1	Immobilized Laccase on Bentonite-derived Mesoporous Materials for Removal of
2	Tetracycline
3	Xiaofeng Wen ^{a,1} , Zhuotong Zeng ^{b,1} , Chunyan Du ^{c,1} , Danlian Huang ^{a,1} , Guangming
4	Zeng ^{a,*} , Rong Xiao ^{b,*} , Cui Lai ^a , Piao Xu ^a , Chen Zhang ^a , Jia Wan ^a , Liang Hu ^a , Lingshi
5	Yin ^c , Chengyun Zhou ^a , Rui Deng ^a
6	^a College of Environmental Science and Engineering, Huna University and Key
7	Laboratory of Environmental Biology and Pollution Control (Hunan University),
8	Ministry of Education, Changsha 410082, P.R. Chin
9	^b Department of Dermatology, Second Xiang, H spital, Central South University,
10	Changsha 410011, P R China;
11	^c School of Hydraulic Engineering, Changsha University of Science & Technology and
12	Key Laboratory of Wate-Sectiment Sciences and Water Disaster Prevention of Hunan
13	Province, Changsha 410114, P.R. China.

^{*} Corresponding author.

E-mail address: zgming@hnu.edu.cn (G.M.Zeng), xiaorong65@csu.edu.cn (R. Xiao).

¹ These authors contribute equally to this article

ABSTRACT: Bentonite is a natural and environmentally clay mineral, and 14 bentonite-derived mesoporous materials (BDMMs) were obtained conveniently from 15 16 the alkali and acid treatment of bentonite. In the present study, BDMMs were explored 17 for immobilization of laccase obtained from Trametes versicolor. As a result, 18 bentonite-derived mesoporous materials-Laccase (BDMMs-Lac) was developed for the 19 removal of tetracycline (TC). The enzyme immobilization p ess was carried out through physical adsorption contact (ion exchange 20 hydrogen bond adsorption, and Van der waals adsorption) betwee the BDMMs and laccase. The 21 22 process of immobilization remarkably sed its operating temperature. The 23 BDMMs-Lac exhibited over 60% recovar efficiency for TC within three hours in the presence of 1-hydroxybenzo ABT). In conclusion, BDMMs-Lac showed more 24 riazo 25 accase for practical continuous applications. promising potentia 26 **Keywords:** Bentonne-derived mesoporous materials, Laccase, Physisorption

27 Immobilization, Tetracycline, Catalysis

1. Introduction

29	Laccase (EC 1.10.3.2) is an oxidoreductase that belongs to the multicopper oxidase
30	protein family (Huang et al., 2017; Madhavi and Lele, 2009; Zhang et al., 2014).
31	Laccase has the ability to catalyze some substrates to water (Spina et al., 2015; Huang et
32	al., 2016). In the presence of small molecular weight mediators, laccase has more
33	extensive substrate range and thus exhibits wider applicability in polluted water (Cheng
34	et al., 2016; Chen et al., 2016; Rodriguez and Toca, 2000. The use of laccases also
35	offers a method that is free from secondary pollution during actual wastewater treatment
36	(Lai et al., 2016; Liu et al., 2013; Monje et al. 2010). However, the low stability and
37	high production costs of laccase linit its applicability (Ashe et al., 2016; Li et al.,
38	2018).
39	Immobilization canceve come the limits of laccase application by enhancing the
40	enzyme properties (Mohamad et al., 2015; Cheng et al., 2016). The immobilization
41	methods of laccase have been explored for years (Deng et al., 2013; Guzik et al., 2014;
42	Zhou et al., 2018). Immobilization can increase the stability of enzymes and thus
43	improve the operability of laccase in practice (Lai et al., 2019; Sheldon and van Pelt,
44	2013). Multifarious carriers have been studied for the successful immobilization of

