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Abstract 20 

The wide use of perfluorooctane sulfonate (PFOS) has led to increasing concern 21 

about its human health risks over the past decade. In vivo and in vitro studies are 22 

important and effective means to ascertain the toxic effects of PFOS on humans and 23 

its toxic mechanisms. This article systematically reviews the human health risks of 24 

PFOS based on the currently known facts found by in vivo and in vitro studies from 25 

2008 to 2018. Exposure to PFOS has caused hepatotoxicity, neurotoxicity, 26 

reproductive toxicity, immunotoxicity, thyroid disruption, cardiovascular toxicity, 27 

pulmonary toxicity, and renal toxicity in laboratory animals and many in vitro human 28 

systems. These results and related epidemiological studies confirmed the human 29 

health risks of PFOS, especially for exposure via food and drinking water. Oxidative 30 

stress and physiological process disruption based on fatty acid similarity were widely 31 

studied mechanisms of PFOS toxicity. Future research for assessing the human health 32 

risks of PFOS is recommended in the chronic toxicity and molecular mechanisms, the 33 

application of various omics, and the integration of toxicological and epidemiological 34 

data. 35 
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1. Introduction 57 

Perfluoroalkyl substances (PFAS) are a group of man-made chemicals that have 58 

been produced and used globally since the 1940s (Paul et al., 2009). The excellent 59 

thermal stability, chemical stability, and surfactant activity of these substances enable 60 

them to be widely used in various industrial processes and products (Buck et al., 61 

2011). Perfluorooctane sulfonate (PFOS) is one of the most widely used PFAS. The 62 

substance contains a hydrophobic and lipophobic perfluoroalkyl chain and a sulfonic 63 

acid group that adds the polarity (the inset of Fig. 1). These structural characteristics 64 

support their applications as water and oil repellents, firefighting foams, lubricants, 65 

surfactant additives, and coating agents (Paul et al., 2009). The wide use of PFOS 66 

arouses concern on its toxic effects and human health risks, which is reflected by the 67 

increasing number of publications on the related topic in the past decade (Fig. 1). Due 68 

to the long perfluoroalkyl chain and stable carbon-fluorine (C-F) bonds, PFOS is 69 

difficult to be transformed and degraded naturally, resulting in their persistence in the 70 

environment and human body. PFOS have been found in food, drinking water, various 71 

environmental compartments, and even human tissue (Sharma et al., 2016; Domingo 72 

and Nadal, 2017; Dalahmeh et al., 2018; Jian et al., 2018). In a study about the 73 

accumulation of PFAS in human tissues, Pérez et al. (2013) confirmed the occurrence 74 

of PFOS in brain, kidney, liver, and lung, and found that PFOS was more prevalent in 75 

the liver. According to biological monitoring data of PFAS concentrations in blood, 76 

hair, milk, nail, and urine, PFOS was predominantly found in human blood (Jian et al., 77 

2018). People are mainly exposed to PFOS through the contaminated food and 78 
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drinking water, use of consumer products containing PFOS, and occupational 79 

exposure in the production of PFOS or related products. Considering the human 80 

exposure and accumulation of PFOS, it is significant to study their human health 81 

risks. 82 

 83 

Fig. 1. Number of publications on PFOS in the field of environmental sciences, toxicology 84 

and public environmental occupational health from 2001 to the present. The data were 85 

extracted from Web of Science Core Collection in September 2018 by searching publications 86 

containing “perfluorooctane sulfonate” or “PFOS” in the topic and refined by Web of Science 87 

Categories. The inset shows the chemical structure of PFOS. 88 

 89 

In order to investigate the toxic effects and mechanisms of PFOS, the studies 90 

were mainly conducted with animal models under simulated conditions of human 91 

exposure, and then the results were extrapolated to human based on the similarities 92 

between humans and laboratory animals in physiological processes and metabolism of 93 

PFOS. Generally, these experiments can be categorized into in vivo and in vitro 94 

studies. In vivo study is performed with the whole living animal, and can be applied 95 
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for investigating various toxic effects (e.g., acute toxicity, chronic toxicity, and 96 

cumulative toxicity). Dissociative organs, cells, or organelles are utilized for in vitro 97 

study, which mainly reveals the specific toxic mechanisms and metabolic processes. 98 

Many in vivo and in vitro studies have suggested that exposure to PFOS may lead to 99 

adverse effects on human health, such as hepatotoxicity, neurotoxicity, reproductive 100 

toxicity, immunotoxicity, thyroid disruption, cardiovascular toxicity, pulmonary 101 

toxicity, and renal toxicity (Mao et al., 2013; Chou et al., 2017; Soloff et al., 2017; 102 

Tang et al., 2017; Chen et al., 2018a; Chen et al., 2018b; Han et al., 2018b). Among 103 

these toxic effects, the studies of hepatotoxicity, neurotoxicity, reproductive toxicity, 104 

and immunotoxicity were relatively more. However, due to the high complexity of 105 

human body and PFOS metabolism, the toxic effects and mechanisms are not fully 106 

understood (Kariuki et al., 2017; Lai et al., 2017a; Liang et al., 2017; Xu et al., 2018). 107 

It is necessary to study the human health risks of PFOS in more detail. 108 

In this article, the human health risks of PFOS are systematically reviewed based 109 

on the currently known facts found by in vivo and in vitro studies from 2008 to 2018. 110 

Study selection is conducted based on PRISMA guidelines (Liberati et al., 2009), and 111 

the process is outlined in Fig. 2. Main toxic effects of PFOS include hepatotoxicity, 112 

neurotoxicity, reproductive toxicity, immunotoxicity, thyroid disruption, and 113 

cardiovascular toxicity. For each toxic effect, the PFOS-induced symptoms and 114 

pathological changes are first introduced, and then the possible mechanisms proposed 115 

in the reviewed articles were analyzed and illustrated. Epidemiological evidence that 116 

supports the results from in vivo and in vitro studies of PFOS toxicity is discussed, 117 
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and some future research needs are proposed. 118 

 119 

Fig. 2. Flow diagram of screening and selecting studies for this review. 120 

 121 

2. In vivo and in vitro studies for risk assessment of PFOS  122 

In vivo and in vitro studies are basic and effective ways to assess the human 123 

health risks of chemicals. For assessing the toxic effects of PFOS, many studies have 124 

been conducted with various in vivo and in vitro models (Fig. 3). 125 
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 126 

Fig. 3. Assessing the human health risks of PFOS by in vivo and in vitro studies. 127 

 128 

2.1. In vivo studies 129 

In vivo studies use the whole animals for toxicological experiments, and can 130 

reflect multiple types of toxic effects (e.g., acute toxicity, subacute toxicity, and 131 

chronic toxicity) with strictly controllable exposure conditions. For in vivo studies of 132 

