Fuel 153 (2015) 361-369

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Promotional effect of CeO₂ modified support on V₂O₅–WO₃/TiO₂ catalyst for elemental mercury oxidation in simulated coal-fired flue gas

Lingkui Zhao, Caiting Li*, Jie Zhang, Xunan Zhang, Fuman Zhan, Jinfeng Ma, Yin'e Xie, Guangming Zeng

College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Nano-sized TiO₂-CeO₂ mixed oxides is used as support material for Hg⁰ oxidation
- The Hg⁰ oxidation activity of VWTi was promoted by support modification.
- There was synergistic effect between V₂O₅ and CeO₂ on Hg⁰ oxidation.
- Hg⁰ oxidation over V_{0.80}WTiCe_{0.25} follows a Mars-Maessen mechanism.

ARTICLE INFO

Article history: Received 8 October 2014 Received in revised form 21 January 2015 Accepted 2 March 2015 Available online 20 March 2015

Keywords: V205-W03/TiO2 Catalytic oxidation Elemental mercury Flue gas CeO₂

ABSTRACT

In order to enhance the catalytic activity for elemental mercury (Hg⁰) oxidation without the aid of HCl, CeO₂ was added into the support to modify V₂O₅-WO₃/TiO₂ catalysts. The performance of V₂O₅-WO₃/ TiO_2 -CeO₂ (VWTiCe) catalysts on Hg⁰ oxidation as well as the catalytic mechanism was also studied. The catalysts were characterized by BET, XRD and XPS techniques. The results showed that the performance on Hg^0 oxidation was promoted by the introduction of CeO₂. NO and SO₂ has a promoting effect on Hg⁰ oxidation in the presence of O₂. Besides, the inhibitive effect of NH₃ on Hg⁰ oxidation was confirmed by NH₃ consuming the surface oxygen of catalyst. The addition of CeO₂ improved the ability to resist H₂O. Results also indicated that the Hg⁰ oxidation efficiencies of $V_{0.80}$ WTiCe_{0.25} catalysts were thought to be aided by synergistic effect between V_2O_5 and CeO_2 . Hg⁰ oxidation over $V_{0.80}$ WTiCe_{0.25} follows a Mars-Maessen mechanism where lattice oxygen of V_2O_5 reacts with adjacently absorbed Hg⁰.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mercury pollution has received considerable attention from environmental researchers due to its high volatility, long persistence, and strong bioaccumulative properties [1–3]. Coal combustion is a significant fraction of anthropogenic source of mercury emission [4]. In January 2013, 140 nations adopted the first legally binding international treaty to set enforceable limits on emissions of mercury and exclude, phase out, or restrict some products that contain mercury [5].

A number of technologies have been used for mercury control from coal combustion flue gas, such as sorbent injection [6], catalytic oxidation [7] and photochemical oxidation [8]. It was reported [9] that the efficiency of mercury control methods

^{*} Corresponding author at: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Tel./fax: +86 731 88649216.

depends largely on the form of mercury. Mercury in the flue gas from coal combustion is often classified into three forms, i.e. elemental mercury (Hg⁰), oxidized mercury (Hg²⁺), and particleassociated mercury (Hg^P) [10–12]. Hg²⁺ and Hg^P can be easily removed by existing air pollution control installations such as fabric filters (FF), cold-side or hot-side electrostatic precipitators (ESPs), wet or dry flue gas desulfurization (FGD) and selective catalytic reduction (SCR) [13]. However, Hg⁰ is much difficult to be capture by air pollution control devices because of its high volatility and nearly insolubility in water [14-16]. Therefore, development of viable technologies for the effective conversion of Hg⁰ to Hg²⁺ has become the focus of many investigations in recent years. With extensive application of the SCR technology in coal-fired power plants, lots of full-scale tests have been carried out to evaluate the performance of the SCR catalysts on Hg⁰ oxidation [16–19]. As a typical commercial NH₃-SCR catalyst, V₂O₅-WO₃/TiO₂ catalysts not only show high catalytic activity for NO reduction but also exhibit the co-benefit of promoting mercury oxidation [20]. Consequently, a low cost option for control of mercury from coal fired power plants can be achieved by this co-benefit of SCR installation.

It is well-known that the involved oxidants are mainly oxygen and chlorine in real flue gas. However, in China, the chlorine content of feed-coal (63-318 mg/kg) is much lower than that of US coals (628 mg/kg) [21–23]. Thus, catalytic oxidation of Hg⁰ using gaseous oxygen as the oxidant is an environment-friendly and economical method for Hg⁰ control. However, the conventional SCR catalysts were not effective enough for Hg⁰ oxidation in the absence of HCl. Accordingly, how to improve the catalytic activity for Hg⁰ oxidation without HCl has become an important research scope the co-benefit performance of SCR catalysts. Up to now, many kinds of catalysts have been investigated for SCR such as metal oxides supported on TiO₂ [24-26]. However, TiO₂ still exhibits some drawbacks where improvements can be made, such as low surface area [27,28]. In general, appropriate active sites, high-surface-area supports, and their interaction are important to the activity of the catalysts [29]. Thus, in order to improve the properties of TiO₂, the sol-gel method was used to synthesize nano-sized CeO₂-TiO₂ carriers. It has been reported that TiO₂-CeO₂ mixed oxide is a promising catalyst for the SCR of NO with NH₃ in the presence of oxygen [30,31]. A Ce-Ti based (CeO₂-TiO₂) catalyst showed excellent NH₃-SCR activity, high N₂ selectivity, broad operation temperature window, and high resistance to space velocity [32]. What is more, for CeTi catalyst, the combination of SO₂ and NO without HCl resulted in high Hg⁰ oxidation efficiency [33]. Accordingly, CeO₂–TiO₂ mixed oxide is extensively studied for emission control. It is well known that cerium has two stable oxidation states (Ce³⁺ and Ce⁴⁺), which could provide cerium with significant oxygen storage capability through the redox shift between the two oxidation states [34]. Meanwhile, CeO₂ has been studied for Hg⁰ oxidation and it could enhance catalytic activity due to its oxygen storage capability by storing or releasing O via the Ce^{4+}/Ce^{3+} redox couple [35]. Furthermore, CeO_2 based catalysts were reported to have resistance to the effect of water vapor [30,33]. Consequently, CeO₂ is widely used in composite materials and as a catalyst support material [36]. However, catalysts with nano-sized TiO_2 -CeO₂ composite oxides carrier such as V_2O_5 -WO₃/TiO₂-CeO₂ for Hg⁰ oxidation without HCl and the catalytic mechanism have rarely been reported.

