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A B S T R A C T   

Water scarcity and quality deterioration often occur in economically developing regions, particularly during 
crises related to climate change or increasing human activities. The assignment of priority areas is considered a 
suitable strategy for stakeholders to mitigate water crises and cope with water stress. However, most studies 
focused on protecting water bodies in priority areas and did not consider the hydrological/hydrochemical/ 
hydroecological interaction between aquatic and terrestrial ecosystems. We divided a watershed into manage-
able areas to select priority areas for multiple water-related ecosystem services (WES-priority areas), considering 
the aquatic-terrestrial interactions to predict the effects of climate change and human activities. The proposed 
novelty framework couples the soil and water assessment tool and maximum entropy models with a systematic 
conservation planning tool. It uses the gross domestic product as the economic cost to assess dynamic changes 
and social-environmental driving forces. A case study is conducted in the Xiangjiang River basin, a modified 
watershed of the main tributary of the Yangtze River, China. Results revealed that most of the WES-priority areas 
were located in the southern and southeastern regions of the upper reaches in all climatic scenarios. The con-
servation efficiency of the WES-priority areas decreased from 1.264 to 0.867 in 50 years, indicating that the level 
of protection declined as climate change accelerated. The precipitation was positively correlated with the WES- 
priority area selection in all climate scenarios. The temperature was only negatively correlated with the WES- 
priority areas when it exceeded 20 ◦C, and this effect became more pronounced as the temperature increased. 
The topographic factors had the most crucial impacts on the upstream priority areas selection. The water flow 
regulation service played a leading role in identifying WES-priority areas in the middle reaches because the 
priority areas’ distribution here was closely related to the water yield, and its proportion decreased with the 
acceleration of global warming. The number of WES-priority areas was relatively low in the lower reaches. It was 
positively associated with the gross domestic product and the amount of built-up land. The proposed framework 
for WES-priority areas identification enables a sound trade-off between environmental protection and economic 
development.   

1. Introduction 

Water scarcity and water quality deterioration represent global 
threats to human society (Mekonnen and Hoekstra, 2016). The rise of 
the world population, improvement in living standards, change in the 
consumption structure, and an increase in irrigated agriculture are the 
main drivers of the increasing worldwide water crisis. An effective 
strategy to deal with complex water health problems is to develop 
separate control strategies for different river reaches and categorize 

rivers with similar water quality or societal demands in the same water 
function zone (Huang et al., 2010). 

The goal of assigning water function zones is to set water quality and 
quantity targets; however, the ecological protection of the water source 
is rarely considered, stemming from the misunderstanding of the water 
conditions required to support freshwater ecosystems (Richter et al., 
2003). Therefore, ecological protection has received increasing atten-
tion in the design of water protection schemes. Aquatic ecological pro-
cesses are affected in several ways. Most ecological responses (energy 
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flow, fish survival, recruitment, and community structure) are related to 
the flow (Rosenfeld, 2017). In addition to hydrological processes, the 
surface water quality affects the ecological environment in various 
reaches to different degrees due to the adaptability of the aquatic or-
ganism to the environment (Luo et al., 2020). Due to the complex in-
teractions between hydrology and hydrochemistry in aquatic 
ecosystems, a new method for partitioning water function zones is 
needed. 

Another major drawback of the current river zoning law is that the 
division of water function zones was designed for water pollution 
monitoring and management of the river channels, whereas land-based 
activities surrounding the water have been ignored. Nevertheless, some 
land-based activities may have a considerable influence on water. 
Recent studies have shown that changes in the terrestrial landscape have 
significant impacts on neighboring aquatic ecosystems. The conversion 
of natural landscapes often affects nutrient fluxes, soil integrity, and 
native species communities. This change will affect the hydrology of the 
basin by changing the rate of interception, evapotranspiration, infiltra-
tion, and groundwater recharge, resulting in changes in the timing and 
amount of river runoff (Baker and Miller, 2013). On the other hand, 
water-based activities may also have several important consequences for 
the terrestrial ecosystem. For example, agricultural water consumption 
accounts for 70% of China’s total water consumption, representing an 
important part of the social water cycle (Jiang, 2009). The water de-
mand by the industry is also the key factor influencing the local socio-
economic development level (de Loë et al., 2016). Thus, the 
stakeholders must develop an approach that integrates aquatic and 
terrestrial ecosystems to address the dynamics of the complex processes. 

Conservation prioritization could provide useful information for 
selecting priority areas to protect aquatic and terrestrial ecosystems by 
considering the economic values of water-related ecosystem services 
(WES) (Liang et al., 2021). Globally, water provides multiple economic 
values by providing drinking water and water for industrial and agri-
cultural production (Wei et al., 2017). Some ecosystem services are 
closely linked to many hydrological processes positively (e.g., water 
quality for fish raising) or negatively (e.g., water erosion) (Maes et al., 
2009). To provide information for water resource management, the 
water yield, the soil retention, and the water purification are the 
commonly used WES when considering the level of ecosystem services in 
certain regions, as those parameters represent the hydrological and 
hydrochemical factors involved in water demands. 