PFOS toxicity, rats, mice, and zebrafish are the most widely used models, as these 133 

animal models show high anatomical, pathological, and genetic similarity to humans 134 

(Lieschke and Currie, 2007). Generally, rats and mice are exposed to PFOS via food, 135 

drinking water, or gavage, while zebrafish are exposed to PFOS through the aquatic 136 

environment for their living. Due to the characteristics of hydrophobicity and 137 
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lipophobicity, PFOS has to be first dissolved in water containing an organic cosolvent 138 

when being added to the food or water. Dimethylsulfoxide (DMSO) and Tween 80 are 139 

commonly used cosolvents. After exposure to PFOS, the body weight, body length, 140 

organ weight, and specific toxic symptoms of experimental animals are usually 141 

measured or recorded. Based on different objectives of the toxicity studies (e.g., 142 

hepatotoxicity, neurotoxicity, reproductive toxicity, and immunotoxicity), various 143 

toxicity indicators can be further determined with biochemical analysis of serum and 144 

histopathological examination. For example, in a study about the hepatotoxicity of 145 

PFOS, Wan et al. (2012) used mice as in vivo models. In their experiments, PFOS 146 

was dissolved in DMSO solution and then mixed with corn oil. The mice in 147 

experimental group were fed with corn oil containing PFOS, while those in control 148 

group were fed with corn oil containing only DMSO. The body weight and liver 149 

weight were measured on the designated dates to assess the fat accumulation in liver, 150 

and histological examination of liver sections was further conducted with hematoxylin 151 

staining to show the cytoplasmic vacuolations after PFOS exposure. 152 

 153 

2.2. In vitro studies 154 

In vitro studies are conducted with dissociative organs, cells, or organelles.  155 

Compared with in vivo studies, in vitro studies can be simpler, faster, and more 156 

economical. Additionally, another important advantage of in vitro studies is that 157 

human cells can be involved, which provides a way to solve the problem of species 158 

differences in assessing the toxicity to humans. Thus, for the in vitro studies of PFOS 159 
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toxicity, many human cells or cell lines are used. For example, SH-SY5Y, a human 160 

derived cell line, has been used as an in vitro model of neuronal function and 161 

differentiation in PFOS neurotoxicity tests (Chen et al., 2014; Chen et al., 2018b). For 162 

the in vitro exposure, PFOS is added to cell culture media. The final concentration of 163 

the cosolvent (e.g., DMSO) in culture media is usually kept below 0.1% (v/v) to 164 

minimize the cytotoxic effects of solvent (Du et al., 2013). After exposure to PFOS, 165 

the cytotoxicity, apoptosis, oxidative stress, and inflammatory cytokines are generally 166 

determined to elucidate the toxic mechanisms. In a study of PFOS-induced 167 

neurotoxicity, Chen et al. (2018c) used astrocytes as in vitro models and exposed 168 

them to PFOS dissolved with DMSO. The authors determined the cell viability and 169 

the secretion of interleukin-1 beta (IL-1β, a pro-inflammatory cytokine) to assess the 170 

physiological effects of PFOS on astrocytes. They further conducted the Western blot 171 

analysis and discussed the signaling pathway by which PFOS mediated the secretion 172 

of IL-1β in astrocytes. However, in vitro studies lack the dynamic processes in whole 173 

animals, and are difficult for assessing the chronic toxicity of PFOS. In vivo and in 174 

vitro studies each have their own advantages and disadvantages. They should 175 

complement and verify each other in the toxicity tests of PFOS. 176 

 177 

3. Toxic effects of PFOS 178 

3.1. Hepatotoxicity 179 

Hepatotoxicity is chemical-driven liver injury (Mahmoud et al., 2017). Liver is a 180 

large organ of many animals and humans, and plays a vital role in metabolism and 181 
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detoxification. Many studies have shown that liver is the major target organ for PFOS 182 

bioaccumulation (Fai Tse et al., 2016; Wan et al., 2016; Han et al., 2018b). PFOS can 183 

cause hepatotoxicity and result in hepatic steatosis, hepatomegaly, hepatocellular 184 

hyperplasia, and oxidative damage of hepatocytes (Du et al., 2009; Wan et al., 2012; 185 

Huang et al., 2014; Fai Tse et al., 2016; Lai et al., 2017b; Xu et al., 2017). Hepatic 186 

steatosis (also known as fatty liver disease) is a condition in which excess fat 187 

accumulates in liver cells, and is often observed after PFOS exposure. Main functions 188 

of the liver in fat metabolism include oxidation of fatty acids for body energy supply, 189 

synthesis of cholesterol, phospholipids and lipoproteins, and transformation of 190 

proteins and carbohydrates to fat (Mourya et al., 2018). Wan et al. (2012) found that 191 

excess fatty acids and triglycerides were accumulated in the hepatocytes of mice and 192 

the liver weights were significantly increased after oral gavage of 10 mg/kg/day PFOS 193 

for over 3 days. Cheng et al. (2016) measured the content of triglyceride and 194 

cholesterol in zebrafish liver after chronic exposure to 0.5 μM (~0.25 mg/L) of PFOS 195 

for 5 months, and observed a significant increase of triglyceride in all zebrafish but a 196 

cholesterol increase only in male zebrafish. Hepatocellular hyperplasia is an increase 197 

in the amount of hepatocytes that results from abnormal cell proliferation, and is 198 

commonly a preneoplastic response (Evan and Vousden, 2001). In a study of PFOS 199 

hepatotoxicity to human hepatocytes, Cui et al. (2015) found that PFOS could 200 

stimulate the cell proliferation in vitro at the doses of 50, 100, 150, and 200 μM but 201 

inhibit the cell viability at the doses of 300, 400, 500, and 600 μM (1 μM ≈ 0.5 mg/L). 202 

Both the in vivo and in vitro studies have suggested that exposure to PFOS can cause 203 
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oxidative damage to hepatocytes, which is mainly reflected by the production of 204 

reactive oxygen species (ROS) and alteration of oxidative stress biomarkers such as 205 

antioxidant enzymes and peroxidation products (Khansari et al., 2017; Han et al., 206 

2018a). Additionally, in a comparative transcriptomic analysis of zebrafish fatty liver 207 

(exposed to 0.5 μg/L of PFOS for six days), 241 differential expressed genes were 208 

found to be overlapped between PFOS-exposed and mutant zebrafish (fatty liver 209 

mutant), and the zebrafish in the two groups shared genes enriched in hepatitis, 210 

fibrosis, and cirrhosis of liver cells (Fai Tse et al., 2016). PFOS and perfluorooctanoic 211 

acid (PFOA) are both saturated fluorinated chain with eight carbons. The similar 212 

chemical structure results in similar bioaccumulation potential of them in organisms. 213 