The present work aimed to improve mercury oxidation activity without the aid of HCl as well as reveal the catalytic mechanism of CeO₂ modified support on V₂O₅–WO₃/TiO₂ catalysts. A series of experiments and characterizations were carried out to probe into the superiority of catalyst with nano-sized TiO₂–CeO₂ composite oxide carriers. Besides, the effects of individual flue gas components on Hg⁰ oxidation were also studied.

2. Experimental section

2.1. Reagents

All the reagents used in this work were analytical pure grade (AR), including: The anatase-type nanosize TiO_2 powder (99.8%, Chengdu Ai Keda Chemical Technology Co.), cerium nitrate (99.0%, Kemiou Chemical Reagent Co.), anhydrous ethanol (99.7%, Kemiou Chemical Reagent Co.), nitric acid (68.0%, Sinopharm Chemical Reagent Co), butyl titanate (99.0%, Kemiou Chemical Reagent Co), ammonium wolframate (90.0%, Sinopharm Chemical Reagent Co), ammonium metavanadate (99.0%, Kemiou Chemical Reagent Co.) and Oxalic acid (99.5%, Sinopharm Chemical Reagent Co). Ultrapure water was applied to prepare the required solutions.

2.2. Preparation of catalysts

TiO₂–CeO₂ composite oxide carriers were prepared by a sol–gel method. Specifically as follows: a certain amount of cerium nitrate, anhydrous ethanol (0.6 mol), ultrapure water (1.9 mol) and nitric acid (0.1 mol) were mixed in the beakers, which were stirred for 30 min and labeled as A solution; a requisite amount of butyl titanate (0.1 mol) were stirred in anhydrous ethanol (2.3 mol) for 30 min and labeled as B solution; then B solution was added drop-wisely to A solution with vigorous stirring. After stirring for 5 h at room temperature, the sol was concentrated in 40 °C water bath and subsequently dried at 80 °C for 24 h. The gel was calcinated at 500 °C for 5 h in air. TiO₂–CeO₂ composite oxide carriers was denoted as TiCe_a ("a" represents the CeO₂/TiO₂ mass ratio; a = 0.11, 0.25, 0.43, 0.67, 1.00).

Stoichiometric amount of ammonium wolframate solution and ammonium metavanadate were mixed in the oxalic solution of desired proportions, which was labeled as C solution. V₂O₅-WO₃/ TiO_2 -CeO₂ catalysts were prepared by the dispersal of a certain mass of TiCe_a powder into 50 ml C solution at 80 °C to obtain the slurry. The slurry was stirred for 2 h, after that, the mixture was exposed to an ultrasonic bath for 2 h, dried at 105 °C for 12 h and subsequently calcined at 500 °C for 3 h in air. Finally, CeO₂ doped catalyst V2O5-WO3/TiO2 was obtained and abbreviated as V_x WTiCe_a ("x" represents the $V_2O_5/(V_2O_5 + WO_3 + TiO_2 + CeO_2)$ mass ratio, $x = 0.40 \times 10^{-2}$, 0.60×10^{-2} , 0.80×10^{-2} , 1.00×10^{-2} , 1.20×10^{-2}). Meanwhile, WO₃/TiO₂ (WTi) catalysts, V₂O₅-WO₃/ TiO₂ (VWTi) catalysts and WO₃/TiO₂-CeO₂ (WTiCe) catalysts were synthesized by impregnation method, and the processes were the same as the foregoing conditions. The mass loading of WO₃ on all catalysts was 8%.

2.3. Catalytic activity measurement

The experimental setup for evaluating Hg^0 oxidation on the samples was shown in Fig. 1. The catalytic activities of Hg^0 oxidation were tested at 80–350 °C in a fixed bed reactor under atmospheric pressure. The reaction temperature was controlled by a digital temperature controller. 0.5 g catalyst samples were packed in the center of the quartz tube (i. d. 20 mm). The simulated flue gas (SFG) was consisted of 70.00 μ g/m³ Hg⁰, 500 ppm SO₂ (20.4% SO₂ + 79.6% N₂), 1000 ppm NO (20.0% NO + 80.0%N₂), 12%CO₂ (99.999%), 5% O₂ (99.999%) and balanced gas N₂ (99.999%). The feed gas was controlled by mass flow meters and injected into the reactor at a total rate of 1 L min⁻¹ with a gas hourly space velocity of 1.0×10^5 h⁻¹. A constant quantity of Hg⁰ vapor was supplied into the gas steam, with an Hg⁰ permeation tube (VICI Metronics, USA) which was immersed in a water bath. A peristaltic pump transferred water into the Teflon tube wrapped with a

temperature-controlled heating tape and then water vapor was generated. 100 ml pure N₂ took the water vapor along and mixed with the flue gas. Besides, In order to avoid adsorption of Hg⁰ and condensation of water vapor on the inner surface, all Teflon lines that Hg^0 and H_2O (g) passed through were heated up to 120 °C. The Hg⁰ concentration in the inlet and outlet gas was online measured by a RA-915 M Mercury Analyzer (LUMEX Ltd, Russia) which can measure solely the concentration of Hg⁰. Meanwhile, Hg⁰ concentration was recorded after the process had reached equilibrium. The time was more than 2 h. The experiment was carried out to ensure the reliability of data obtained from the test on catalyst performance. Result showed that VWTiCe catalyst possessed excellent stability on Hg⁰ oxidation and could perform well in presupposed time quantum of 2 h for experiment. Water vapor was removed by the condenser before proceeding to the mercury analvzer.

