol et al., 2008).

The GW-scarcity is calculated as the ratio between green water
withdrawal and green water availability. The green water with-
drawal is stored in the root zone of the soil and is used by plants for
evaporation, transpiration or absorption. The green water with-
drawal is the actual evapotranspiration that can be acquired from
the HRU output of the SWAT model (ET) (Rodrigues et al., 2015;
Veettil and Mishra, 2016). The green water availability refers to the
amount of soil moisture available for the sustaining crop growth
and soil evapotranspiration that represents the initial soil water
content. It is also obtained from the HRU output of the SWATmodel
(SW) to calculate the GW-scarcity. This calculation is as follows
(equation (5)) (Giri et al., 2018; Veettil and Mishra, 2018):

GW � scarcity ¼ Green water withdrawal=Green water availabili

(5)

where Green water withdrawal and Green water availability repre-
sent the greenwater consumed and the initial soil water content of
county n at time t, respectively.
3.2. Future land use and climate change scenarios

To distinguish the single and combined effects of land use and
climate change on the water resources of XRB, four scenarios listed
below were established in this study (Zuo et al., 2016):

Baseline scenario (S0): regional climate condition during
2008e2017 and land use pattern of XRB in 2015;

Scenario 1 (S1): regional climate condition during 2008e2017
and simulated land use pattern in 2050;
Scenario 2 (S2): downscaled regional climate condition during
2041e2060 and land use in 2015;
Scenario 3 (S3): downscaled regional climate condition during
2041e2060 and simulated land use in 2050.

Land use in 2050 was simulated by a CA-Markovmodel (Cellular
Automata-Markov), which combined the CA model’s ability to
simulate spatial complex system changes and the Markov model’s
advantages in quantitative prediction. Land use maps of 2005 and
2015 were used to calculate the transition probability matrix and
then the matrix was used to simulate the land cover map in 2050
(Hou et al., 2019). Based on previous research, we selected seven
driving factors, i.e., digital elevationmodel (DEM), slope, distance to
railway station, town, main road, river and permanent water (Liang
et al., 2016; Xue et al., 2019). The transition suitability maps of land
use change for each land use type was generated by using a multi-
criteria (MCE) model. It could improve the accuracy of the simu-
lation result (Hou et al., 2019). The Kappa coefficient was used to
evaluate the accuracy of land use data and simulation results. The
results showed that the Kappa valuewas 0.76, suggesting that it can
be used for land use prediction in 2050 (Fig. S2).

The climate change scenario in 2050 was the RCP 4.5 (Repre-
sentative Concentration Pathway) emission scenario at 30 seconds
resolution (~1 km) of General Circulation Model (GCM) (average for
2041e2060) in the study (Masud et al., 2019). A statistical down-
scaling method was used to downscale the CMIP5 data and the
change factor approach from statistical downscaling method was
applied to generate the regional climate conditions of XRB (Mou
et al., 2017).
3.3. Determinating the main factors affecting blue/green water
scarcity change

In this research, we studied the spatiotemporal distribution of
BW and GW-scarcity in 49 counties of XRB. Under the influences of
population, urban land, agriculture, forest, precipitation, and tem-
perature, the change of BW and GW-scarcity in each county varied
from 2015 to 2050. To analyze the relationship between BW and
GW-scarcity and the above seven environmental factors, the most
applied methods to determine the main environmental factors,
affecting the change of BW and GW-scarcity, were RDA and PCA,
which were realized by Canoco 5.0 and Origin 9.1 software,
respectively (Cheng et al., 2018). The positive correlation meant
that there was a synergistic relationship between blue/green water
scarcity and matched environmental factors, while the negative
correlationmeant that therewas a certain antagonistic relationship
between blue/green water scarcity and pairing environmental
factors (Liu et al., 2019). In order to analyze whether the environ-
mental factors of these samples were similar, we used CA, which is
a statistical method for clustering samples by similarity and various
cluster rules, to identify these similar counties to improve water
resources management (Charles and Alamsjah, 2019).