Since WES are spatially heterogeneous, and many synergies exist, the 
trade-offs are complicated and should be considered carefully to obtain a 
cost-effective solution (Balkanlou et al., 2020). Many conservation tools 
have been developed to select sites with a high conservation value and 
perform systematic conservation planning. As one of the most 
commonly used conservation tools, the systematic conservation plan-
ning tool Marxan has been widely applied to identify priority areas 
related to ecosystem services or wild habitats and exhibits excellent 
performance in identifying priority areas based on the principle of 
complementarity (He et al., 2021). However, studies on the selection of 
priority areas with specific ecosystem services have mostly focused on 
assessing ecosystems services values by obtaining rough statistical data 
from public institutions rather than combining specific relevant models. 
Besides, most Marxan modeling studies on habitat conservation 
frequently used climatic parameters as the primary factors affecting 
species distribution, whereas the hydrological and hydrochemical fac-
tors were rarely considered. However, studies have demonstrated that 
the hydrological regime substantially influences the distribution of 
freshwater fish (Hockley et al., 2014). Moreover, the priority area 
identification procedures that consider both economic and ecological 
values of WES have rarely been applied to different regions. 

To obtain more accurate and concise data representing WES in the 
whole river basin, some hydrological models could be utilized (Mal-
ekian et al., 2019). The soil and water assessment tool (SWAT) is a 
semi-distributed and continuous ecohydrological model. It has been 

utilized to simulate hydrological and hydrochemical output variables 
that could be regarded as indicators to evaluate WES (Schmalz et al., 
2016). Since the hydroecological related WES are important for arran-
ging function zones, the species distribution model could be used to 
simulate the geographic distribution of aquatic species. The maximum 
entropy model (MaxEnt) is commonly used because of its outstanding 
performance with limited data (Kim et al., 2020). It has been broadly 
utilized for modeling fish distribution in freshwater to assess river 
health, conserve species, and identify priority areas (Frederico et al., 
2014). Thus, the MaxEnt model was used in our study to estimate fish 
distribution as one WES. Studies have shown that excessive nitrogen and 
phosphorus inputs may lead to water eutrophication, causing oxygen 
level reduction because of the accumulation and decomposition of 
organic matter and leading to the suffocation of many fish and macro-
invertebrates (Hockley et al., 2014). Besides, sediment deposits may 
impact some developmental stages of fish, killing roe and destroying the 
gills of older fish (Sutherland and Meyer, 2007). Thus, we input the 
output variables from SWAT as some of the environmental factors into 
MaxEnt because those WES could affect fish distribution. 

This study was conducted in a modified watershed in the Xiangjiang 
River basin (XRB). The XRB is a major sub-watershed of the Yangtze 
River and the primary rice-growing area in southern China (Tian et al., 
2018). Due to multiple factors, such as climate change, rapid urbani-
zation, and human-induced activities, the local water ecosystem services 
in the XRB have been severely degraded in recent years (Liang et al., 
2020). Conflicts between humans and nature are common in this area; 
for example, it is difficult to balance the sustainability of the natural 
river ecosystem and economic development (Liang et al., 2018). Thus, 
the XRB is an ideal and representative area to investigate the selection of 
priority areas for WES. The results are significant for maintaining water 
ecological security and sustainable economic and social development in 
China (Xu et al., 2017). 

In this study, a novelty framework is proposed to integrate WES into 
the selection of priority areas using water-land function zoning under 
climate change. Furthermore, the processes of hydrology/hydro-
chemistry/hydroecology in the integrated terrestrial− aquatic system 
are also considered to ensure healthy aquatic and terrestrial ecosystems. 
The objectives of this study are to (1) quantify WES in different climate 
scenarios, (2) determine the WES-priority areas cost-effectively, and (3) 
investigate the impacts of social-environmental factors on the WES- 
priority area’s selection. Within this framework, the WES are quanti-
fied to support planning and decision-making regarding water resources 
protection in response to climate change. 

2. Study area 

The study was carried out in the XRB (Fig. 1). The Xiangjiang River is 
the main tributary of the middle and lower reaches of the Yangtze River. 
The XRB covers an area of 94,660 km2 with a mainstream river length of 
842 km. The mean elevation of the XRB is 326 m, with an average slope 
of 0.0134%. The XRB is located in the subtropical humid monsoon 
climate zone and experiences a hot, humid, and wet climate with an 
annual mean temperature of 16–18 ◦C and annual precipitation ranging 
from 1300 mm to 1600 mm. The area is heavily influenced by the 
monsoon, with most of the rainfall occurring in the summer from April 
to September. The Xiangjiang River originates from Jingfengling 
Mountain, and descends northward into the Yangtze River; it passes 
through diverse landscapes. The upper watershed is covered by alpine 
forests (63%), the middle reaches pass through an agriculture belt 
(30%), and the lower reaches meander through densely populated urban 
cities (2.7%). More than half of the habitants of the Hunan Province live 
in the XRB, thus the river is the undisputed mother river of 30 million 
residents, providing WES to both local economic and domestic water 
demands. 