Before the test, the flue gas bypassed the reactor and Hg^0 concentration in the inlet $([Hg^0]_{in})$ was measured. Then, the gas flow was switched to pass through the catalysts and Hg^0 concentration in the outlet $([Hg^0]_{out})$ was measured. The loss of Hg^0 concentration over the catalysts should be due to the oxidation or adsorption of Hg^0 . In order to avoid possible bias because of Hg^0 adsorption, at the beginning of the Hg^0 catalytic oxidation tests, the catalysts were first saturated with the established $[Hg^0]_{in}$ under N_2 atmosphere at room temperature [23,33,37]. The adsorption test result indicated that the capacities of catalyst samples to adsorb Hg^0 were negligible at room temperature. Therefore, Hg^0 oxidation efficiency (E_{oxi}) over the catalysts was quantified by the following equation:

$$E_{\text{oxi}}(\%) = \frac{[\text{Hg}^{0}]_{\text{in}} - [\text{Hg}^{0}]_{\text{out}}}{[\text{Hg}^{0}]_{\text{in}}} \times 100\%$$
(1)

2.4. Characterization

Brunauer–Emmett–Teller (BET) surface area, average pore size, and average pore volume of the samples were analyzed by Micromeritics Tristar II 3020 analyzer (Micromeritics Instrument Crop, USA). Each sample was degassed in vacuum at 180 °C for 5 h. The specific surface areas were calculated by the BET method. The average pore diameter and average pore volume were obtained from the desorption branches of N_2 adsorption isotherm and calculated by the BJH (Barrett–Joyner–Halenda) formula.

X-ray diffractogram (XRD) measurements were carried out on Rigaku rotaflex D/Max-C powder diffractometer (Rigaku, Japan) to examine the crystallinity and dispersivity of each species on the support. The XRD patterns were used nickel-filtered Cu K α radiation (λ = 0.1543 nm) in the range of 10–80° (2 θ) with a step size of 0.02°.

X-ray Photoelectron Spectroscopy (XPS) analysis was carried out at room temperature on a K-Alpha 1063 X-ray photoelectron spectrometer (Thermo Fisher Scientific, UK) with an Al K α X-ray source. The observed spectra were calibrated with the C 1s binding energy (BE) value of 284.6 eV.

3. Results and discussion

3.1. Catalytic activity tests

The comparison of catalytic performance of different catalysts as a function of temperature from 80 to 350 °C was shown in Fig. 2. E_{oxi} over WTi was below 40% in the entire temperature range. On the TiCe_{0.25} catalyst, E_{oxi} increased with temperature from 80 to 250 °C, and then decreased when temperature further increased from 250 to 350 °C. V_{0.80}WTiCe_{0.25} performed the best mercury oxidation and approximately 88.93% mercury oxidation efficiency was obtained at 250 °C. Additionally, it was clearly found that the addition of ceria noticeably expanded the active temperature window and also improved the catalytic performance on Hg⁰ oxidation. In the whole temperature range, E_{oxi} over V_{0.80}WTiCe_{0.25} was higher than that over WTiCe_{0.25}, V_{0.80}WTi and TiCe_{0.25} catalyst. This result demonstrated that the combination of CeO₂ and V₂O₅ resulted in significant synergy for Hg⁰ oxidation.

The effect of CeO_2 modified on the performance of $V_{0.80}WTiCe_a$ was displayed in Fig. 3. The addition of CeO_2 significantly enhanced

Fig. 1. Schematic diagram of the experimental setup.

the mercury oxidation activity of V_{0.80}WTiCe_a. For instance, E_{oxi} of V_{0.80}WTi was only 42.59%, while the minimal E_{oxi} still had 65.10% over V_{0.80}WTiCe_a. Moreover, Catalyst with a CeO₂/TiO₂ mass ratio of 0.25 performed the best activity and 88.93% mercury oxidation efficiency was obtained. However, further increase of CeO₂/TiO₂ mass ratio, Hg⁰ oxidation efficiency would be weakened. Accordingly, the optimal CeO₂/TiO₂ mass ratio was about 0.25.

To investigate the synergetic interaction between V₂O₅ and CeO₂, the effect of various V₂O₅ loading from on the performance of V_x WTiCe_{0.25} was also studied, and the results were depicted in Fig. 4. For all V_x WTiCe_{0.25}, E_{oxi} increased with temperature from 80 to 250 °C and then decreased when temperature further increased. In the temperature range (250-350 °C), increase of V_2O_5 loading yielded more Hg^0 oxidation. This illustrated that the V₂O₅-rich catalyst showed superior activity. However, activity difference between V_{0.80}WTiCe_{0.25} and V_{1.00}WTiCe_{0.25} was relatively small in comparison with that of other catalysts at 250 °C. Besides, $V_{1.00}WTiCe_{0.25}$ showed almost the same activity as V_{1.20}WTiCe_{0.25} at 200 °C. It is worth noting that V_{0.80}WTiCe_{0.25} displayed excellent performance for Hg⁰ oxidation with temperature from 80 to 150 °C. According to the literature [38], CeO₂ was active for Hg⁰ oxidation at low temperature. Above results demonstrated that Hg^0 oxidation activities of $V_xWTiCe_{0.25}$ were aided by synergistic effect between V₂O₅ and CeO₂.

3.2. Characterization of V_{0.80}WTiCe_{0.25}

3.2.1. Analysis of specific area (BET) and XRD patterns

The BET surface area, BIH pore volume and average pore volume of different samples were summarized in Table 1. From the table, WTiCe_{0.25} and V_{0.80}WTiCe_{0.25} exhibited higher specific surface areas. The introduction of CeO₂ increased the surface area and pore volume but lowered the average pore diameter (Fig. 5a). The results suggested the addition of CeO₂ was beneficial to the specific area accretion. The high specific surface area of the TiO_2 -CeO₂ composite oxides was due to the amorphous structure that the oxides formed through the sol-gel procedure [38]. Furthermore, as the impregnation of V₂O₅, the specific surface area and pore volume of V_{0.80}WTiCe_{0.25} decreased. It might be caused by deposited active oxides, which penetrated into the pores of the support. In addition, as displayed in Fig. 5b and c, for $V_{0.80}WTiCe_{0.25}$, there was significant hysteresis between adsorption and desorption isotherms, which is usually an indication of mesoporous materials. This clarified that the mesoporous structure was formed by

Fig. 2. Comparison of catalytic performance of different catalysts. Reaction conditions: 1000 ppm NO, 500 ppm SO₂, 5% O₂, 12% CO₂, N₂ as balance gas.

Fig. 3. Effect of CeO₂ modified on the performance of $V_{0.80}$ WTiCe_a. Reaction conditions: 1000 ppm NO, 500 ppm SO₂, 5% O₂, 12% CO₂, N₂ as balance gas.