Many studies were conducted with hepatotoxicity comparison between PFOS and 214 

PFOA. Similar hepatotoxicity effects (e.g. hepatic steatosis and hepatomegaly) were 215 

also observed in PFOA exposure (Song et al., 2016b; Wu et al., 2017; Zhang et al., 216 

2019). 217 

The main mechanisms of PFOS-induced hepatotoxicity involve interfering with 218 

fat metabolism, causing oxidative stress, and disturbing cell cycle progression. 219 

Hepatic steatosis usually occurs when the process of fat metabolism is disrupted and 220 

fat (or fatty acid) excessively accumulates in the liver (Reddy and Rao, 2006). Many 221 

studies have shown that PFOS can inhibit the β-oxidation of fatty acid, leading to the 222 

accumulation of excessive fatty acids and triglycerides in hepatocytes due to the 223 

structural similarity of PFOS to fatty acids (Wan et al., 2012; Cheng et al., 2016; 224 

Jacobsen et al., 2018). Fatty acid β-oxidation is an important stage of fat catabolism 225 
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(Fig. 4), and it is so named as the beta carbon of the fatty acid is oxidized to a 226 

carbonyl group in the process (Bartlett and Eaton, 2004). Through the β-oxidation 227 

process, fatty acid molecules can be broken down and generate acetyl-coenzyme A 228 

(acetyl-CoA) in the mitochondria. Then, acetyl-CoA enters the Kreb’s cycle and 229 

undergoes complete oxidation (Akram, 2014). Exposure to PFOS can interfere with 230 

this vital physiological process. Wan et al. (2012) determined the rate of 231 

mitochondrial β-oxidation in mouse liver after oral PFOS exposure for 14 days and 232 

observed a significant inhibiting effect (nearly half decrease in the oxidation rate) in 233 

all treatments with various concentrations of PFOS (1, 5, and 10 mg/kg/day). Cheng 234 

et al. (2016) also reported the inhibition of mitochondrial fatty acid β-oxidation in 235 

zebrafish liver after chronic exposure to 0.5 μM (~0.25 mg/L) of PFOS for 5 months, 236 

but the expression of some key enzymes involved in the β-oxidation increased. The 237 

authors explained that the increased expression of these enzymes might result from a 238 

compensatory mechanism for the decreased β-oxidation. Oxidative stress is another 239 

cause of the hepatotoxicity of PFOS. The generation of excessive ROS in hepatocytes 240 

leads to oxidative stress and damage of hepatic cells. Mitochondrion is the main 241 

intracellular source of ROS (Turrens, 2003). The electron transport chain of 242 

mitochondrion may leak electrons to oxygen when disturbed, resulting in partial 243 

reduction of molecular oxygen to superoxide anion (a precursor of most other ROS). 244 

Khansari et al. (2017) reported that exposure to 25 μM (~12.5 mg/L) PFOS could 245 

result in the generation of ROS and lipid peroxidation in rat hepatocytes, and the 246 

oxidative stress could further lead to lysosomal membrane leakage and cellular 247 
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proteolysis. In the study by Cui et al. (2015), isobaric tags for relative and absolute 248 

quantitation were used to study the PFOS-induced cell proliferation in human hepatic 249 

cell line. The authors found that 50, 100, 150, and 200 μM (≈ 25, 50, 75, and 100 250 

mg/L) of PFOS could increase the expression of cyclins and cyclin-dependent kinases 251 

and drive cells into G1 phase (the first phase within interphase of the cell cycle). This 252 

provides evidence for the PFOS-induced hepatotoxicity resulted from disturbing the 253 

cell cycle progression. 254 

 255 

 256 

Fig. 4. PFOS targets the fatty acid β-oxidation. 257 

 258 

3.2. Neurotoxicity 259 

Neurotoxicity refers to that neurotoxins (natural or artificial toxic substances) 260 
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cause negative changes in structure and function of the nervous system (Rock and 261 

Patisaul, 2018). The in vivo studies have shown that exposure to PFOS can cause 262 

defects or dysfunctions in motor behavior, learning, memory, and cognition 263 

(Johansson et al., 2008; Onishchenko et al., 2011; Long et al., 2013; Chen et al., 2014). 264 

For example, Chen et al. (2014) studied the neurotoxicity of PFOS to Caenorhabditis 265 

elegans and found that exposure to 20 μM (~10 mg/L) of PFOS for 48 h could 266 

decrease the locomotor behaviors of forward movement, body bend, and head thrash. 267 

However, in another study by Spulber et al. (2014), obvious spontaneous 268 

hyperactivity was observed in zebrafish larvae after exposure to 1 mg/L of PFOS due 269 

to a dopaminergic deficit. Long et al. (2013) used water maze tests to study the 270 

neurotoxicity of PFOS to adult mice, and they found that chronic exposure to 10.75 271 

mg/kg/day of PFOS for three months impaired the spatial learning ability and memory 272 

as a result of hippocampus dysfunction. Similar experimental phenomena were 273 

observed by Wang et al. (2015), and they explained the results in terms of the synaptic 274 

plasticity. Apart from these typical neurotoxic symptoms, the in vitro studies have 275 

demonstrated that PFOS can induce neuroinflammation (Chen et al., 2018b; Chen et 276 

al., 2018c), as well as the damage or apoptosis of nerve cells, such as hippocampal 277 

cells, neural stem cells, and SH-SY5Y cells (Long et al., 2013; Chen et al., 2014; Li et 278 

al., 2015; Dong et al., 2016; Ge et al., 2016; Sun et al., 2018). PFOA can also cause 279 

neurotoxicity, especially developmental neurotoxicity. However, different 280 

neurotoxicity effects (both in vivo and in vitro) were observed after exposure to PFOS 281 

and PFOA under the same conditions and PFOS showed greater neurotoxicity than 282 
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PFOA (Onishchenko et al., 2011; Berntsen et al., 2017; Berntsen et al., 2018).   283 

According to the available literature, the neurotoxic mechanisms of PFOS 284 

involve many aspects (Fig. 5). PFOS can cause oxidative damage in nerve cells by 285 

inducing the generation of ROS, such as peroxides and free radicals. These ROS may 286 

impair cell components (e.g., proteins, lipids, and DNA) and disturb normal redox 287 

signaling (Song et al., 2016a). Chen et al. (2014) determined the ROS level in 288 

SH-SY5Y cells after exposure to PFOS, and found that the treatment with 25 μM 289 

