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This study aims at coupling coal cinder filter with biological process to improve pharmaceutical

wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies

of COD, BOD5, SS and color were 90 ^ 2%, 72 ^ 2%, 95 ^ 2% and 80 ^ 2%, respectively.

The results attribute to the big specific surface area and strong adsorption ability. Coal cinder

filter removes a large portion of the pollutants in the influent wastewater, which would strongly

stable the effluent waste water quality, and reduce the load of follow-up biological treatment

process. The average removal efficiencies for COD, BOD5, SS and color of the combined process

were about 99.7 ^ 3%, 98.2 ^ 4%, 98.5 ^ 3% and 96.3 ^ 2%, respectively, with the average

effluent quality of COD 16 ^ 1mg/L, BOD5 11 ^ 1mg/L, SS 10 ^ 0.6mg/L and color 22 ^ 1

(multiple), which are consistent with the national requirements of the waste pollutants

for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008).

The results indicated that the combined procedure could offer an attractive solution

for pharmaceutical wastewater treatment with considerable low cost.
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INTRODUCTION

The existence of pharmaceutical substances in the aquatic

environment and their possible effects on living organisms

are a growing concern (Heberer 2002). The treatment of

pharmaceutical wastewater to the desired effluent standards

has always been difficult due to the wide variety of the

products that are produced in a drug manufacturing plant.

Variable wastewater composition and fluctuations in

pollutant concentrations cannot be treated by conventional

treatment plants (Carballa et al. 2004). Activated sludge

process is a well-known process for removing various

organic contaminants and organic carbon. However, the

properties of pharmaceutical wastewater make it hard to

be effectively eliminated by traditional biological treatment

(Ternes 1998; Castiglioni et al. 2006). As a result, alternative

treatment processes before and/or after biological treatment

seem promising and even critical where pollution is present

or anticipated. So, many researchers have been done a

large number of investigations on advanced oxidation

processes (Balcıoğlu & őtker 2003; Cokgor et al. 2004;

Tekin et al. 2006; Badawy et al. 2009; Benitez et al. 2009;

Yang et al. 2009a,b; Zhao et al. 2009) and adsorption

(Ternes et al. 2002; Urase & Kikuta 2005; Westerhoff et al.

2005; Bui & Choi 2009) for the treatment of pharmaceutical

wastewater. Activated carbons are widely used because of
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their high adsorption abilities (Zhou et al. 2005; Yu et al.

2008; Reddinga et al. 2009). However, the price of activated

carbons is relatively high, which may limit their usage.

This has led many researchers to search for lower cost

materials such as coal cinder (Yang et al. 2009), fly ash

(Gupta et al. 2002, 2003; Gupta & Ali 2004), alga (Gupta

et al. 2006; Gupta & Rastogi 2008, 2009), eggshell waste

(Zheng et al. 2007; Liao et al. 2010) and agricultural wastes

(Li et al. 2008; Zheng et al. 2008).

Coal cinder is an inorganic waste produced in coal

combustion. It is a relatively coarse, gritty material and has

a particle size generally within the range of 0.1–10mm.

Cinder contains much SiO2, Al2O3, which is porous

non-crystalline material. It can also be used to immobilize

cells or as filter media for advanced wastewater treatment

because of the high specific surface (Yang et al. 2009a,b).

Moreover, converter slag and coal cinder are staple solid

wastes in China and their utilization is also making sense to

waste reuse. Therefore, the main objective of this work was

to test the feasibility of coal cinder filtration with biological

processes to treat pharmaceutical wastewater and give the

reference to the practice.

MATERIALS AND METHODS

Characteristics of cinder

The coal cinder was obtained from the boiler house

of Hunan University, and the particle size was between

4 and 15mm. The property and composition of coal cinder

was presented in Table 1. Si-, Al-, Fe- and Ca-oxides

constituted 48, 34.5, 7.8 and 4.7% of the coal cinder,

respectively (Table 1).

Experimental setup and operation

Figure 1 shows the process constructed to treat wastewater

from a pharmaceutical company. The sewage sludge was

was obtained from the secondary sedimentation tank of

the second municipal wastewater treatment plant in

Changsha, China. The initial concentrations of seed

sludge were established to be approximately 3,500 and

2,400mg-MLSSL/L in the hydrolysis-acidification tank and

biological contact oxidation tank. An acclimatization

period of 2 months was imposed for both systems to obtain

a steady state operation. Then, both hydrolysis-acidification

tank and biological contact oxidation tank were operated

directly at room temperature. The company is located at

Wuhan city, Hubei province. Discharged pharmaceutical

wastewater was transferred to coal cinder yard using pump.

The filtered wastewater was delivered through pipeline

to collecting well pass through bar rack. The hydraulic

retention time (HRT) was kept at 8 h in hydrolysis-

acidification tank and biological contact oxidation tank.

The main functions and design parameters for each unit

were described as following:

† Collecting well: The collecting well has dimensions

of 2.5m £ 2m £ 4m, holding approximately 20m3 of

working volume and 0.5h of average HRT.