Fig. 4. Effect of V_x WTiCe_{0.25} catalysts of various V loadings. Reaction conditions: 1000 ppm NO, 500 ppm SO₂, 5% O₂, 12% CO₂, N₂ as balance gas.

aggregation of nano-particles. This structure might facilitate mass transfer in the catalytic reaction [29].

The XRD patterns of the catalysts were displayed in Fig. 6. The characteristic peaks of V_2O_5 and WO_3 could be hardly detected for all catalysts, which were due to the widely dispersion and poorer crystalline on the surface. From the XRD figure, it can be seen that the diffraction peaks of WTi and $V_{0.80}$ WTi showed typical anatase-phase TiO₂. The diffraction line of WTi and $V_{0.80}$ WTi were narrow and sharp, which indicated the formation of large TiO₂ crystal particles [38]. In the pattern of the WTiCe_{0.25} and $V_{0.80}$ WTiCe_{0.25}, only the broadened diffraction peak of anatase-phase TiO₂ was observed. It also can be seen that the height of half-peak breadth of TiO₂ on

Table 1The surface area, pore volume and pore diameter of the samples.

Catalysts	BET surface area (m²/g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
WTi	38.4855	0.1322	13.7379
Vo soWTi	41.6403	0.1432	13.7511
WTiCe _{0.25}	122.9062	0.2931	9.5404
V _{0.80} WTiCe _{0.25}	116.6715	0.2809	9.6293

Fig. 5. Physical properties of different catalysts. (a) Particle size distribution of WTi, V_{0.80}WTi, WTiCe_{0.25} and V_{0.80}WTiCe_{0.25}; (b) N₂ adsorption and desorption isotherms of WTiCe_{0.25}; (c) N₂ adsorption and desorption isotherms of V_{0.80}WTiCe_{0.25}.

WTiCe_{0.25} and V_{0.80}WTiCe_{0.25} were much lower than that on WTi and V_{0.80}WTi. This revealed that the crystal particle of TiO₂ on WTiCe_{0.25} and V_{0.80}WTiCe_{0.25} were much smaller than that on WTi and V_{0.80}WTi. Moreover, cubic CeO₂ was not observed in WTiCe_{0.25} and V_{0.80}WTiCe_{0.25}. This demonstrated that CeO₂ probably only contained amorphous phase or crystallite phase with very small particle size [31].

Thus, according to the BET and XRD results, the addition of an appropriate amount of CeO_2 was beneficial not only for the formation of the TiO₂ crystal phase but also for the dispersion of active sites over the carrier. Besides, high concentration of amorphous or highly dispersed crystalline CeO_2 should be a rational reason for the excellent performance of the V_{0.80}WTiCe_{0.25}.

3.2.2. Element valences of V_{0.80}WTiCe_{0.25}

To determine the oxidation states of the element in these materials and to get a better understanding nature of the

Fig. 6. XRD patterns of WTi, V_{0.80}WTi, WTiCe_{0.25} and V_{0.80}WTiCe_{0.25}.

interactions in the catalyst system, the catalysts were investigated by XPS technique. The XPS spectra for O 1s for fresh WTi, WTiCe_{0.25}, V_{0.80}WTi and V_{0.80}WTiCe_{0.25} were shown in Fig. 7. It could be seen that the introduction of CeO₂ increased the binging energy of O. The peak appeared at low binding energy (529.5-530.0 eV) could be assigned to be the lattice oxygen (denoted as O_{β}) [39], while the binding energy of 531.0–531.6 eV was assigned to the chemisorbed oxygen (denoted as O_{α}), such as O^{2-} and O^{-} belonging to defect oxide or hydroxyl like group [40]. O_{α} was often thought to be the most active oxygen and played an important role in oxidation reaction [41,42]. In this study O_{α} ratio of WTiCe_{0.25} (42.63%), calculated by $O_{\alpha}/(O_{\alpha} + O_{\beta})$, was higher than that of WTi (33.21%), which meant that CeO₂ was helpful for mercury oxidation. CeO₂ was easy to form labile oxygen vacancies and particularly the relatively high mobility of bulk oxygen species, which may conduce to the improvement of chemisorbed oxygen [43]. Moreover, O_{α} ratio of $V_{0.80}$ WTiCe_{0.25} (48.32%) was higher than that of WTiCe_{0.25} (42.63%) and V_{0.80}WTi (41.19%). This result meant that there was synergistic effect between V₂O₅ and CeO₂, which resulted in more surface oxygen vacancies. It also meant that $V_{0.80}$ WTiCe_{0.25} might have better activity for mercury oxidation than WTi, WTiCe_{0.25} and V_{0.80}WTi. Thus, the addition of CeO₂ has a positive effect on mercury oxidation reaction. This conclusion was in good agreement with the results of the activity tests for these catalysts.

The Ce 3d spectra of fresh $V_{0.80}$ WTiCe_{0.25} and spent $V_{0.80}$ WTiCe_{0.25} investigated in this study were presented in Fig. 8. The bands labeled u¹ and v¹ represent the 3d¹⁰4f¹ initial electronic state, corresponding to Ce³⁺, whereas the peaks labeled u, u², u³, v, v², and v³ represent the 3d¹⁰4f⁰ state of Ce⁴⁺ ions [44]. It could be clearly seen the high ratio of Ce³⁺ (40.27%) over fresh $V_{0.80}$ WTiCe_{0.25}. In comparison with the fresh sample, the ratio of Ce³⁺ increased to 43.82% on spent $V_{0.80}$ WTiCe_{0.25}. This implied that the conversion from Ce⁴⁺ to Ce³⁺ was predominant within the redox shift between Ce³⁺ and Ce⁴⁺. Within the redox shift, labile oxygen vacancies and bulk oxygen species with relatively high

Fig. 7. O_{1s} XPS spectra for WTi, V_{0.80}WTi, WTiCe_{0.25} and V_{0.80}WTiCe_{0.25}.

mobility could be easily generated [43]. Furthermore, it was reported that the lattice oxygen defects over catalyst surface would be improved by increasing the content of Ce³⁺, which improved the redox transformation between Ce³⁺ and Ce⁴⁺ [45]. Meanwhile, two peaks at binding energy of 517.2 eV and 515.9 eV for the fresh V_{0.80}WTiCe_{0.25} (Fig. 9) represented V₂O₄ species with V⁴⁺ and V₂O₅ species with V⁵⁺, respectively [46,47]. However, only V⁵⁺ was detected on spent V_{0.80}WTiCe_{0.25}. It was assumed that V⁴⁺ could be oxidized to V⁵⁺ over the sample. This phenomenon implied V₂O₄ and CeO₂ were in a partially reduced state on the surface of catalyst, which might be attributable to the presence of

Fig. 8. Ce_{3d} XPS spectra for fresh – $V_{0.80}$ WTiCe_{0.25} and spent – $V_{0.80}$ WTiCe_{0.25} (the sample was subjected to Hg⁰ oxidation under simulated flue gas with the temperature of 250 °C).

strong interactions between V_2O_4 and CeO_2 . It was most likely that V^{4+} could be oxidized to V^{5+} , which was benefited from the transformation from Ce^{4+} to Ce^{3+} ions.