(~12.5 mg/L) of PFOS significantly enhanced the ROS generation which could be 290 

inhibited by adding N-acetylcysteine (an antioxidant) before the exposure. PFOS may 291 

cause neurotoxic effects by triggering neuroinflammation. In the central nervous 292 

system, the immune cells (e.g., astrocyte) can be activated and release inflammatory 293 

cytokines to protect neurons from pathogenic factors, but sustained activation and 294 

excessive secretion of the inflammatory cytokines can cause serious nerve injury 295 

(Kim et al., 2016). In a recent in vitro study by Chen et al. (2018b), exposure to 0.02 296 

μM (~0.01 mg/L) of PFOS brought about excessive secretion of tumor necrosis 297 

factor-α (an inflammatory cytokine that plays roles in physiological processes of 298 

nervous system, e.g., inducing apoptosis) in SH-SY5Y cells, which finally led to a 299 

rapid apoptosis. The neurotoxicity of PFOS can result from the disturbed 300 

synaptogenesis and synaptic plasticity. Synapse is the neural structure that allows a 301 

nerve cell to pass a neural signal (electrical or chemical signal) to another cell, while 302 

synaptic plasticity is the ability of synapses to strengthen or weaken in response to the 303 

changes in their activity (Bourgeron, 2015). Exposure to PFOS can disturb the 304 
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synaptogenesis and synaptic plasticity (Liao et al., 2008; Wang et al., 2015). For 305 

example, Wang et al. (2015) analyzed the genes and proteins related to synaptic 306 

plasticity in the hippocampus cells of rat offspring after prenatal exposure to PFOS 307 

via drinking water containing 15 mg/L of PFOS and concluded that the reduced 308 

spatial learning ability and memory were related to the impaired synaptic plasticity. 309 

Disturbing the calcium ion (Ca2+) channel and homeostasis is an important 310 

mechanism of the PFOS-induced neurotoxicity. Calcium ion is essential to triggering 311 

the release of neurotransmitters, but PFOS can disturb the calcium homeostasis 312 

through inducing extracellular calcium influx and intracellular calcium release, 313 

resulting in calcium overload and abnormal activation of downstream signaling 314 

molecules, which eventually causes cell damage, aging, and even death (Wang and Jin, 315 

2012). Berntsen et al. (2018) studied the excitotoxicity of PFOS in rat cerebellar 316 

granule neurons, and found that exposure to 300 μM (~150 mg/L) of PFOS for 30 min 317 

(or 60 min) could make the N-methyl-D-aspartate receptor (a Ca2+ channel) 318 

overactive and result in excess Ca2+ influx via the channel. In addition to the above 319 

mechanisms, PFOS may also induce neurotoxicity by altering neurotransmitter levels. 320 

Yuan et al. (2018) exposed planarians to 0.5, 1, 5, and 10 mg/L of PFOS for 1, 3, 5, 7, 321 

and 10 days, and found that the exposure could influence the expression of 322 

neuronal-related genes and acetylcholinesterase activity, leading to the changes of 323 

neurotransmitter production and cycle (specific effects depended on the PFOS dose 324 

and exposure time). This was considered as one of the mechanisms of PFOS 325 

neurotoxicity to planarians. 326 
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 327 

Fig. 5. The main neurotoxic mechanisms of PFOS. 328 

 329 

3.3. Reproductive toxicity 330 

Reproductive toxicity implies the adverse effects on the reproductive system of 331 

living organisms (Ayoka et al., 2016). Exposure to PFOS can cause damages to male 332 

and female reproductive organs, disturb related hormone secretion, and lead to poor 333 

pregnancy outcomes (Wang et al., 2011; Chen et al., 2013; Cheng et al., 2013; Lou et 334 

al., 2013; Zhang et al., 2015; Qu et al., 2016; Yang et al., 2016). Qu et al. (2016) 335 

reported that the testis weights and sperm counts of male mice were significantly 336 

reduced after oral exposure to 10 mg/kg/day of PFOS for 5 weeks. Under similar 337 

exposure condition, Wang et al. (2018) found that the dioestrus of adult female mice 338 

was prolonged but their corpus luteum was reduced. In an in vivo study of 339 

PFOS-induced reproductive toxicity, Chen et al. (2016) reported that exposure to 0.25 340 
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mg/L of PFOS for 5 months could cause structural changes in the gonads of both male 341 

and female zebrafish, and result in more mature oocytes and fewer spermatogonia in 342 

the gonads. In that study, the authors reported that the estrogen level in zebrafish (both 343 

juvenile and adult) increased and a female-biased sex ratio in zebrafish occurred after 344 

the chronic PFOS exposure. Zhang et al. (2015) reported the apoptosis of human 345 

placental syncytiotrophoblasts after exposure to 0.01, 0.1, and 1 μM (0.005, 0.05, and 346 

0.5 mg/L) of PFOS for 24 h. Meanwhile, the treatment decreased the secretion of 347 

steroid and human chorionic gonadotropin by placental syncytiotrophoblasts. These 348 

hormones are vital to maintaining gestation and normal development of fetus. The 349 

result indicated the harmful effects of PFOS on human reproductive function. Similar 350 

toxic effects in reproduction toxicity were also observed with PFOA exposure (Yahia 351 

et al., 2010; Zhang et al., 2014; Yang et al., 2015; Lu et al., 2016). 352 

Exposure to PFOS mainly causes reproductive toxicity through damaging 353 

reproductive organs/cells and disrupting reproductive endocrine (Fig. 6). Intact 354 

reproductive organs and cells is the basis for maintaining normal reproduction 355 

function. For males, significant reduction in testis weight and sperm count has been 356 

observed after PFOS exposure, which is thought to result from the increased apoptosis 357 

and decreased proliferation of germ cells (Qu et al., 2016). However, few studies 358 

reported the direct damage of PFOS to reproductive organs of females that are not 359 

pregnant. The gender differences in PFOS-induced toxicity can be ascribed to the 360 

sex-dependent organic anion-transporting peptides, which govern the transport of 361 

PFOS across the cell membrane (Foresta et al., 2018). Impairment of the 362 
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hypothalamic-pituitary-gonadal (HPG) axis is an important cause of PFOS-induced 363 

reproductive endocrine disorder (López-Doval et al., 2015; López-Doval et al., 2016). 364 

The HPG axis is the key regulator of reproduction, and it involves the hypothalamus, 365 

pituitary gland, and gonads (Fig. 6). Through secreting gonadotropin-releasing 366 

hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and 367 

gonadal hormone (e.g., estrogen and testosterone), the HPG axis regulates the 368 

reproduction and maintains normal reproduction function (Maruska and Fernald, 369 

2011). For example, testosterone is essential for normal spermatogenesis (Walker, 370 