4. Results and discussions

4.1. Calibration and validation of the SWAT model

The SUFI-2 algorithm in SWAT-CUP was used to analyze the
sensitivity of 8 parameters which were then used for the model
calibration (Nilawar and Waikar, 2019) in Table S1 in Supporting
Information. The parameters CN2, ALPHA_BF, and CH_N2 were
more sensitive than other parameters in the XRB (Chen et al., 2017).
Fig. S1 illustrated the calibration and validation results on the five
control stations located in lower, middle and upper part of the XRB,
respectively. In order to better present the performance of the
model simulation, R2, NS and relative BIAS were calculated for the
streamflow, as shown in Table S2. When R2�0.6, NS � 0.5 and
BIAS�±20%, the model simulation results were considered satis-
factory. For Xiangtan Station, the R2 values for calibration and
validationwere 0.87 and 0.81, respectively. The NS values were 0.87
and 0.80 and the relative BIASwere�1.7% and 2.3%, respectively. Its
overall performance was better than the Hengyang station in the
middle reach and the Guiyang station in the upper reach. For these
five stations, the hydrological model reasonably simulated
streamflow (Xu et al., 2013). Judging from the spatial distribution of
these hydrological stations, the results showed that the NS of the
downstream station was higher than that of the upstream station.
Since the model was calibrated from upstream to downstream, the
best simulation of the upstream parameters contributed partly to
the next calibration process, improving the simulation results at the
downstream station. As we can see from Table S2, the performance
of the five control stations attained the requirement, meaning that
the SWAT model was well established for XRB region and can be
used in further analysis.

4.2. Effects of climate variability and human activities on blue
water and blue water scarcity

The spatiotemporal distribution of BW and GW was of great
significance for water resources planning. The changes of BWunder
different scenarios are displayed in Fig. 3. The spatial distribution of
BW change was uneven. Under the land use change scenario
(Fig. 3a), the decrease of BW was mainly distributed in Liuyang,
Changsha and Xiangtan in the lower reach of XRB, Qiyang in the
middle reach, and Jiangyong in the upper reach. The maximum



Fig. 3. Changes of the spatial distribution of blue water and blue water scarcity in Xiangjiang River Basin.
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reduction of BW in Changshawas 265 mm. The main reason for the
change was that the urban expansion in the lower reach which led
to increasing impervious surface and greater surface streamflow
(Giri et al., 2018). It may also be the increase of cultivated land,
which increased the irrigation water consumption. The increase of
BW was mainly distributed in Changsha, Xiangtan and Zhuzhou in
the lower reach, and Guanyang, Ningyuan in the upper reach. The
maximum increase of BW in Ningyuanwas 312mm, which was due
to the increase of the forest in the upper reach accordingly (Zang
et al., 2012). Under the climate variability scenario (Fig. 3b), the
reduction of BW was mainly distributed in Hengyang and Shao-
dong in the middle reach. The increase of BW was mainly distrib-
uted in Ningxiang in the lower reach. The reason for this change
was the uneven distribution of regional precipitation in XRB. For
the Weihe River Basin of northwest China, the impact of climate
change on BW was more pronounced than the impact of land use
change on BW. This was different from the results in the XRB, which
could be result of the dry climate in northwestern China (Zhao
et al., 2016).

Under combined future land use and climate scenarios (Fig. 3c),
the decrease of BW was mainly distributed in Changsha, Hengshan
and Xiangtan in the lower andmiddle reaches, and Jiangyong in the
upper reach. The increase was mainly distributed in Ningxiang and
Zhuzhou in the lower reach, and Guanyang in the upper reach. For
example, in Changsha, the BW was reduced by 265 mm and
154 mm under land-use change scenario and climate variability
scenario, respectively, but the BW was reduced by 112 mm under
future land use and climate scenario. It could be due to the con-
struction of water diversion projects which reduces the pressure on
BW resources. Land use and climate changes were not a simple
synergistic effect on BW changes. It could be the combined effects
of urban land, agriculture, forests, and precipitation (Veettil and
Mishra, 2018; Wang et al., 2015).