The Hg 4f spectra of spent $V_{0.80}$ WTiCe_{0.25} and spent V_{0.80}WTiCe_{0.25} were presented in Fig. 10. The Hg 4f spectrum of spent V_{0.80}WTiCe_{0.25} exhibited contributions from two components. According to the reported binding energies for Hg 4f on reference [48], the components can be ascribed to Hg⁰ and HgO with two peaks locating at 102.6 eV and 108.5 eV, respectively. Therefore, the XPS peak intensities and binding energies of Hg 4f line indicated that mercury was present as Hg⁰ and HgO on the spent V_{0.80}WTiCe_{0.25}. It was concluded that Hg⁰ was firstly adsorbed onto the active sites of the catalyst, and subsequently oxidized to HgO. It was very likely that Hg⁰ oxidation of V_{0.80}WTiCe_{0.25} could be mainly influenced by the O species on the samples surface. However, the absence of peaks for Hg adsorbed over the V_{0.80}WTi indicated that the concentration of Hg adsorbed was below the capabilities of XPS equipment detection or the adsorbed Hg desorbed from the surface of catalyst. This results confirmed that CeO₂ modified V_{0.80}WTi might have better activity for the adsorption and oxidation of Hg⁰ than unmodified $V_{0.80}$ WTi. In other words, the addition of CeO₂ not only improved the oxygen storage, but also enhanced the redox activity through the interaction between V₂O₅ and CeO₂.

3.3. Effect of flue gas constituents on Hg⁰ oxidation

To explore the roles of individual flue gas components in Hg^0 oxidation, the effects of reactant gas composition on activity were studied. The experimental conditions are listed in Table 2. Experiments were conducted at 250 °C, by individual flue gas components balanced in pure N_2 and/or in combination with O_2 . The results were shown in Fig. 11.

3.3.1. Effect of O₂

 O_2 promoted Hg⁰ oxidation. In pure N₂ gas flow, E_{oxi} was low which should be due to gas-phase or weakly adsorbed Hg⁰ reacting with lattice oxygen to form mercuric oxide [49]. Nevertheless, E_{oxi} increased from 41.98% to 71.13% when 5% O₂ was added to the gas flow. Obvious increase of E_{oxi} was detected when O₂ concentration further increased to 10% as well. It has been reported that lattice oxygen of the metal oxides can serve as the oxidant of Hg, forming mercuric oxide (HgO) [50]. E_{oxi} was low may be attributed to the consumption of the lattice oxygen. O₂ (g) can replenish the consumed chemisorbed oxygen and regenerate the lattice oxygen,

Fig. 9. V_{2P} XPS spectra for fresh – $V_{0.80}$ WTiCe_{0.25} and spent – $V_{0.80}$ WTiCe_{0.25} (the sample was subjected to Hg⁰ oxidation under simulated flue gas with the temperature of 250 °C).

Fig. 10. Hg_{4f} XPS spectra for spent – $V_{0.80}$ WTiCe_{0.25} and spent – $V_{0.80}$ WTiCe_{0.25} (the sample was subjected to Hg^0 oxidation under simulated flue gas with the temperature of 250 °C).

which serves as the Hg^0 oxidant [37]. Hence, obvious increase of Hg^0 oxidation efficiency was detected when 5% O_2 (g) was introduced to the pure N_2 carrier gas or even when O_2 (g) concentration further increased to 10%.

3.3.2. Effect of NO

Addition of 500 ppm NO has an enhancing effect on Hg⁰ oxidation under pure N₂ atmosphere. Compared to the results obtained under N₂ atmosphere, the oxidation Hg⁰ concentration was higher when NO was present in the reactor. This may be due to the addition of CeO₂ in the catalyst which can adsorb and oxidation NO. Jin et al. [51] found that a fraction of NO reacted with the surface oxygen to form NO_x species, which could enhance Hg^0 oxidation [49]. However, the addition of 1000 ppm NO into pure N₂ resulted in a slight decrease of E_{oxi} from 75.10% to 68.42%. Nonetheless, adding 5% O₂ and 1000 ppm NO to the flow gas improved the catalytic performance. It was hypothesized that lattice oxygen might participate in NO oxidation. The reaction consumed surface oxygen which resulted in a slight decrease of Hg⁰ oxidation at 1000 ppm NO. Hg⁰ oxidation would be increased once surface oxygen was enough for NO and Hg⁰ oxidation. Therefore, NO has a promotional effect on Hg^0 oxidation in the presence of O_2 .

3.3.3. Effect of SO₂

The addition of 500 ppm SO₂ slightly promoted the Hg^0 oxidation efficiency. 500 ppm SO₂ added to gas stream with O₂ (g) also