2011). López-Doval et al. (2014) reported the inhibition of physiological activity of 371 

hypothalamic-pituitary-testicular axis in adult male rats after exposure to 6 mg/kg/day 372 

of PFOS for 28 days and observed evident morphological changes of hypothalamus, 373 

degeneration of gonadotrophic cells and spermatozoids, and testicular edema. In their 374 

another study, the possible roles of serotonin and neuropeptide Y in the PFOS-induced 375 

disruption of reproductive axis were investigated (López-Doval et al., 2015). The 376 

results showed that PFOS caused an increase of serotonin concentration in 377 

hypothalamus and median eminence but a decrease of neuropeptide Y concentration 378 

in the hypothalamus. Serotonin and neuropeptide Y are important substances involved 379 

in regulating the secretion of GnRH and LH. This result suggested that PFOS 380 

inhibited the reproductive axis via changing the concentrations of serotonin and 381 

neuropeptide Y. Their further study found that PFOS could disrupt the reproductive 382 

endocrine by changing the gene expression related to GnRH, LH, FSH, and androgen 383 

receptors (López-Doval et al., 2016). These results are valuable for determining the 384 
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reproductive toxicity mechanisms of PFOS. 385 

 386 

Fig. 6. PFOS causes reproductive toxicity through damaging reproductive organs and cells 387 

and disrupting reproductive endocrine (including hypothalamic-pituitary-gonadal axis 388 

regulation). 389 

 390 

3.4. Immunotoxicity 391 

Immunotoxicity is defined as the adverse effects on the immune system which 392 

consists of immune organs (e.g., thymus gland, bone marrow, and lymph gland), 393 

immune cells (e.g., T cells, B cells, natural killer cells, and macrophages), and 394 

immune active substances (e.g., antibodies, cytokines, and lysozymes), and usually 395 

manifests as immunosuppression, immunostimulation, hypersensitivity, or 396 
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autoimmunity (Shao et al., 2014). The immune system is a vital biological defense to 397 

avoid infection, disease, or other biological invasion. The in vivo and in vitro studies 398 

have shown that PFOS could disturb the proliferation, differentiation, and normal 399 

function of immune cells, and interfere with the release and activity of immune active 400 

substances (Dong et al., 2009; Zheng et al., 2009; Brieger et al., 2011; Fang et al., 401 

2013; Midgett et al., 2015; Soloff et al., 2017). The effects of PFOS exposure on the 402 

proliferation of immune cells depend on the species, cell type, and exposure time and 403 

dosage. Positive, negative, and no effects of PFOS on the proliferation of immune 404 

cells were all observed in the studies (Peden-Adams et al., 2008; Wirth et al., 2014; 405 

Lv et al., 2015; Soloff et al., 2017). Exposure to PFOS has been found to be able to 406 

disturb the immune function (including innate immunity and adaptive immunity). Keil 407 

et al. (2008) reported that the activity of natural killer cells and the production of 408 

immunoglobulin M (IgM) in mice were significantly decreased at the age of 8 weeks 409 

after gestational oral exposure to 5 mg/kg/day of PFOS from gestational day 1 to 17. 410 

The natural killer cells are innate cytotoxic lymphocyte, and their activity is 411 

commonly used for evaluating the innate immunity. The IgM is a basic antibody 412 

produced by B cells, and it is widely used for evaluating the humoral immunity 413 

(adaptive immunity). The above results indicated the suppression of both innate 414 

immunity and adaptive immunity after PFOS exposure. Fang et al. (2013) found 415 

PFOS-induced immunosuppression in the larvae of marine medaka after exposure to 1 416 

and 4 mg/L of PFOS for 25 days. In their study, bacterial lipopolysaccharide was used 417 

to trigger the host innate immunity through stimulating phagocytic cells to produce 418 
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pro-inflammatory cytokines (inflammatory response). With exposure to PFOS, the 419 

expression of pro-inflammatory cytokines was significantly suppressed, which was 420 

considered unfavorable for the immune defense. In an in vitro study of PFOS-induced 421 

immunotoxicity by Midgett et al. (2015), the production of interleukin-2 (IL-2) in 422 

human T cells was inhibited after exposure to 50, 75, and 100 mg/L of PFOS for 18 h. 423 

The IL-2 is a type of signaling molecule (cytokine) that regulates the immune activity 424 

of leukocytes, and the reduction of IL-2 is a characteristic of autoimmune diseases. 425 

The result of this study suggested the adverse effect of PFOS in interfering with the 426 

human immune active substances. Exposure to PFOS or PFOA could both cause 427 

immunotoxicity, but the effects varied with the exposure conditions (Qazi et al., 2009; 428 

Midgett et al., 2015). 429 

The immunotoxicity mechanisms of PFOS mainly cover the impacts on immune 430 

cells and normal immune responses (Fig. 7). In a study of PFOS immunotoxicity with 431 

bottlenose dolphins, Soloff et al. (2017) observed that in vitro exposure to 5 mg/L of 432 

PFOS for 4 days stimulated the T cell proliferation and promoted proinflammatory 433 

cytokine production, but the further mechanism remained unknown. Zhang et al. 434 

(2013) reported PFOS-induced apoptosis in the splenocytes and thymocytes of mice 435 

after orally exposed to 5 or 10 mg/kg/day of PFOS for 7 days. Apoptosis plays an 436 

important role in the regulatory process of immune system. Many lymphocytes 437 

undergo apoptosis at the termination of an immune response. The authors thought this 438 

regulatory mechanism could be disturbed by PFOS and the PFOS-induced abnormal 439 

apoptosis in the splenocytes and thymocytes was partly responsible for the 440 
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immunotoxicity. Dong et al. (2012) attributed the immunocyte apoptosis induced by 441 

oral exposure to 0.8333 mg/kg/day of PFOS for 60 days to a p53-mediated apoptotic 442 

pathway, and reported that mitochondrial dysfunction was involved in the apoptosis. 443 

In an in vivo study of PFOS immunotoxicity in mice, Lv et al. (2015) found that 444 

exposure to 10 mg/kg/day of PFOS for 4 weeks (including one-week recovery) could 445 

reduce the proliferation of T cells by inhibiting the mitogenic reaction. In their 446 

experiments, downregulation in the gene expression of cell cycle was observed with 447 