To better analyze the BW-scarcity in different regions, Fig. 3
showed the changes in the spatial distribution of BW-scarcity in
three scenarios (Veettil and Mishra, 2018). Under the land use
change scenario (Fig. 3d), the BW-scarcity change in the lower
reach of the XRB was obvious (e.g., Zhuzhou and Xiangtan). The
BW-scarcity in Zhuzhou and Xiangtan increased by 14.29% and
26.21%, respectively. Owing to the urban development in Zhuzhou,
the population grew rapidly and the water withdrawal increased
greatly. In addition, due to the increase of agricultural land in
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Xiangtan, the irrigation water demand increased significantly. Un-
der the climate variability scenario (Fig. 3e), the largest reduction in
the BW-scarcity in Xiangxiang reached 27.79%. This was probably
due to the increase in groundwater storage and water yield caused
by precipitation, which in turn increased the bluewater availability.
Under future land-use and climate scenarios (Fig. 3f), the BW-
scarcity in Changsha and Zhuzhou in the lower reach increased
significantly. As urban expansion and agricultural land grew, the
per capita integrated water consumption increased sharply,
resulting in a rapid decline in surface streamflow and groundwater.
From the above analysis, it could be concluded that population,
agricultural irrigation and precipitation were the three main envi-
ronmental factors affecting the BW-scarcity change.

4.3. Effects of climate variability and human activities on green
water and green water scarcity

The GW played a vital role in the agricultural sector, most of
which was carried out through rainwater irrigation systems. The
GWwas stored in the unsaturated soil layer, whichwasmainly used
for plant growth. Under the land use change scenario (Fig. 4a), the
decrease of GW was mainly distributed in Changsha in the lower
reach of XRB, and Guidong, Rucheng and Jianghua in the upper
Fig. 4. Changes of the spatial distribution of green water
reach. The main reason was that the urban expansion in the lower
reach increased the impervious surface and decreased the surface
water permeability as well as soil water content; the returning
farmland to forest policy in the upper reach promoted the area of
forest land, and the trees had deeper roots and higher water storage
capacity, which could reduce the green water resources. The in-
crease of GW was mainly distributed in Xiangtan, Liling and
Hengdong in the lower and middle reaches, which might be due to
the growth of agricultural land. Most crops were shallow-rooted
plants and were sensitive to high evapotranspiration environ-
ment. This led to the increasing in soil water retention capacity and
soil evaporation. Under the climate variability scenario (Fig. 4b), the
decrease of GW was mainly distributed in Changsha and Xiangtan
in the lower reach. The main reason was the decrease in evapora-
tion due to the increase in impervious surface. The increase of GW
was mainly distributed in Liuyang and Pingxiang in the lower
reach. The reason for this change may be that the temperature rise
led to an increase in crop evaporation and it was also possible that
the raising of the precipitation at that time led to an increase in soil
water content. For the Savannah River Basin of Southeastern USA,
Veettil and Mishra (2018) argued that the changes of climate
change patterns had a greater impact on GW. Compared with XRB,
it showed that different watersheds had different impacts on GW.
and green water scarcity in Xiangjiang River Basin.



J. Liang et al. / Journal of Cleaner Production 265 (2020) 1218348
Under future land use and climate scenarios (Fig. 4c), the
reduction of GW was mainly distributed in Changsha and Xiangtan
in the lower reach. The increase was mainly distributed in Xiang-
xiang, Liuyang and Pingxiang in the lower reach. For instance, in
Xiangxiang, the GW increased 32 mm and 163 mm under land-use
change scenario and climate variability scenario, respectively, while
the GW increased by 186 mm in the future land use and climate
scenario. It might be the comprehensive influence of crop evapo-
ration and precipitation. Land use and climate changes were not a
simple synergistic effect on GW changes, which may be the com-
bined effects of urban land, agriculture, precipitation, and tem-
perature (Veettil and Mishra, 2018; Wang et al., 2015).