Because the selected watershed is relatively big, spatial heteroge-
neity can be taken into consideration when selecting proper priority 
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areas. A larger spatial scale will increase the comprehensive evaluation 
of research results considering the complexity and environmental het-
erogeneity of aquatic-terrestrial systems. The diverse landscape patterns 
throughout this river basin provide an excellent system for investigating 

WES-priority area determination, simultaneously considering the com-
plex impacts of hydrological, hydrochemical, and ecological factors 
under various landscapes. Moreover, the studied area contains some 
regions that are undergoing the largest wave of rapid urbanization in 

Fig. 1. The map of the Xiangjiang River basin in the southcentral part of China showing the location of the gage stations and the land cover (2010).  

Fig. 2. The coupled methodological framework for identifying multiple water-related ecosystem services in the priority areas (WES-priority areas).  
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human history, which is one of the typical systems to reflect the impact 
of human activities on the WES, providing insight into the priority areas’ 
distribution with complex anthropogenic influence. The study for WES- 
priority areas identification in XRB reflects a sound trade-off between 
environmental protection and economic development. In summary, we 
think our findings have implications with regard to both the XRB case 
and other cases that have been facing a global warming crisis. 

3. Materials and methodology 

The proposed framework (Fig. 2) consists of the following steps: data 
preprocessing, future climate projections, the establishment, calibra-
tion, and validation of SWAT (Fig. S1), the establishment of the MaxEnt 
model to assess the fish distribution, and the systematic conservation 
planning for WES using the Marxan model, and the redundancy analysis 
to investigate the influence of climate change and social-environmental 
factors on the WES-priority areas. The identification of WES-priority 
areas while considering climate change provides an effective trade-off 
framework for environmental protection and economic development. 

3.1. Data sources 

The data inputs and sources are summarized in Table 1. The land use 
data were reclassified to fit the categories of the SWAT. The soil data 
were used to determine the soil properties, and a digital elevation model 
was used to delineate the XRB watershed in the SWAT simulation. The 
nitrogen and phosphorus pollution inputs containing crop cultivation, 
scattered small-scale animal feedlot operations, and rural sewage were 
calculated based on the Hunan Statistic Yearbook. During the estab-
lishment of SWAT, we used a threshold of 100,000 ha and delineated 53 
sub-basins, which were further divided into 621 HRUs. 

The daily weather records at 13 stations in the XRB from 1997 to 

2015 were obtained from the China Meteorological Administration to 
simulate the daily weather in the SWAT. The daily discharge at the 
hydrological stations (Hengyang, Hengshan, and Xiangtan), monthly 
sediment transport at the Xiangtan station from 1997 to 2015, and the 
monthly water quality at this station from 2005 to 2015 were obtained 
from the hydrological department of Hunan province (Fig. 1) to cali-
brate and validate the results of SWAT. 

The future climate projections (average for 2041–2060, hereafter 
referred to as 2050; average for 2061–2080, hereafter referred to as 
2070) were downloaded from the WorldClim website to process the 
future climatic scenarios in SWAT and MaxEnt models. The climate 
change scenarios in 2050 and 2070 were identical to the Representative 
Concentration Pathway (RCP) 4.5 emission scenario at 30 s resolution 
(1 km) of the General Circulation Model (GCM) (Mirdashtvan et al., 
2018). The transient climate projections for 1997–2080 were separated 
into several time slices in SWAT and MaxEnt operation: 1997–2015 was 
considered the baseline scenario, 2050 was the mid-term scenario, and 
2070 was the long-term scenario. 

The geographic coordinates of the feature locations were used in the 
MaxEnt model. The data were acquired from the Hunan Aquatic 
Ecological Monitoring Programs. To evaluate the potential effects of 
climate change on fish distribution in the XRB, we used 19 bioclimatic 
variables from the HadGEM2-AO model in the WorldClim database. The 
topographic data and the soil categories with chemical and physical 
properties were the same in the MaxEnt model and the SWAT model. 
The computational results of the SWAT, including the WYLD, SYLD, 
ORGN, and ORGP in the XRB, were used as input hydrological and 
hydrochemical data for the MaxEnt simulation. 

The Marxan model was implemented at a grid cell resolution of 3000 
× 3000 m because the SWAT and MaxEnt outputs were resampled to the 
same cell size; the gross domestic product (GDP) acquired from the 
Chinese Academy of Sciences was used as the protection cost of the 
Marxan model when identifying the priority areas. 