PFOS exposure, which explained the possible reasons for the decreased proliferation 448 

of T cells. The authors further analyzed several different pathways related to the 449 

signaling transduction of immune cells, and found that PFOS inhibited 450 

NRF2-mediated pathways by which the cells are protected from oxidative damage, 451 

and upregulated the gene expression in T cell receptor signaling, calcium signaling, 452 

and p38/MAPK signaling pathways. These signaling pathways play vital roles in 453 

immunoregulation. The interference of these signaling pathways was considered the 454 

underlying mechanisms of PFOS-induced immunotoxicity. Huang et al. (2015) 455 

reported that exposure to 0.25 or 1 mg/L of PFOS could promote the immune 456 

response in Oryzias melastigma. The authors analyzed the expression of genes related 457 

to the immunity and observed an increased expression level of interleukin-1β at the 458 

transcriptome level. Due to the complexity of the immune system and processes, 459 

current knowledge on the immunotoxicity mechanism is limited and needs more 460 

research. 461 

Ac
ce
pt
ed
 M
S



25 
 

 462 

Fig. 7. Effects of PFOS exposure on the immune cells and immune responses. 463 

 464 

3.5. Thyroid disruption 465 

The thyroid is a large endocrine gland that regulates many physiological 466 

processes (e.g., growth, development, and metabolism) by secreting thyroid hormones 467 

(Mullur et al., 2014). Exposure to PFOS can impair the structure and function of 468 

thyroid. Coperchini et al. (2015) studied the in vitro effect of PFOS on thyroid cells 469 

and observed evident cytotoxicity (inhibited cell proliferation and increased cell death) 470 

at a PFOS concentration of 100 μM (~50 mg/L). The authors further investigated 471 

whether PFOS entered the thyroid cells and found that PFOS entered the cells via a 472 

passive diffusion mechanism. Exposure to relatively high concentration of PFOS in 473 

the culture medium was the main reason to cause the cytotoxicity. Though such a high 474 

concentration of PFOS is rare in human exposure, it is considerable to determine the 475 

thyroid disruption after PFOS exposure. Similar cytotoxicity was also observed with 476 

PFOA exposure in that study. In an in vivo study by Chen et al. (2018a), chronic 477 
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exposure to 0.25 mg/L of PFOS for 120 days changed the structure of thyroid 478 

follicular cells in zebrafish and significantly reduced the nuclear area of follicular 479 

epithelial cells. In addition, the authors found a disorder in thyroid hormone. Thyroid 480 

hormones mainly include triiodothyronine (T3) and thyroxine (T4), which are 481 

especially important for energy metabolism, inorganic ion metabolism, thermogenesis, 482 

development of central nervous system and skeleton (Ogilvy-Stuart, 2002; Mullur et 483 

al., 2014). The thyroid dysfunction generally reflects in the abnormal change of T3 484 

and T4 level. In the above example, significant decrease in the T4 level was observed 485 

after PFOS exposure. Similar results of such a change in the T4 level were obtained in 486 

some other studies (Yu et al., 2009a; Yu et al., 2009b). Shi et al. (2009) found that the 487 

T3 level in the zebrafish larvae was significantly increased with embryo exposure to 488 

200 and 400 μg/L of PFOS for 15 days post-fertilization, while Curran et al. (2008) 489 

reported the decrease of both T3 and T4 level in rat serum after dietary exposure to 490 

100 mg/kg diet of PFOS for 28 days. These results suggest that the variations of 491 

thyroid hormone level depend on the species, PFOS dosage, and exposure route and 492 

time. Though the variations are not consistent, it is certain that PFOS can induce the 493 

disorder of thyroid hormones. 494 

As shown in Fig. 8, the PFOS-induced disruption of thyroid hormone 495 

homeostasis can be mainly attributed to the damage of thyroid cells and the 496 

interference of the synthesis and transport, metabolism, and action of thyroid 497 

hormones. PFOS can enter thyroid cells via a passive diffusion mechanism and cause 498 

evident cytotoxicity (Coperchini et al., 2015). The impairment of thyroid structure 499 
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disrupts the production of thyroid hormones. In a research about the effects of PFOS 500 

on thyroid hormone status in rats, Chang et al. (2008) reported the transient increase 501 

of serum T4 level within 6 h after a single oral exposure to 15 mg/kg PFOS due to the 502 

competition for binding proteins between PFOS and T4. However, the content of 503 

serum T4 decreased to the control level within 24 h and continued to decrease in the 504 

following 8 days with oral PFOS exposure. The increased serum T4 level might 505 

enhance the utilization, metabolic conversation and excretion of T4 by peripheral 506 

tissues, which led to the resulting reduction of serum T4 level. Yu et al. (2009a) 507 

observed an significant decrease in serum T4 level after the rats were exposed to 1.7, 508 

5, and 15 mg/L of PFOS in drinking water for 91 days. They determined some 509 

messenger RNA endpoints that relates to the biosynthesis and metabolism of thyroid 510 

hormones, and ascribed the decreased T4 level to the increased hepatic T4 511 

glucuronidation and thyroidal conversion of T4 to T3 after PFOS exposure. The 512 

consumption of T4 can partly account for the PFOS-induced hypothyroxinemia. The 513 

competitive binding for transthyretin (TTR) between PFOS and T4 might also cause 514 

the decrease of T4 level (Weiss et al., 2009). In a study about the effects of PFOS on 515 

endocrine disruption, Du et al. (2013) conducted reporter gene assays with kidney 516 

cells of African green monkey and found that PFOS could act as a thyroid hormone 517 

receptor antagonist. In their study, PFOS was reported to cause thyroid system 518 

disruption through interacting with the T3 receptor and interfering with the 519 

T3-induced transcriptional activation of thyroid hormone receptor. PFOS can directly 520 

bind with T3 receptor through hydrophobic interaction and hydrogen bonding (Ren et 521 
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al., 2015). The structure and behavior of PFOS in organism body are similar to free 522 

fatty acids, therefore it can competitively bind to fatty acid binding proteins (Luebker 523 

et al., 2002). Additionally, the polar hydrophobic nature of C-F bond can increase the 524 

affinity of PFOS for proteins (Biffinger et al., 2004). 525 

 526 

Fig. 8. Exposure to PFOS causes thyroid disruption. The left part is a diagram of thyroid 527 

including blood capillary, follicular epithelium, and follicular lumen. The right part 528 

diagrammatizes the synthesis of thyroid hormones and their transport through follicular lumen, 529 

follicular epithelium, and blood capillary. 530 

 531 

3.6. Cardiovascular toxicity 532 

Cardiovascular toxicity is the adverse effects on the reproductive system 533 

(including heart and blood vessels). Exposure to PFOS can cause cardiac 534 

malformation, change heart rate, and induce apoptosis of cardiomyocytes (Huang et 535 

al., 2011; Xia et al., 2011; Zeng et al., 2015; Liang et al., 2017; Tang et al., 2017). 536 

Cardiovascular system is more sensitive to chemicals during its development, thus 537 
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most studies determined the cardiovascular toxicity of PFOS in embryos (or 538 

embryonic tissue) or by adopting prenatal exposure. In the study by Huang et al. 539 