In this paper, the effects of three scenarios on the spatial dis-
tribution of GW-scarcity were analyzed (Fig. 4). The change in GW-
scarcity was relatively small, which was lower than the change in
BW-scarcity. Under the land-use change scenario (Fig. 4d), the
decrease of GW-scarcity was mainly distributed in Guanyang and
Jianghua in the upper reach. The increase of GW-scarcity was
mainly distributed in Changsha and Xiangtan in the lower reach,
and Shaodong, Hengyang in the middle reach. The GW-scarcity of
Changsha and Xiangtan increased by 18.38% and 15.36%, respec-
tively. This was due to the increase in urban land and the decrease
of agricultural land, resulting in the decrease of the green water
availability. Under the climate variability scenario (Fig. 4e), the GW-
scarcity change in most of the counties located in the lower and
upper reaches was relatively high compared to other areas. For
instance, the GW-scarcity in Xiangtan and Jianghua increased by
8.64% and 5.98%, respectively. The main reason may be that the
reduction in precipitation decreased the soil water content. Refer-
ring to Fig. 4d and e, the spatial variation of GW-scarcity was
relatively flat (Fig. 4f). Accordingly, it could be analyzed that urban
land, agriculture and precipitation were the three main
Fig. 5. Results of redundancy analysis describing the relationships betwee
environmental factors affecting the GW-scarcity change.

4.4. Factors affecting blue/green water scarcity

The RDA and PCAwere used to analyze the correlation between
the blue/green water scarcity change and environmental factors
(i.e., population, urban land, agriculture, forest, temperature and
precipitation) and further determine the main environmental fac-
tors affecting the blue/green water scarcity change in each county
of XRB. For the RDA method, the characteristic values of axis 1 and
axis 2 were 44.2% and 5.83%, respectively (Fig. 5). The explanatory
variables of these two axes accounted for 50%, which seven envi-
ronmental factors could effectively explain the reasons for the blue/
green water scarcity change in 49 counties of XRB (Chen et al.,
2019). Combined with the PCA, Table 2 listed the correlation co-
efficients of the above eight indicators. The BW-scarcity was posi-
tively correlated with precipitation (r ¼ 0.425) and negatively
correlated with population (r ¼ �0.612). The GW-scarcity was
positively correlated with agriculture (r ¼ 0.429) and negatively
correlated with urban land (r ¼ �0.593). It could be seen that
precipitation, population, urban land and agriculture had a certain
impact on the spatial distribution of BW and GW. These resulted
validate sections 4.2 and 4.3.

The results of the CA were shown in the dendrogram (Fig. 7).
Five different clusters were obtained at the rescaled distance of 500
on the basis of the standardized values of studied each county in
XRB (Tepanosyan et al., 2018). The first and second cluster included
Pingxiang, Hengyang and Shaodong in the lower and middle rea-
ches of the XRB (Figs. 1 and 7). The third and fourth cluster included
Changsha, Xiangtan, Zhuzhou and other counties in the lower and
middle reaches. The fifth cluster included Yongzhou, Chenzhou,
Jianghua and other counties in the middle and upper reaches. Thus,
n blue/green water scarcity change and the environmental variables.



Table 2
Pearson correlation matrix of blue/green water scarcity, population, urban land, agriculture, forest, precipitation, temperature in Xiangjiang River Basin (n ¼ 49).

Blue water scarcity Green water scarcity Population urban land Agriculture Forest Precipitation Temperature

Blue water scarcity 1
Green water scarcity 0.394 1
Population �0.612*** �0.174 1
urban land �0.242 �0.593** 0.337 1
Agriculture 0.202 0.429** �0.001 �0.292 1
Forest 0.028 0.124 �0.278 �0.578** �0.612*** 1
Precipitation 0.425** 0.290 0.165 0.099 0.312 �0.348 1
Temperature 0.036 0.058 0.252 0.107 0.392 �0.423** 0.285 1

** Correlation is significant at the 0.01 level.
*** Correlation is significant at the 0.001 level.

Fig. 6. The hot spots of blue and green water shortage in Xiangjiang River Basin.
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Fig. 7. Dendrogram results from cluster analysis for 49 counties in Xiangjiang River Basin.
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it could be seen that the results of CA and RDA were consistent,
indicating that the spatial distribution of BW and GW-scarcity
change in 49 counties varies with climate and human factors
(Tepanosyan et al., 2018). Based on the above analysis, Fig. 6
showed that the hot spot areas of BW and GW shortage accoun-
ted for 29.7%, 4.6% and 3.4% of the total area in the lower reach,
middle reach and upper reach of XRB, respectively.
4.5. Implications for watershed water resource management