3.2. WES simulation and visualization 

In this study, SWAT was employed to simulate ecohydrological 
processes representing hydrological and hydrochemical related WES. 
The MaxEnt model was used to simulate fish distribution representing 
hydroecological related WES. 

The WES related to hydrological processes were selected and calcu-
lated based on the SWAT’s HRU output file (output.hru) for further 
analyses (Table S1). The WES we selected for further analysis were based 
on expert assessments. The experts came from water-related academic 
fields and were familiar with the environmental characteristics of the 
XRB. Three types of WES were derived from SWAT, including the water 
yield (WYLD), the simulated mean sediment yield (SYLD), and the levels 
of organic nitrogen (ORGN) and organic phosphorus (ORGP) to repre-
sent the ecosystem services of ‘water flow control’, ‘erosion control’, and 
‘water purification & nutrient status’ in the study area, respectively. 
These WES represent the essential ecosystem services in the forest- 
dominated ecosystems in the XRB, providing information for water 

Table 1 
Summary of data used in this work.  

Data Scale/ 
Resolution 

Data source Model 

DEM 90 m SRTM Digital Elevation Dataa; SWAT; 
MaxEnt 

Land use/land cover 1 km Chinese Academy of 
Sciencesb; 

SWAT 

Soil types and soil 
properties 

1 km Cold and Arid Regions 
Sciences Data Center at 
Lanzhouc; 

SWAT; 
MaxEnt 

Daily discharge 3 stations Hydrological Department 
(HD) 

SWAT 

Daily weather 13 stations China Meteorological 
Administration 

SWAT 

Reservoir 7 reservoirs HD SWAT 
Monthly sediment 1 station HD SWAT 
Monthly water 

quality 
1 station HD SWAT 

Crop management 
practice 

– Statistical Yearbook of Hunan 
Province 

SWAT 

Gross domestic 
product (GDP) 

1 km Chinese Academy of Sciences. 
Resource and Environment 
data platformd; 

Marxan 

Fish location – Hunan Aquatic Ecological 
Monitoring Programs 

MaxEnt 

Bioclimatic data 30 s WorldClime MaxEnt 
Nitrogen and 

phosphorus 
pollution inputs 

53 sub- 
basins 

Hunan Statistic Yearbook SWAT 

Future climate 
projections 

1 km WorldClime SWAT; 
MaxEnt  

a Source: http://srtm.csi.cgiar.org/;. 
b Source: http://www.resdc.cn/;. 
c Source: http://westdc.westgis.ac.cn;. 
d Source: http://www.resdc.cn/Default.aspx. 
e Source: https://www.worldclim.org/. 

Table 2 
Mean values (1999–2015) of the WES indicators in different seasons.  

Water-related 
ecosystem service 

Indicator Baseline Wet season 
(Mar to Jul) 

Dry season 
(Nov to Feb) 

Water flow WYLD 
(mm) 

65.81 99.94 31.22 

Erosion control SYLD (t/ha) 0.66 1.29 0.30 
Water purification & 

Nutrient status 
ORGN (kg 
N/ha) 

0.45 0.89 0.22 

ORGP (kg 
P/ha) 

0.06 0.11 0.03 

Note: WYLD: water yield; SYLD: Sediment yield; ORGN: Organic N yield; ORGP: 
Organic P yield (see text for details). 
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resource management. The minimum and maximum values of the four 
indicators for all HRUs were calculated (Table 2). 

The SWAT model was calibrated and validated using the historical 
data collected from three major hydrological stations (Hengyang, 
Hengshan, and Xiangtan) on the main stream of the Xiangjiang River 
from January 1997 to December 2015. The periods 1997 to 1998, 1999 
to 2005, and 2006 to 2015 were used as warm-up periods, calibration 
periods, and validation periods, respectively. The coefficient of deter-
mination (R2) and the Nash-Sutcliffe efficiency coefficient (NS) were 
used to evaluate the accuracy of the SWAT model (R2 all above 0.51 and 
NS all above 0.42) (Fig. S1) (Wang et al., 2019). 

Because Ctenopharyngodon idella, Hypophthalmichthys molitrix, Mylo-
pharyngodon piceus, and Aristichys nobilis were the four major Chinese 
carps in the middle reaches of the Yangtze River and Xiangjiang River is 
an important habitat of their natural stock resources, we simulated the 
distribution of those kinds of fishes to represent the hydroecological 
WES. We initially selected 44 environmental factors (i.e., bioclimatic 
data, fish occurrence data, topographic data, soil properties, hydrolog-
ical processes, and water quality) that might affect the extent of suitable 
fish habitat to model the current fish distributions. Since many variables 
were spatially correlated, Spearman’s rank correlation analysis was 
conducted to examine the cross-correlation. Variables with highly 
correlated relationships were removed to avoid multicollinearity. Out of 
44 initial variables, 31 were retained as indicator variables (Table 1). 