† Grit chamber: Because the effluent of coal cinder filter

exists a certain amount of grit, which should be removed

by grit chamber before biological process. The collecting

well has dimensions of 6m £ 3m £ 1.5m, holding

24m3 of working volume and 0.6 h of average HRT.

† Hydrolysis-acidification tank: The hydrolysis-acidification

tank has dimensions of 15m £ 5m £ 4m, with average

HRT of about 8h, hanging elastic semi soft packing,

with strand silk diameter 0.35mm and specific surface

area 200m2/m3, were filled as microorganism carriers

in the tank. its main operational parameters are: a

sludge retention time (SRT) of 8d and an average organic

loading rate (OLR) of 3.5kgCOD/(m3d). The sludge

age was 18d.

Table 1 | Property and composition of the coal cinder

Property and composition Cinder

Al2O3 (%) 34.5

SiO2 (%) 48

Fe2O3 (%) 7.8

CaO (%) 4.7

MgO (%) 0.3

C (%) 4.7

Porosity (%) 65

Specific surface area (cm2/kg) 2,500–4,000

pH 8.2

Particle size (mm) 4–15
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† Biological contact oxidation tank: The biological contact

oxidation tank was divided into three cells, each having

dimensions of 5m £ 5m £ 4m, with average 2.7 h. The

average organic loading rate (OLR) of 2 kgBOD5/(m
3d).

† Secondary sedimentation: The secondary sedimentation

tank has dimensions of 10m £ 2.5m £ 2m, with aver-

age HRT of about 1.5 h.

† Sludge drying bed: The excess sludge was transferred to

sludge drying bed. The sludge drying bed has dimensions

of 10 £ 4m.

Wastewater characteristics

The wastewater was mainly generated from the processes of

product manufacturing and equipment cleaning, containing

a variety of organic and inorganic constituents, such as

spent solvents, catalysts, reactants and a small amount

of intermediates or products. The characteristics of the

pharmaceutical wastewater and discharge standard are

showed in Tables 2 and 3. The COD of the wastewater

was quite high, nitrogen and phosphorus concentrations

(not shown) were not adequate for biological treatment.

Hence, NH4Cl and KH2PO4 were added to obtain COD/N/P

ratio as 100/5/2.

Control and monitoring

DO, pH and flow rates were recorded daily using the in-line

controllers. Dissolved oxygen (DO) was monitored with

electrochemical probe method ( JPB-607, Shanghai) and

maintained higher than 2.0mg/L in the biological contact

oxidation tank. The influent and effluent of each tank

were sampled one time per day, except BOD5 (one time per

two days).

Chemicals and analysis

All chemicals used were of AR grade, and water for all

solutions preparation had been treated by purification

system beforehand. Reagents used in the work were

purchased from Damao Chemical Reagent Co., Ltd.,

China, including K2Cr2O7, H2SO4, NaOH, NH4Cl and

KH2PO4. Chemical Oxygen Demand (COD) was deter-

mined by using microwave assisted potassium dichromate

(K2Cr2O7) oxidation method (Dharmadhikari et al. 2005).

Soluble Chemical Oxygen Demand (SCOD) was measured

after centrifugation (4,000 rmp). A WTW OxyTop system

(WTW, Germany) was used for determine the quantities

of oxygen consumed in the 5th day in various mixtures

(from 10 to 90%) at neutral pH, at 208C (Achak et al. 2009).

The Suspended Solid (SS) was measured according to
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E
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t

Figure 1 | Schematic diagram of experimental set-up. T1: collecting well; T2: grit chamber; T3: hydrolysis-acidification tank; T4: biological contact oxidation tank; T5: Secondary

sedimentation tank; T6: sludge drying bed.

Table 2 | Characteristics of the pharmaceutical wastewater

Characteristic items Concentration Mean

COD (mg/L) 4,000–6,000 5,200

SCOD (mg/L) 2,800–5,100 4,500

BOD5 (mg/L) 300–1,500 600

SS (mg/L) 600–700 660

Color (multiple) 550–700 600

pH 6.5–8 7.1

Temperature (8C) 19–25 22

Table 3 | Discharge standard of waste pollutants for pharmaceutical industry chinese

traditional medicine

Characteristic items Concentration

COD 100 (mg/L)

BOD5 20 (mg/L)

SS 50 (mg/L)

Color 50 (multiple)

pH 6–9
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standard method (APHA 1995). The color of wastewater

was determined with standard dilution multiple method

(Wei 2002). pH were determined according to a Multiline

330i phmeter which was standardized using buffer solutions

of different pH values (4.01, 7.00, 10.00). The coal cinder

had a surface area of 2,500–4,000 (cm2/kg), which were

determined by low temperature nitrogen absorption using

a Micrometrics ASAP 2000 Surface Area Analyser (School

Natural Resources). The particle size analysis was carried

out using standard sieves. All the respirometric data

presented in this work corresponds to the arithmetic

average of the results derived from two repeated experi-

ments. The reproducibility of the results and the match

(within 8%) between successive experiments was excellent.