(2011), exposure to 16 mg/L of PFOS for 2, 4, 6, or 8 days increased the distance 540 

between sinus venosus and bulbus arteriosus in embryos of Oryzias melastigma, 541 

which reflected the PFOS-induced cardiac malformation in the positions of atrium 542 

and ventricle during heart development. Additionally, the authors observed 543 

accelerated heart rate after 8 days post-fertilization but decreased heart rate after 10 544 

days post-fertilization with 4 and 16 mg/L of PFOS. Liang et al. (2017) found that 545 

PFOS could stimulate the heartbeat of Daphnia magna after exposure to PFOS for 48 546 

h. In their experiments, the accelerated heartbeat was observed in all the experimental 547 

groups with different PFOS concentrations (30, 44, 66, and 100 mg/L). Though the 548 

heartbeat began to slow with 100 mg/L of PFOS, the heartbeat value was still higher 549 

than that of the control group. In a study of prenatal PFOS exposure, Xia et al. (2011) 550 

studied the apoptosis in heart tissue and the expressions of related genes after prenatal 551 

exposure to 2 mg/kg/days of PFOS for 19 days during the gestation, and found 552 

obvious mitochondrial vacuolization and inner membrane injury of heart tissue in rat 553 

offspring. The apoptosis of heart tissue might mainly occur via a 554 

mitochondria-mediated apoptotic pathway and the generation of ROS (Cheng et al., 555 

2013; Zeng et al., 2015). However, the disruption of cardiogenesis is attributed to the 556 

PFOS-induced disturbance of gene expression during cardiogenesis, rather than the 557 

PFOS-induced generation of ROS (Cheng et al., 2013). Cardiovascular toxicity of 558 

PFOS was also observed in human cells. It was reported that exposure to 50 or 100 559 
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μM (25 or 50 mg/L) PFOS for one hour induced the generation of ROS, remodeling 560 

of actin filament, and changes of endothelial permeability in microvascular 561 

endothelial cells (Qian et al., 2010). The PFOS-induced generation of ROS regulated 562 

the actin filament remodeling which contributed to the increase of endothelial 563 

permeability, but the regulatory mechanism is unclear. Nonetheless, this demonstrated 564 

direct cardiovascular toxicity risk of PFOS to humans. 565 

 566 

3.7. Others 567 

Apart from the above-mentioned toxic effects, several in vivo and in vitro studies 568 

reported the pulmonary toxicity, renal toxicity, and the carcinogenicity of PFOS. In an 569 

in vitro study about the toxic effects of PFOS on human lung cancer A549 cells, Mao 570 

et al. (2013) reported the apoptosis of lung cells via a mitochondrial dysfunction 571 

pathway after exposure to 50, 100, or 200 μM (25, 50, or 100 mg/L) of PFOS. Ye et al. 572 

(2012) studied the pulmonary toxicity of PFOS in fetal rats with in utero exposure. In 573 

their experiments, though no distinct microscopic changes of the lung tissue was 574 

observed, prenatal exposure to 20 mg/kg/day of PFOS for six days altered the gene 575 

expressions related to secretory proteins, cytoskeletal structure, extracellular matrix, 576 

ion channel and transporting proteins, and lipid metabolism in the lung of fetal rats. 577 

Wen et al. (2016) conducted an in vitro study on the renal toxicity of PFOS, and found 578 

that exposure to 0.5 μM (~0.25 mg/L) of PFOS for 24 or 40 h could cause significant 579 

apoptosis of renal tubular cells. Through further research, they reported new findings 580 

on the PFOS-induced renal fibrosis (Chou et al., 2017). Both the two studies proposed 581 
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a mechanism that PFOS caused renal injury via inducing the deacetylation and 582 

inactivation of peroxisome proliferator activated receptor γ, which plays important 583 

roles in many cell signaling processes and can protect renal cells from PFOS-induced 584 

injury when over-expressed. In vivo and in vitro experiments have shown inadequate 585 

evidence for the carcinogenicity of PFOS. In a carcinogenicity study of PFOS with 586 

Sprague Dawley rats, an increase in the incidence of hepatocellular adenoma was 587 

observed with the dietary treatment of 20 ppm PFOS, but the authors considered it an 588 

incidental observation in the rats surviving to terminal sacrifice (Butenhoff et al., 589 

2012). Several other studies reported no direct or no obvious carcinogenesis of PFOS 590 

(Florentin et al., 2011; Ngo et al., 2014; Arrieta-Cortes et al., 2017). Nonetheless, the 591 

carcinogenic potential of PFOS should not be ignored and needs more research 592 

(Jacquet et al., 2012). 593 

 594 

4. Human health risks of PFOS 595 

Currently available data of PFOS toxicity from in vivo and in vitro studies have 596 

demonstrated the toxic effects of PFOS on experimental animals. However, these 597 

results are predictive for the human health risks and have limitations when being 598 

extrapolated to humans. The limitations mainly result from the differences in 599 

physiological sensitivity and PFOS metabolism between experimental animals and 600 

humans (Hartung, 2008). For overcoming the limitations, epidemiological 601 

investigation is conducted to verify the results from animal experiments. By 602 

epidemiological study, some toxic effects of PFOS on human health can be directly 603 
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observed under actual exposure conditions. Table 1 summarizes some representative 604 

epidemiological evidence that supports the results from in vivo and in vitro studies. 605 

These epidemiological results show direct associations of PFOS exposure and human 606 

health risks. For example, Gallo et al. (2012) found that the serum PFOS 607 

concentration was positively associated with the level of serum alanine transaminase 608 

(ALT) in adults. In the human body, ALT is mainly stored in hepatocytes, and the 609 

serum ALT level would significantly increase even if a few hepatocytes are damaged. 610 