We used the MaxEnt model to simulate the current and future fish 
distribution in the XRB. We used 75% of the point data for model 
training and the remaining 25% for validating the model. The area 
under the receiver operating characteristic curve (AUC) was used to 
quantify model accuracy. AUC values 〈 0.7 indicate low accuracy, values 
between 0.7 and 0.9 indicate moderate accuracy, and values 〉 0.9 denote 
high accuracy. The AUC value of our MaxEnt model was 0.802. 

We mapped the water flow, erosion, water purification status, and 
fish distribution in the XRB in different climate scenarios using the 
SWAT and MaxEnt model. 

3.3. Systematic conservation planning 

The systematic conservation planning model Marxan is a widely used 
space optimization software for systematic conservation planning. Ac-
cording to the local stakeholder’s opinion, we input the regional GDP in 
2015 as the financial cost in the Marxan simulation. The goal of the 
objective function is to minimize the GDP loss to optimize the allocation 
of the WES-priority areas. A sub-basin with a high GDP is assumed to 
have (i) limited areas for conserving natural water resources because 
those areas were overexploited during urbanization; (ii) higher eco-
nomic losses for allocating crucial conservation zones since many huge 
infrastructure projects are being constructed here. 

Based on the planning units, the total GDP cost was calculated as 
(more details are provided in the Supplementary Information): 

Total GDP cost =
∑

PUs
GDP cost + 60

∑

PUs
Boundary

+
∑

30% of the total amount of WES

SPF × Penalty (1)  

where PU represents the planning units, and SPF refers to the conser-
vation feature penalty factor. 

The Marxan model was used to identify the WES-priority areas and 
obtain the conservation values of the planning units in the XRB under 
various climate change scenarios. The results of the Marxan model under 
different climate scenarios were obtained, and the WES-priority areas 
and the selection time of the priority areas (Fig. S3) were optimized. The 
results were summarized by determining the best solution (the conser-
vation network with the optimum locations meeting the objectives at 
minimum cost) for all climate scenarios. We also evaluated the fre-
quency of selecting the planning units from 100 runs in each climate 

scenario to evaluate the irreplaceability, which is defined as the likeli-
hood of the given location having a specific set of protection objectives. 

We adopted the method of Xu et al. (2013) to evaluate the conser-
vation efficiency of the WES-priority areas under different climate 
change scenarios: 

SE =

(
Ep

E

)/(
Sp

S

)

(2)  

where SE denotes the spatial conservation efficiency of the WES; Ep 
describes the total WES of the identified priority areas, E represents the 
total WES in the region, Sp is the area of WES-priority areas, and S is the 
total area. An SE index greater than 1 indicates high conservation effi-
ciency and vice versa. 

3.4. Key factors determining the spatial pattern of WES-priority areas 

Based on the level of sub-basins, the redundancy analysis (RDA) was 
conducted to investigate the impact of climate change (precipitation and 
temperature), topography (altitude and slope), GDP, and land use 
(forestland, grassland, cropland, built-up land, and water) on the WES- 
priority area’s selection. The analysis was implemented using the RDA 
modules embedded in the CANOCO software (version 4.5&5.0, Ithaca, 
USA). 

The integrity index (PI) and aggregation index (AI) calculated by the 
FRAGSTATS software were used to determine the dispersion of the WES- 
priority areas (He et al., 2000). 

4. Results and discussion 

4.1. Spatial distribution of hydrological and hydrochemical related WES 
in three climate change scenarios 

The WYLD, SYLD, ORGN, and ORGP all reached the highest values in 
the wet season (from March to July) and the lowest in the dry season 
(from November to February) (Table 2). As the result of intensified 
precipitation, the WYLD was 99.94 mm in the wet season, which was 
three times the amount in the dry season. The values of the SYLD, ORGN, 
and ORGP were four times higher in the wet season than in the dry 
season. The highest average value of SYLD in the wet season was 1.29 t/ 
ha. Since surface runoff is higher in the wet season due to high-intensity 
precipitation, soil erosion was higher (Casazza et al., 2018). In the XRB, 
farming practices are mainly carried out during wet seasons. The large 
amount of effluents from agricultural activities in the wet season carries 
nutrient-rich moisture, such as nitrogen and phosphorus, to the XRB. 
Thus, the values of ORGN and ORGN were higher in wet seasons (Zhang 
et al., 2019). Moreover, frequent rainfall in wet season could further 
increase decomposition and nutrient release from the natural plants and 
soil profiles, which is another reason causing the higher outputs of 
ORGN and ORGP (Yan et al., 2019). The seasonal variation of WES did 
not have a substantial impact on the spatial distribution of ecosystem 
services in the XRB but had a significant impact on ecosystem service 
values (Fig. 3). Generally, as the rainfall increased between March and 
July and the flood season of the Xiangjiang River approached, the values 
of the four ecosystem service indicators increased. 