Table 2

iciicai v	contain	10115
/		
	iciicai .	icittai contan

Francisconto	Catalyzata	$F_{\text{line}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$
Experiments	Catalysts	Flue gas components (1 L min ⁻¹)
Set I	V _{0.80} WTiCe _{0.25}	N ₂
		N ₂ + 5% O ₂
		N ₂ + 10% O ₂
Set II		N ₂ + 500 ppm NO
		N ₂ + 1000 ppm NO
		N ₂ + 1000 ppm NO + 5% O ₂
Set III		N ₂ + 500 ppm SO ₂
		N ₂ + 1000 ppm SO ₂
		N ₂ + 500 ppm SO ₂ + 5% O ₂
Set IV		SFG:N ₂ + 1000 ppm NO + 500 ppm SO ₂ + 12%
		CO ₂ + 5% O ₂
		SFG + 8% H ₂ O
Set V		N ₂ + 1000 ppm NH ₃
		N ₂ + 1000 ppm NH ₃ + 5% O ₂
		SFG + 400 ppm NH ₃
		SFG + 700 ppm NH ₃
		SFG + 1000 ppm NH ₃
Set IV Set V		N ₂ + 300 ppm SO ₂ + 3.8 O ₂ SFG:N ₂ + 1000 ppm NO + 500 ppm SO ₂ + 12% CO ₂ + 5% O ₂ SFG + 8% H ₂ O N ₂ + 1000 ppm NH ₃ N ₂ + 1000 ppm NH ₃ SFG + 400 ppm NH ₃ SFG + 700 ppm NH ₃ SFG + 1000 ppm NH ₃

Fig. 11. Effects of individual flue gas components on Hg^0 oxidation of $V_{0.80}WTiCe_{0.25}$.

enhanced the catalytic activity. This indicated that promotional effect of SO₂ on Hg⁰ oxidation was obtained with the aid of O₂ (g). However, the addition of 1000 ppm SO₂ into pure N₂ resulted in a slight decrease of E_{oxi} from 47.04% to 41.85%. It was very likely that SO₂ reacted with the surface oxygen to form SO₃ [52]. The reaction consumed the reactive oxygen which was active for Hg⁰ oxidation in the pure N₂ [53]. Thus, the inhibitive effect of SO₂ would be obviously reduced by the addition of O₂ (g). These behaviors were well consistent with the literature results [54].

3.3.4. Effect of H₂O

H₂O inhibited Hg⁰ oxidation over the V_{0.80}WTiCe_{0.25} due to competitive adsorption, which was consistent with the values reported in the literature [33]. However, compared with the previous research [28], the reduction of E_{oxi} over the V_{0.80}WTiCe_{0.25} was minor. This result implied that the V_{0.80}WTiCe_{0.25} exhibited good resistance to H₂O.

3.3.5. Effect of NH₃

As a SCR catalyst, $V_{0.80}$ WTiCe_{0.25} would probably be used under SCR conditions where NH₃ is usually present. Hence, it is necessary to study the effect of NH₃ on the oxidation of Hg⁰. 1000 ppm NH₃ was added to pure N₂ atmosphere. NH₃ concentration had a slight influence on E_{oxi} : the efficiency was 49.70% at 1000 ppm NH₃ plus 5% O₂ atmosphere which was slightly higher than that under 1000 ppm NH₃ without O₂. According to the previous study, NH₃ consumed the surface oxygen that is responsible for Hg⁰ oxidation [55]. Gaseous NH₃ are adsorbed on the catalyst surface to form coordinated NH₃ and NH₂. The possible reactions over VWTiCe are proposed to be as follows:

$$NH_{3(g)} \rightarrow NH_{3(ad)}$$
 (2)

$$NH_{3(ad)} + O^* \rightarrow NH_{2(ad)} + OH_{(ad)}$$
(3)

where O^{*} are active surface oxygen of the catalyst. However, many researchers have confirmed that there is a competitive adsorption between NH₃ and Hg⁰. Therefore, the competitive adsorption of NH₃ and Hg⁰ on the VWTiCe catalyst was investigated by a desorption experiment, the results are shown in Fig. 12. V_{0.80}WTiCe_{0.25} saturated by Hg⁰ at 250 °C under a flow of Hg⁰ balanced in N₂ was used in this test. From the figure, no obvious increase in the Hg⁰ concentration was observed after adding 1000 ppm NH₃ and

Fig. 12. Desorption of Hg^0 from $V_{0.80}WTiCe_{0.25}$ by NH_3 .

turning off the Hg^0 at the same time. The result demonstrates that NH_3 cannot inhibit Hg^0 adsorption onto the active sites.

Besides, E_{oxi} under SCR atmosphere was also investigated. The SCR atmosphere was defined as SFG plus NH₃, with the NH₃/NO ratio of 1. When 1000 ppm NH₃ was introduced into the SFG to make SCR atmosphere, E_{oxi} decreased from 88.93% to 66.78%. This illustrated that the presence of NH₃ inhibited Hg⁰ removal over the $V_{0.80}$ WTiCe_{0.25} catalyst. However, the E_{oxi} significantly increased with the decrease of NH₃/NO ratio. As already mentioned, NO had a promotional effect on Hg⁰ oxidation over $V_{0.80}$ WTiCe_{0.25} in the presence of O₂. It should be noted that the SCR reaction consumed NO and O₂. Thus, it would be deduced that the concentrations of NO and O₂ would increase with the decrease of NH₃/NO ratio as the SCR reaction occurred simultaneously with Hg⁰ oxidation. In another words, there would be more available surface oxygen for NO promoting the oxidation of Hg⁰ with the decrease of NH₃/NO ratio. Nevertheless, the E_{oxi} of 66.78% is still encouraging, since lower space velocity and the typical flue gas with HCl would result in higher Hg⁰ oxidation efficiency.

3.4. Mechanism

From the results above, the catalysis mechanism for Hg^0 oxidation can be explained by the Mars–Maessen mechanism. In this mechanism, adsorbed Hg^0 would react with a lattice oxidant of catalyst (either O or Cl) that is replenished from the gas phase [10,56]. The active oxygen atom could produce by breaking O–O bonds on the surface of V₂O₅, then $Hg^0_{(ad)}$ molecular could pick up the dissociated O atom and forming HgO. This explains why E_{oxi} gradually increased as O₂ concentration increased. The possible mechanism for enhanced Hg^0 oxidation could be explained by the following reactions:

$$Hg^{0}_{(g)} + surface \rightarrow Hg^{0}_{(ad)} \tag{4}$$

 $Hg^0_{(ad)} + V_2O_5 \rightarrow HgO_{(ad)} + V_2O_4$ (5)

$$HgO_{(ad)} \to HgO_{(g)} \tag{6}$$

 $V_2 O_4 + 2 CeO_2 \rightarrow V_2 O_5 + Ce_2 O_3 \tag{7}$

$$Ce_2O_3 + \frac{1}{2}O_{2(g)} \rightarrow 2CeO_2$$
 (8)