RESULTS AND DISCUSSION

Performance of coal cinder filtration

Figure 2 shows the variations of COD,BOD5, SS and color by

coal cinder filtration. SS and COD effluent was remarkably

stable and with a highest removal efficiency of 95 ^ 2% and

90 ^ 2%, respectively. The color and BOD5 were also stable

and with a removal efficiency of 80 ^ 2% and 72 ^ 2%,

respectively. The ratios of SCOD/TCOD increased from

0.86 to 0.94. The results attribute to the bigger specific

surface area and stronger adsorption ability (Yang et al.

2009a,b). Coal cinder filter decreases the influent waste-

water pollutants greatly, which strongly stable the effluent

wastewater quality, and reduce the load of follow-up

biological treatment process. The COD, BOD5, SS and

color after flush cinder were 500 ^ 28mg/L, 180 ^ 8mg/L,

70 ^ 4mg/L and 65 ^ 3 (multiple), respectively.

High surface area contributed to its close packing in

columns thereby serving as primary barriers to solids in the

aqueous medium. This reduction can be also explained by

shifting of SS on the level of filter in spite of the high

content of the pharmaceutical wastewater of SS. Adsorp-

tion was the main mechanism to color in coal cinder filter.

Biological growth within the filter medium will reduce the

organic in the wastewater.

Performance of hydrolysis-acidification tank

Because the pollutants in the effluent are generally refractory

compounds which are very difficult to deal with by ordinary

activated sludge method, it is thus expected that anaerobic

hydrolysis acidification process would be an effective pre-

treatment for aerobic treatment of refractorywastewater. The

hydrolysis acidification process in the present work was: (1)

to improve the biodegradability of the wastewater; (2) to

destroy the chromophoric groups by removing its chroma;

(3) to act as a buffer for the influent load fluctuation.

The hydrolysis-acidification process in the present work

was expected to reduce partially the refractory substance in

the wastewater, and to destroy the chromophoric groups

in the pharaceutical wastewater, thus to offer beneficial

conditions for the subsequent biological oxidation. Figure 3

shows the behavior of the main variables of the process

in hydrolysis acidification tank. It can be seen from Figure 3,

the concentrationofBOD5 increasedwith time, due topartial

persistent pollutants transformed into readily biodegradable

substances. The ratios of BOD5/COD increased from 0.35 to

0.72. The main removal mechanism of the color is indicated

to be adsorption (Sahinkaya et al. 2008;Wang et al. 2008). It

can be seen that after the hydrolysis-acidification process, the

COD, BOD5, SS and color in pharmaceutical wastewater

were reduced to 195 ^ 5%mg/L, 140 ^ 3% mg/L, 22 ^ 5%

mg/L and 43 ^ 5% (multiple), respectively.

Performance of biological contact oxidation tank

Because the concentration of influent is very low, so the

wastewater was fed without dilution. The COD loading rate
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Figure 2 | Variations of COD, BOD5, SS, color by coal cinder filtration. Experimental

conditions: Influent wastewater: COD, BOD5, SS and color were

4,200–4,500mg/L, 600–630mg/L, 650–680mg/L and 600–620 (multiple);

temperature: room temperature; Hydraulic retention time: 1–1.5 h.
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at steady-state operation was 0.5mgCOD/mgMLVSSd.

It can be seen from Figure 4, the effluent COD, BOD5,

SS concentration and color (multiple) averaged 18^ 4mg/L,

11^ 4mg/L, 10 ^ 1mg/L and 23^ 1 corresponding to

91^ 2%, 95 ^ 1%, 51^ 5% and 44 ^ 5% removal, respect-

ively. The pollutants were degraded by biomembrane of filled

packing in biological contact oxidation tank, and microbes of

biomembrane took in organic matter in wastewater for

nourishment by contact with the wastewater. In our study,

we have directly used biological contact oxidation tank in

which HRT was 2.7h. One of the reasons of obtaining high

COD and BOD5 removal efficiencies was the influent

concentration was low. The color removal efficiency is not

soeffectiveand themain removalmechanismis indicated tobe

adsorption. The aerobic biological COD removal is a process

where part of the substrate is directly used for biomass growth

and the rest is oxidised for energy production.

CONCLUSIONS

A combined coal cinder filter with biological treatment

process on a full-scale of 800 t/d was studied and the

performance of the system was measured. The results

showed that the average removal efficiencies of COD,

BOD5, SS and color were 90 ^ 2%, 72 ^ 2%, 95 ^ 2% and

80 ^ 2%, respectively, with the average effluent quality of

COD 16 ^ 1mg/L, BOD5 11 ^ 1mg/L, SS 10 ^ 0.6mg/L

and color 22 ^ 1 (multiple). The results shows that adsorp-

tion on coal cinder filter showed an important potential to

remove COD, BOD5, SS and color were 90 ^ 2%, 72 ^ 2%,

95 ^ 2% and 80 ^ 2%, respectively. The effluent quality was

better than the requirement of the standards for pharma-

ceutical wastewater discharge in China. The results indi-

cated that the combined procedure could offer an attractive

solution for pharmaceutical wastewater treatment with

considerable low cost.
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