Most areas that were not forestland had relatively low water flow 
values due to high runoff coefficients in those regions (Fig. 3a) (Liu et al., 
2020). Since forestland has a higher soil water retention capacity than 
other types of LULC, more runoff occurs than in non-forest land during 
floods (Malekian and Azarnivand, 2016). Higher values of SYLD were 
found in high-elevation grassland in the southwest and north of the XRB, 
whereas the lowest SYLD values were observed in areas with flat terrain 
and low rainfall (Fig. 3b). Since grasslands do not have a tree canopy to 
intercept raindrops or litter layers to prevent splashing during rain 
events, the higher sediment yield was not surprising (Zhou et al., 2016). 
Moreover, highly erosive areas were mostly found in cropland, 
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especially in valleys with steep slopes and high annual rainfall. Opening 
up wastelands could be one reason for the high erosion (Xie et al., 2019). 
Besides, high-intensity rainfall loosens soil particles, which are trans-
ported with the water downhill into streams and valleys (Pimentel and 
Burgess, 2013). The most common soil type in this area is Alisol, which 
is unstable and prone to erosion. The lower erosion levels of cultivated 
fields demonstrated the protective role of row crops for soil and water 
conservation. The ORGN and ORGP reached their maximum values 
(0.903 kg/ha and 0.111 kg/ha, respectively) in the southern areas, 
where their spatial patterns were similar to SYLD (Fig. 3c). Specifically, 
the largest values occurred in agricultural and forest areas, indicating 
that they were the primary sources of ORGN and ORGP. The spatial 
patterns of the four WES in the mid-term and long-term scenarios are 
shown in Fig. S2. In the future climate scenarios, the lower values of the 
WYLD were found in the southcentral areas, and the areas with low 
values decreased from 2050 to 2070. Compared to 2050, the southern 
regions with steeper slopes showed the higher level of WYLD in 2070. 
The SYLD, ORGN, and ORGP had similar spatial patterns between 2050 
and 2070. The highest values of those indices occurred in the south 
(0.378 t/ha, 0.639 kg/ha, and 0.078 kg/ha, respectively for mid-term; 
0.364 t/ha, 0.662 kg/ha, and 0.081 kg/ha, respectively for long-term). 

4.2. Spatial distribution of hydroecological related WES in three climate 
change scenarios 

In the current climate scenario, the most suitable areas for fish spe-
cies were found in the freshwater reaches of the main stem of the 
Xiangjiang River in the downstream section (Fig. 4). The remaining 
regions in the XRB had lower suitability or were deemed unsuitable for 
fish. The outputs indicated that the fish were distributed in the lower to 
medium elevations in the current climatic condition. The model pre-
dicted that the most suitable areas for fish in 2050 would be located in 
the middle mainstream of the Xiangjiang River and the downstream 
tributaries in the eastern section of the basin. In 2070, the optimum 
locations for fish survival would be located in the upper mainstream and 
parts of the branches in the middle valley, increasing the range following 
climate warming. These results were consistent with recent studies that 
predicted species would move to higher elevations to adjust to the future 
climate (McMahan et al., 2020). Barriers such as waterfalls could pre-
vent species from moving upstream, restricting species movements and 
threatening their lives. Higher values of ORGN, ORGP, and SYLD were 
found in the southern areas, indicating lower suitability for fish. Higher 
levels of ORGN and ORGP may cause eutrophication, which may result 
in the total depletion of oxygen and the generation of harmful gasses, 
such as hydrogen sulfide and methane, threatening fish survival (Nyenje 
et al., 2010). The accumulation of sediments may adversely impact 
spawning, inhibit migration, and interfere with food intake (Kukuła and 

Fig. 3. Maps of the WES surrogates in the SWAT model in the baseline scenario (1999–2015). (a) Water yield representing the water flow; (b) sediment yield 
representing erosion control; (c) organic-N yield, and (d) organic-P yield representing water purification & nutrient status. 
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Bylak, 2020). 

4.3. Systematic conservation planning utilizing WES-priority areas 

4.3.1. Identifying priority areas for multiple WES 
The output of the Marxan model indicated that the spatial distribu-

tion of the WES-priority areas differed for different climate scenarios 
(Fig. 5), and the overlap between the area in different scenarios was 
about 13% of the total area. Most of the overlap occurred in the south 
and east of the study area. Since forest land accounted for 60% of the 
study area, it substantially affected water cycle and nutrient cycle in the 
entire study area. Thus, priority areas were centered in forest land with 
higher altitudes in the eastern XRB. Priority areas were also found at the 
source of the rivers in the southern portion of the XRB; thus, these areas 
require sufficient attention and protection. Priority areas located in the 
central area of the XRB during the baseline scenario shifted to the 
downstream area in the mid-term and long-term scenarios due to high 
water flow in the middle and upper reaches of the XRB as a result of 
climate change. The number of patches and the average patch size of the 
WES-priority areas in three climate change scenarios were 15 and 1214 
km2 (baseline), 19 and 1053 km2 (mid-term), and 22 and 837 km2 (long- 
term), respectively. 