The overall reactions can be summarized as follows:

$$Hg^{0}_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow HgO_{(g)}$$
 (9)

Gaseous Hg⁰ was firstly adsorbed onto the active sites of catalyst to form Hg⁰_(ad); and then the catalytic reaction is losing one oxygen atom from V₂O₅ to Hg⁰_(ad) to form HgO. The consumption of V₂O₅ could be compensated by V₂O₄ bond with CeO₂. Finally, the missing lattice oxygen of CeO₂ would be replaced by oxygen from the flue gas. The redox couples of V⁴⁺/V⁵⁺ seems to play an important role for mercury oxidation to proceed. CeO₂ contains many lattice oxygen species on the surface because of the cerium in CeO₂ can easily occupy two oxidation states [CeO₂ (Ce⁴⁺) \leftrightarrow Ce₂O₃ (Ce³⁺)]. Consequently, CeO₂ can contribute to the redox process of V⁴⁺/V⁵⁺. It provided lattice oxygen to V₂O₅ to increase the valence and oxidation ability of V₂O₅.

4. Conclusions

The CeO₂ modified VWTi displayed excellent performance for Hg^0 oxidation. Hg^0 oxidation could be improved by the addition of CeO₂ and $V_{0.80}$ WTiCe_{0.25} showed the best mercury oxidation efficiency in simulated coal-fired flue gas at 250 °C. NO and SO₂ were observed to promote Hg^0 removal with the presence of O₂. The catalyst exhibited good resistance to H_2O . Besides, the activity of catalysts for Hg^0 oxidation decreased with the presence of NH₃. Furthermore, the high activity of catalyst might ascribe to synergistic effect between V_2O_5 and CeO₂. A likely reaction pathway for Hg^0 oxidation on $V_{0.80}$ WTiCe_{0.25} was Mars–Maessen mechanism, where lattice oxygen of V_2O_5 reacts with adjacently absorbed Hg^0 . Being a novel SCR catalyst with higher Hg^0 oxidation efficiency, further investigations will be to examine the performance of catalysts for simultaneous NO_x and Hg^0 removal without HCl.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51278177, 51478173), and the National High Technology Research and Development Program of China (863 Program, No. 2011AA060803).

References

- Lee W, Bae GN. Removal of elemental mercury (Hg (0)) by nanosized V₂O₅/TiO₂ catalysts. Environ Sci Technol 2009;43(5):1522–7.
- [2] Li J, Yan N, Qu Z, Qiao S, Yang S, Guo Y, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/α -Al₂O₃ at lower temperatures. Environ Sci Technol 2009;44(1):426–31.
- [3] Xu W, Wang H, Zhu T, Kuang J, Jing P. Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci 2013;25(2):393–8.
- [4] Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 2010;10(13):5951–64.
- [5] Auzmendi-Murua I, Castillo Á, Bozzelli JW. Mercury oxidation via chlorine, bromine, and iodine under atmospheric conditions: thermochemistry and kinetics. J Phys Chem A 2014;118(16):2959–75.
- [6] Zheng Y, Jensen AD, Windelin C, Jensen F. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas. Fuel 2012;93:649–57.
- [7] Li JR, He C, Shang XS, Chen JS, Yu XW, Yao YJ. Oxidation efficiency of elemental mercury in flue gas by SCR De-NO_x catalysts. J Fuel Chem Technol 2012;40(2):241–6.
- [8] McLarnon CR, Granite EJ, Pennline HW. The PCO process for photochemical removal of mercury from flue gas. Fuel Process Technol 2005;87(1):85–9.
- [9] Zhuang Y, Thompson JS, Zygarlicke CJ, Pavlish JH. Development of a mercury transformation model in coal combustion flue gas. Environ Sci Technol 2004;38(21):5803–8.
- [10] Presto AA, Granite EJ. Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 2006;40(18):5601–9.
- [11] Granite EJ, Myers CR, King WP, Stanko DC, Pennline HW. Sorbents for mercury capture from fuel gas with application to gasification systems. Ind Eng Chem Res 2006;45(13):4844–8.
- [12] Hsi HC, Lee HH, Hwang JF, Chen W. Mercury speciation and distribution in a 660-Megawatt utility boiler in taiwan firing bituminous coals. J Air Waste Manage 2010;60(5):514–22.
- [13] Wiatros-Motyka MM, Sun CG, Stevens LA, Snape CE. High capacity coprecipitated manganese oxides sorbents for oxidative mercury capture. Fuel 2013;109:559–62.