Investigating the influence of climatological and non-
climatological drivers simultaneously is essential to understand
their complex interactions, and their relative and cumulative
impact on BW and GW, which will provide information for water
resource management in the future. Shrestha et al. (2017) discov-
ered temperature and precipitation were the two important envi-
ronmental factors affecting BW and GW in the Athabasca River
Basin of Canada. Aparecida et al. (2018) quantified the relative
impact of land use change on water resources in two Brazilian
basins. In this research, the reserves and utilization of blue/green
water resources were inconsistent in each county of the XRB,
resulting in different levels of BW and GW-scarcity in each place
(Huang et al., 2019). In order to solve this contradiction, it was
necessary to discern the key factors affecting BW and GW-scarcity
and identify the hotspots of water shortage in the basin. It could
help to optimize the allocation of water resources and reduce the
risk of water shortages and agricultural drought.

Combined with Figs. 5 and 6, we analyzed the hot spots of BW
and GW shortage in Changsha, Xiangtan and Zhuzhou in the lower
reach of the XRB; Shaodong and Hengyang in themiddle reach; and
Jianghua in the upper reach. The critical factors of the spatial dis-
tribution of BW and GW were population and urban land in the
lower reach of XRB and the contribution rates were 61.2% and
59.3%, respectively. In the middle reach, the key factor was agri-
culture land with the contribution rate of 42.9%. In the upper reach,
the key factor was precipitation, and the contribution rate was
42.5%. Here were some suggestions for water resources planning in
hot spots.

With the growing population in Changsha, Xiangtan and
Zhuzhou, the shortage of blue/green water resources was more
serious. It needed to properly control the scale of urban expansion
and improve the water supply network, so as to alleviate the
pressure of water shortage. In Hengyang and Shaodong, the
reduction of agriculture and forest aggravated the shortage of GW
and government could reasonably planned red lines of ecology and
arable land to make the ecosystem sustainable and stable. In Jian-
ghua, due to the influence of reduced precipitation, it was neces-
sary to improve forest coverage and reservoir construction to
ensure the safety of local drinking water.
5. Conclusion

For this research, the SWAT model combined with future land
use and climate scenarios was successfully applied to quantify the
spatiotemporal distribution of blue/green water (scarcity) change
for the XRB during 2015 and 2050. It should be noted that most of
previous studies on BWand GWwere based on scenarios of present
land use and climate. There were few studies on future climate and
land use changes. Our study is the first attempt to comprehensively
evaluate the impacts of future land use and climate changes on the
spatiotemporal distribution of blue/green water (scarcity) change
using distributed hydrological model and multivariate statistics.
The conclusions were as follows:



J. Liang et al. / Journal of Cleaner Production 265 (2020) 121834 11
(1) As for the results of calibration and validation, the SWAT
model performed well at five hydrological stations in the
XRB.

(2) Land use and climate changes were not a simple synergistic
effect on blue/green water change. The spatiotemporal
changes of BW were principally influenced by the combined
effects of urban land, agriculture, forests and precipitation.
The spatiotemporal changes of GW were principally influ-
enced by the combined effects of urban land, agriculture,
precipitation and temperature.

(3) The BW-scarcity was mainly affected by precipitation and
population, which was positively correlated with precipita-
tion (r ¼ 0.425) and negatively correlated with population
(r ¼ �0.612). The GW-scarcity was mainly affected by agri-
culture and urban land, which was positively correlated with
agriculture (r ¼ 0.429) and negatively correlated with urban
land (r ¼ �0.593).

(4) We analyzed the hot spots of BW and GW shortage in
Changsha, Xiangtan and Zhuzhou in the lower reach of the
XRB; Shaodong and Hengyang in the middle reach; and
Jianghua in the upper reach. The hot spot areas of BW and
GW shortage accounted for 29.7%, 4.6% and 3.4% of the total
area in the lower reach, middle reach and upper reach of
XRB, respectively.

(5) In future research work, it is necessary to study the rational
allocation of BW and GW resources in the upper and lower
reaches of XRB to maximize the use of the resources.

This study would help regional watershed managers to make
reasonable decisions on water resources management and pro-
tection in the XRB. It could also provide reference for the study of
water resources in other basins.
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