In each climate change scenario, the patches of the WES-priority 
areas were clustered, and their overall PI and AI were 99.01 and 
96.52 (baseline), 99.177 and 96.5911 (mid-term), and 98.94 and 96.15 
(long-term), respectively, indicating the largest clustering effect in the 
mid-term scenario. Moreover, the WES-priority areas were more 
dispersed in the long-term climate scenarios than in the baseline 
scenario. 

The conservation efficiency index of the WES-priority areas is listed 
in Table 3. The index was the highest for the baseline climate scenario. 
The WES-priority areas with the highest values were located in the upper 
reaches of the XRB (south and southeast of the study area). The average 
conservation efficiency of the WES-priority areas was lower in the 
climate change scenarios than the baseline scenario. In the mid-term and 
long-term climate scenarios, the conservation efficiency was less than 1, 
indicating an adverse effect of climate change. 

4.4. The social-environmental factors associated with the location of the 
WES-priority areas 

4.4.1. The effect of climatic factors on WES-priority area selection 
The results of the analysis of the impact factors and characteristics of 

climate change on the WES-priority areas are shown in Fig. 6a. Precip-
itation and temperature were selected as key variables to represent the 
impact of climate change (Fig. 6a-1, b-1, and c-1). A positive correlation 
between precipitation and WYLD is observed in the scatterplot. Studies 
have shown that an increase in precipitation in the future significantly 
improved the WYLD, affecting certain priority areas (Shirmohammadi 
et al., 2020). The cumulative proportion of precipitation was 18.4% in 

Fig. 4. Fish distribution in the baseline scenario (a), mid-term scenario (b), and (c) long-term scenario.  

Fig. 5. Priority areas for conserving multiple WES in all climate scenarios.  

Table 3 
Conservation efficiency of WES in three climate change scenarios.  

Scenarios Average conservation efficiency 

Baseline (1999–2015) 1.264 
Mid-term (2050) 0.937 
Long-term (2070) 0.867  
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XRB. Moreover, the fish distribution was positively correlated with the 
precipitation in all climatic scenarios. Our result is consistent with 
previous study that fish distribution correlated positively with precipi-
tation (Kinard et al., 2021). These findings suggest that aridification is 
linked to the extinction of competitive and environmentally sensitive 
taxa, potentially resulting in less favorable community states. 

In the baseline climate scenario, the average air temperature was 
below 20 ◦C (Table S2). The angle between the selected WES-priority 
areas and the temperature in the graph was almost vertical, indicating 
that the temperature had a negligible effect on the WES-priority areas 
(Fig. 6a-1). In contrast, in the mid-term scenario, the WES-priority areas 
were highly and negatively correlated with the temperature (Fig. 6b-1), 
and the correlation was even higher in the long-term climate scenario 
(Fig. 6c-1). In the Mediterranean island of Crete, 3 ◦C warming caused a 

reduction in water resources by 10–30% (Koutroulis et al., 2016). In 
addition, a variable infiltration capacity (VIC) model was used to 
simulate WYLD in different temperature scenarios. The results showed 
that the streamflow sharply decreased as the temperatures increased 
(Weltzin et al., 2003). Our results show a negative relationship between 
temperature and WYLD under future climate scenarios confirmed those 
results. The positive correlation between temperature and nutrient 
outputs (ORGN & ORGP) was found in all climatic scenarios. It might be 
attributed to the fact that the farming practices are mainly carried out 
when temperature is higher. The effluents from cultivation carry 
nutrient-rich moisture to the XRB. Numerous studies have also sug-
gested that the increased temperature may hasten the mineralization of 
soil organic matter, which releases dissolved nutrients, particularly ni-
trogen and phosphorus (Andriamananjara et al., 2019). 

Fig. 6. RDA ordination diagram based on the spatial-temporal variability of the priority areas under three climate change scenarios. (a) baseline; (b) mid-term; (c) 
long-term. Different groupings are enclosed in polygons based on the priority areas (a-2, b-2, c-2) and the priority areas in different locations in the Xiangjiang River 
Basin (a-3, b-3, c-3). 
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4.4.2. The social and economic factors affecting the distribution of the 
WES-priority areas in different reaches 

Since downstream water users rely on the upstream water supply, it 
is crucial to understand the differences in the WES-priority area distri-
butions in different reaches. The number of WES-priority areas and their 
distribution differ in the upper, middle, and lower reaches of the XRB 
(Fig. S4). 