- [14] Sun C, Snape CE, Liu H. Development of low-cost functional adsorbents for control of mercury (Hg) emissions from coal combustion. Energy Fuel 2013;27(7):3875–82.
- [15] Wang YJ, Liu Y, Wu ZB, Mo JS, Cheng B. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system. J Hazard Mater 2010;183(1–3):902–7.
- [16] Tao S, Li C, Fan X, Zeng G, Lu P, Zhang X, et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 2012;210:547–56.
- [17] Yang HM, Pan WP. Transformation of mercury speciation through the SCR system in power plants. J Environ Sci 2007;19(2):181–4.
- [18] Pudasainee D, Lee SJ, Lee SH, Kim JH, Jang HN, Cho SJ, et al. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants. Fuel 2010;89:804–9.
- [19] Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, et al. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environ Sci Technol 2008;42(1):256–61.
- [20] Hong HJ, Ham SW, Kim M, Lee SM, Lee JB. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions. Korean J Chem Eng 2010;27(4):1117–22.
- [21] Yang S, Guo Y, Yan N, Wu D, He H, Xie J, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO₂ poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture. Appl Catal B: Environ 2011;101(3-4):698–708.
- [22] Tan Z, Su S, Qiu J, Kong F, Wang Z, Hao F, et al. Preparation and characterization of Fe₂O₃-SiO₂ composite and its effect on elemental mercury removal. Chem Eng J 2012;195–196:218–25.
- [23] Zhang A, Zheng W, Song J, Hu S, Liu Z, Xiang J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J 2014;236:29–38.
- [24] Lee KJ, Kumar PA, Maqbool MS, Rao KN, Song KH, Ha HP. Ceria added Sb-V₂O₅/ TiO₂ catalysts for low temperature NH₃ SCR: physico-chemical properties and catalytic activity. Appl Catal B: Environ 2013;142–143:705–17.
- [25] Lee SM, Park KH, Hong SC. MnO_x/CeO₂-TiO₂ mixed oxide catalysts for the selective catalytic reduction of NO with NH₃ at low temperature. Chem Eng J 2012;195–196:323–31.
- [26] Shen B, Yao Y, Ma H, Liu T. Ceria modified MnO_x/TiO₂-pillared clays catalysts for the selective catalytic reduction of NO with NH₃ at low temperature. Chin J Catal 2011;32:1803–11.
- [27] Pârvulescu VI, Boghosian S, Pârvulescu V, Jung SM, Grange P. Selective catalytic reduction of NO with NH₃ over mesoporous V₂O₅-TiO₂-SiO₂ catalysts. J Catal 2003;217(1):172–85.
- [28] Li HL, Li Y, Wu CY, Zhang JY. Oxidation and capture of elemental mercury over SiO₂-TiO₂-V₂O₅ catalysts in simulated low-rank coal combustion flue gas. Chem Eng | 2011;169(1-3):186-93.
- [29] Xie JK, Yan NQ, Yang SJ, Qu Z, Chen WM, Zhang WQ, et al. Synthesis and characterization of nano-sized Mn–TiO₂ catalysts and their application to removal of gaseous elemental mercury. Res Chem Intermed 2012;38(9):2511–22.
- [30] Xu W, Yu Y, Zhang C, He H. Selective catalytic reduction of NO by NH₃ over a Ce/TiO₂ catalyst. Catal Commun 2008;9(6):1453-7.
- [31] Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K. Preparation and characterization of CeO₂/TiO₂ catalysts for selective catalytic reduction of NO with NH₃. Catal Commun 2010;11(5):465–9.
- [32] Shan W, Liu F, He H, Shi X, Zhang C. An environmentally-benign CeO_2 -Ti O_2 catalyst for the selective catalytic reduction of NO_x with NH_3 in simulated diesel exhaust. Catal Today 2012;184:160–5.
- [33] Li HL, Wu CY, Li Y, Zhang JY. CeO₂–TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 2011;45(17):7394–400.

- [34] Shan W, Liu F, He H, Shi X, Zhang C. An environmentally-benign CeO_2 -Ti O_2 catalyst for the selective catalytic reduction of NO_x with NH_3 in simulated diesel exhaust. Catal Today 2012;184(1):160–5.
- [35] Wan Q, Duan L, He KB, Li JH. Removal of gaseous elemental mercury over a CeO₂-WO₃/TiO₂ nanocomposite in simulated coal-fired flue gas. Chem Eng J 2011;170(2-3):512-7.
- [36] Campbell CT, Peden CH. Oxygen vacancies and catalysis on ceria surfaces. Science 2005;309(5735):713–4.
- [37] Li H, Wu CY, Li Y, Zhang J. Superior activity of MnO_x-CeO₂/TiO₂ catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl Catal B: Environ 2012;111–112:381–8.
- [38] Gao X, Jiang Y, Zhong Y, Luo Z, Cen K. The activity and characterization of CeO₂-TiO₂ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH₃. J Hazard Mater 2010;174(1-3):734–9.
- [39] Shan W, Liu F, He H, Shi X, Zhang C. A superior Ce–W–Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH₃. Appl Catal B: Environ 2012;115:100–6.
- [40] Fang J, Bi X, Si D, Jiang Z, Huang W. Spectroscopic studies of interfacial structures of CeO₂-TiO₂ mixed oxides. Appl Surf Sci 2007;253(22):8952–61.
- [41] Wu Z, Jin R, Liu Y, Wang H. Ceria modified MnO_x/TiO₂ as a superior catalyst for NO reduction with NH₃ at low-temperature. Catal Commun 2008;9(13):2217–20.
- [42] Yu D, Liu Y, Wu Z. Low-temperature catalytic oxidation of toluene over mesoporous MnO_x-CeO₂/TiO₂ prepared by sol-gel method. Catal Commun 2010;11(8):788–91.
- [43] Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC. Structural characterization of CeO₂-TiO₂ and V₂O₅/CeO₂-TiO₂ catalysts by Raman and XPS techniques. J Phys Chem B 2003;107(22):5162-7.
- [44] He H, Dai H, Au C. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 2004;90(3):245–54.
- [45] Mao XB, Gao YQ, Gong MC. High performance Ce_{0.35}Zr_{0.55}Y_{0.1}O_{1.95} rare earth oxygen storage material, Chinese. J Inorg Chem 2006;22(8):1521–4.
- [46] Lindström R, Maurice V, Groult H, Perrigaud L, Zanna S, Cohen C, et al. Liintercalation behaviour of vanadium oxide thin film prepared by thermal oxidation of vanadium metal. Electrochim Acta 2006;51(23):5001–11.
- [47] He S, Zhou JS, Zhu YQ, Luo ZY, Ni MJ, Cen KF. Mercury oxidation over a vanadiabased selective catalytic reduction catalyst. Energy Fuel 2009;23(1):253–9.
- [48] He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas. J Phys Chem C 2011;115(49):24300–9.
- [49] Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coalcombustion flue gas. Environ Sci Technol 2008;42(14):5304–9.
- [50] Granite EJ, Pennline HW, Hargis RA. Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res 2000;39(4):1020–9.
- [51] Jin R, Liu Y, Wu Z, Wang H, Gu T. Low-temperature selective catalytic reduction of NO with NH₃ over MnCe oxides supported on TiO₂ and Al₂O₃: a comparative study. Chemosphere 2010;78(9):1160–6.
- [52] Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, et al. Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO₂. Energy Fuel 2010;24:4250–4.
- [53] Li H, Wu CY, Li Y, Li L, Zhao Y, Zhang J. Role of flue gas components in mercury oxidation over TiO₂ supported MnO_x-CeO₂ mixed-oxide at low temperature. J Hazard Mater 2012;243:117–23.
- [54] Li H, Wu CY, Li Y, Li L, Zhao Y, Zhang J. Impact of SO₂ on elemental mercury oxidation over CeO₂-TiO₂ catalyst. Chem Eng J 2013;219:319–26.
- [55] Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K. CeO₂–TiO₂ sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 2013;47(17):10056–62.
- [56] Kim MH, Ham SW, Lee JB. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl₂/TiO₂-based catalysts in SCR process. Appl Catal B: Environ 2010;99(1–2):272–8.