Therefore, the above result associated the PFOS exposure with hepatotoxicity in 611 

humans. Vuong et al. (2016) studied the relationship between prenatal PFOS exposure 612 

and executive function in school-age children, and found that the exposure was 613 

associated with metacognition impairment and behavior regulation. Executive 614 

functions are high neurocognitive processes. Prenatal exposure to PFOS may disrupt 615 

normal neurodevelopment and cause impairment in executive functions. Their results 616 

provided epidemiological evidence for the neurotoxicity of PFOS to humans. In an 617 

epidemiological study conducted by Lin et al. (2016), it was found that the PFOS 618 

concentration was positively associated with CD31+/CD42a− (circulating endothelial 619 

microparticles) and CD31+/CD42a+ (platelet microparticles) in serum of adolescents 620 

and young adults. The CD31+/CD42a− and CD31+/CD42a+ are biomarkers of 621 

endothelial apoptosis and platelet apoptosis, respectively. This result indicated the 622 

cardiovascular disease risk of PFOS to humans. Kataria et al. (2015) investigated the 623 

association between serum PFOS and kidney function of adolescents, and found that 624 

the level of PFOS was significantly associated with the decreased glomerular 625 
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filtration rate and the increased serum uric acid. This result was consistent with that 626 

exposure to PFOS can cause oxidative stress and damage glomerular endothelial cells 627 

in laboratory studies. 628 

The combination of toxicological and epidemiological studies is necessary to 629 

fully understand the toxicity of PFOS to humans. For this purpose, Negri et al. (2017) 630 

integrated the evidence that showed the effects of PFOS on fetal growth from 631 

toxicology and epidemiology by a five-step “Epid-Tox” process. According to their 632 

conclusions, both epidemiological and toxicological evidence has suggested that 633 

PFOS can cause a decrease in birth weight of humans and rodents, but no quantitative 634 

toxicological evidence was found to support the epidemiological results as effective 635 

extrapolated concentrations of PFOS from animal experiments were generally higher 636 

than those in humans. However, exposure to high doses of PFOS is required and 637 

reliable method for the animal experiments to predict the risks in the general 638 

population (Adami et al., 2011). More research is needed to strengthen the causal 639 

inference between PFOS exposure and human health risks.640 
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Table 1 Representative epidemiological evidence that supports the human health risks of PFOS. 641 

Toxic effect Study area Time span Sample size Main result Reference 

Hepatotoxicity West Virginia, USA 2005‒2006 47,092 Serum PFOS concentration is positively associated with 

the level of serum alanine transaminase (a marker of 

hepatocellular damage) in adults. 

Gallo et al. (2012) 

Neurotoxicity Cincinnati, USA 2003‒2006 242 Prenatal exposure to PFOS may be associated with both 

behavior regulation and metacognition impairment. 

Vuong et al. (2016) 

Reproductive toxicity Avon county, UK 1991‒1992 447 Higher prenatal exposure to PFOS is associated with 

increased weight of girls at 20 months. 

Maisonet et al. 

(2012) 

Immunotoxicity Faroe Islands, Denmark 2007‒2009 349 Prenatal and infant exposure to PFOS is associated with 

children’s antibody concentrations against tetanus and 

diphtheria vaccines at the age of five. 

Grandjean et al. 

(2017) 

Thyroid disruption New York State, USA 2005 and 2010 87 Serum PFOS concentration is positively associated with 

the level of free and total thyroxine in older adults. 

Shrestha et al. 

(2015) 

Cardiovascular 

toxicity 

Taiwan, China 2006‒2008 848 The higher serum PFOS level is closely associated with 

the increased carotid intima-media thickness. 

Lin et al. (2016) 

Pulmonary toxicity Taiwan, China 2009‒2010 200 Serum PFOS concentration is positively associated with 

impaired lung function in children. 

Qin et al. (2017) 

Renal toxicity  USA 2003‒2010 1,960 Serum PFOS concentration is associated with the 

decreased kidney function within the normal range in 

adolescents. 

Kataria et al. (2015) 

Carcinogenicity Greenland, Denmark 2000‒2003 146 PFOS may be a risk factor of developing breast cancer 

in Inuit. 

Bonefeld-Jorgensen 

et al. (2011) 
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 642 

5. Conclusions and future research needs 643 

Potential environmental and health risks of PFOS have aroused great concern over the 644 

past decade. Animal experiments conducted in vivo and in vitro are primary means to 645 

ascertain the human health risks of PFOS and its toxic mechanisms. This article 646 

systematically reviews the toxic effects and human health risks of PFOS based on the 647 

currently known facts found by in vivo and in vitro studies from 2008 to 2018. Exposure to 648 

PFOS can cause hepatotoxicity, neurotoxicity, reproductive toxicity, immunotoxicity, thyroid 649 

disruption, cardiovascular toxicity, pulmonary toxicity, and renal toxicity in laboratory 650 

animals and many in vitro human systems. These results and related epidemiological studies 651 

confirmed the human health risks of PFOS. The widely studied toxic mechanisms of PFOS 652 

mainly involve the oxidative stress (e.g., cytotoxicity) and physiological process disruption 653 

based on fatty acid similarity (e.g., competitive binding with receptor protein). However, the 654 

specific molecular mechanisms (including signaling molecules and pathways) still need 655 

further investigation. 656 

Current in vivo and in vitro studies for assessing the human health risks of PFOS face 657 

the following challenges: 658 

(1) Insufficient toxicological tests and data on PFOS toxicity. Though some progress has 659 

been made in assessing the toxic effects of PFOS, more toxicological tests and data are 660 

still needed to improve the knowledge about the long-term effects and mechanisms of 661 

PFOS toxicity. 662 

(2) Biomarkers for PFOS-induced injuries. Biomarkers are measurable indicators of a 663 
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biological state or condition, either normal or pathogenic (Ruiz-Romero and Blanco, 664 

2015). It is significant to detect the structural and functional changes of human body in 665 

the levels of molecule, cell, or individual before serious injuries. In animal experiments, 666 

biomarkers can reflect the early biological effects with PFOS exposure and provide useful 667 

information on the toxic mechanisms. Currently available biomarkers for detecting 668 

various toxic effects are limited and need further development. 669 

(3) Molecular mechanisms of PFOS toxicity. Though many studies have reported that a 670 

certain molecular mechanism is related to a PFOS-induced injury, but various signaling 671 

molecules and pathways may be involved. More systematic research on the molecular 672 

mechanisms should be conducted. 673 

(4) Application of various omics. The toxic effect, especially chronic toxicity, of PFOS is 674 

usually the result of a continuous physiological response involving genome, 675 

transcriptome, proteome, and metabolome. Incorporating various omics into the in vivo 676 

and in vitro studies of PFOS toxicity can better elucidate the toxic mechanisms in future 677 

research. 678 

(5) Integration of the toxicological and epidemiological data. The ultimate purpose of animal 679 

experiments is to assess the human health risks of PFOS. It is necessary to minimize the 680 

species differences in result extrapolation of animal experiments. Additionally, effective 681 

extrapolated concentrations of PFOS from animal experiments are generally higher than 682 

those in humans, which decreases the biological plausibility of causality. Sound 683 

improvement of the experimental techniques and analytical methods is needed to solve 684 

this problem. 685 
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(6) Co-exposure to multiple PFAS. In an actual situation, people may be simultaneously 686 

exposed to multiple PFAS, such as both PFOS and PFOA. The interactions and joint 687 

toxicity are unclear. Further studies are needed to develop the knowledge. 688 

689 
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