Climate change had a negligible impact on the WES-priority area’s 
distribution in the upstream basin of the XRB. In the upper basins of the 
XRB with rugged terrain, the topographic factors were crucial factors 
influencing the selection of the upstream WES-priority areas, particu-
larly the slope, whose cumulative slope proportion was 20.9% (Fig. 6a). 
The selection of WES-priority areas with steep slopes and high altitudes 
in the upper basin of the XRB was slightly affected by climate change 
(Fig. 6a-3, b-3, and c-3). The regions with steep slopes and high altitudes 
are mainly the source of the rivers in the upper basin; thus, these areas 
require sufficient attention and protection in all the climate scenarios, 
which is in agreement with a previous study (Crossman et al., 2012). 
Besides, the upper basin of the XRB contained most of the WES-priority 
areas (Fig. 6a-3, b-3, and c-3). Thus, decision-makers and stakeholders 
should focus on WES-priority areas in the upper reaches. 

The WES-priority areas proportion in the middle reaches declined 
from 6.4% in the baseline scenario to 5.6% in the mid-term and 4.5% in 
the long-term, respectively (Fig. 5 and Fig. 6a-3, b-3, and c-3). The 
middle reaches, including rapidly developing counties that have large 
areas of cropland and many urban areas, are areas where urbanization 
may increase due to a population boom and industrialization. Therefore, 
large amounts of readily available water will be required. The WES- 
priority areas selection is closely related to the WYLD in that areas in 
all scenarios (Figs. 1 and 6). As climate change accelerates, the available 
water supply in some parts of the middle reach will decrease (Table 3); 
thus, these areas may not require future protection and will not be 
selected as WES-priority areas. Moreover, the agricultural planting in 
the middle reaches could promote global warming, because a consid-
erable increase in crop yield resulting from increased irrigation and 
fertilizer application may cause increased greenhouse gas emissions 
(Liu et al., 2005). Since the selection of the WES-priority areas are 
strongly and negatively correlated with the temperature (Fig. 6), the 
WES-priority areas proportion in that areas decreases over time. Overall, 
because of the incremental demand for water resources in the middle 
reaches, there is a need to consider the influence of future climate on 
hydrological factors for modifying water resources management 
schemes (Mirdashtvan et al., 2021). 

Relatively few WES-priority areas are located in the lower reaches in 
all climate scenarios. The downstream basin is the social and economic 
center of Hunan province, whose economy is well developed compared 
to other basins, with a high urbanization level (Ying et al., 2007). The 
WES-priority areas distribution of the lower reaches is relevant with the 
built-up land and GDP (Fig. 6), all of which could explain 14.7% of the 
total variance maximumly, confirming the above results. The high ur-
banization in the lower reaches results in a high proportion of imper-
vious areas. Further, the aquifers in this area were destroyed by 
excessive exploitation during economic development. Therefore, there 
are few places suitable for WES-priority areas. The number of 
WES-priority areas is inadequate in the lower reaches in all scenarios. A 
large proportion of the water resources for many citizens comes from the 
tributary of the Xiangjiang River, i.e., the Liuyang River (Yang et al., 
2020). Priority areas 6 and priority areas 10 are located in the watershed 
of the Liuyang River. Those regions should be considered as 
WES-priority areas in all scenarios to meet the water demand of the 
population in the central city. Both the water quality and WYLD are 
important aspects that should be evaluated in those regions. 

The clustering degree of the WES-priority areas is also dependent on 
climate change. The WES-priority areas have relatively high similarity 
and high aggregation in the mid-term climate scenario. In contrast, in 
the long-term scenario, the WES-priority areas are less similar and less 

clustered (Fig. 6b-2 and c-2). This result is consistent with the WES- 
priority area’s location (Fig. 5). The low aggregation and dispersed 
distribution of the WES-priority areas could increase their protection 
costs, causing difficulties for management and maintenance (Hawkins, 
2004). 

5. Conclusions 

In this study, a novelty framework was proposed to integrate WES 
into the water resource priority areas management under climate 
change. Furthermore, the hydrological/hydrochemical/hydroecological 
processes in the integrated terrestrial− aquatic system were also 
considered. In the climate change scenarios, the priority management 
areas were concentrated in the southern and southeastern regions of the 
upper reaches. The conservation efficiency of the WES-priority areas 
declined over time. The precipitation was positively correlated with the 
WES-priority area selection in all climate scenarios. The temperature 
was only negatively correlated with the WES-priority areas when it 
exceeded 20 ◦C, and this effect became more pronounced as the tem-
perature increased. 

In the upper basin, the topographic factors were the most crucial 
factors for the selection of the upstream WES-priority areas. Thus, the 
WES-priority area selection was only slightly affected by climate change. 
In the middle basin, the WES-priority area’s selection was closely related 
to the WYLD in all scenarios, and the number of priority areas in that 
area declined along with climate change. Relatively few WES-priority 
areas were located in the lower reaches in all climate scenarios, and 
WES-priority areas were positively associated with the GDP and the 
amount of built-up land. According to this study, to preserve healthy 
aquatic and terrestrial ecosystems, the elements of hydrology, hydro-
chemistry, and hydroecology should be addressed in the selection of 
priority areas. 
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