45 laccase (Zhou et al., 2013; Liu et al., 2012). Clays are low-cost, eco-friendly, 46 recyclable, have low mass transfer, and demonstrate microbial corrosion resistance 47 capacity (An et al., 2015; Li et al., 2015; Liang et al., 2017; Wu et al., 2017). Through 48 activation or etching, they can attain highly specific surface areas and numerous 49 functional groups (Gong et al., 2009; Osuna et al., 2018; Shu et al., 2016; Zeng et al., 50 2017). Bentonite, which has layered structure with cations 51 or Ca^{2+} , shows promising and highly suitable application for the ding of an extensive range of 52 53 biomolecules (Liang et al., 2017; Ghiaci ; Ma et al., 2018). After etching, 54 bentonite exhibited highly improved characteristics, including those relation to cation ang et al., 2017; Bajpai and Sachdeva, 2002; Shu exchange capacity and surface 55 be tonite, as a natural mineral, is eco-friendly, inexpensive, 56 et al., 2014). Furt mď (Long et al., 2011; Issaabadi et al., 2017). The application of bentonite 57 and accessible 58 for enzyme immobilization has been studied by several research groups (Salem and 59 Salem, 2017; Andjelkovi et al., 2015). Conversely, the utilization of mesoporous and high surface area bentonite for the immobilization of laccase and other different 60 biocatalysts remains to be explored (Xu et al., 2012; Andjelkovi et al., 2015; Zhou et al., 61

2018).

63	Antibiotic pollution has become of increasing environmental concern (Manaia et
64	al., 2016). Antibiotics are widely utilized to treat diseases caused by various bacterial or
65	pathogenic microbes, however, their Misuse and over accumulation threaten the
66	environment (Liu et al., 2016; Polesel et al., 2016). Tetracycline (TC) is one of the most
67	widely used antibiotics (Nasseh et al., 2018; Gothwal and Shashanar, 2015). The poor
68	degradation of TC from traditional municipal wastewater treatment plants has led to a
69	latent negative impact on aquatic organisms, thus becessitating the exploration of
70	treatment technologies (Halling-Sørensen, 200, Hung et al., 2017; Tan et al., 2015).
71	Among the numerous treatment method, the biodegradation of TC by laccase or
72	immobilized laccase is effective (Clas-Espinoza et al., 2018; Xu et al., 2012).
73	Although modified entruite materials have been frequently applied to immobilize
74	enzymes, the use of mesoporous and high surface area bentonite for laccase
75	immobilization has not been explored (Andjelkovi et al., 2015; Ghiaci et al., 2009; Liu
76	et al., 2012). Bentonite can be modified to be mesoporous and to possess a high surface
77	area (Toor et al., 2015; Önal and Sarıkaya, 2007). NaOH-HCl etching modification is an
78	alkali/acid activation composite modification process (Önal and Sarıkaya, 2007). This

79	method has been utilized for the etching of clay materials such as Halloysite, Kaolinite,
80	from wich mesoporous materials have successfully obtained (Li et al., 2015; Zhou et al.,
81	2014). However, the use of alkali/acid activation composite modification for bentonite
82	has not been explored. Thus, in this study, bentonite-derived mesoporous materials
83	(BDMMs) were constructed by NaOH-HCl etching. The BDMMs were utilized for
84	laccase immobilization to obtain bentonite-derived mesoportis materials-Laccase
85	(BDMMs-Lac), and the characteristics of BDMMs and the beatment capacity of
86	BDMMs-Lac were explored. BDMMs-Lac was applied for TC antibiotic removal in the
87	presence of the redox mediator 1-hydroxybenzoria ole (HBT). This study is aimed at
88	establishing new eco-friendly, low-cost, and re-usable carriers for immobilizing laccase
89	and for exploring the treatment capacity and removal ability of immobilized laccase for
90	emerging antibiotic pollutants
91	2. Material and methods

2.1. Materials 92

Laccase (≥ 0.5 U mg⁻¹) from *Trametes versicolor*, HBT, TC, and 2, 2-azino-bis 93

- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were obtained from Sigma-Aldrich (St. 94
- Louis, MO, USA). Bentonite was provided by Sinopharm Chemical Reagent Co. Ltd. 95

- 96 (Shanghai, China). All of the other chemicals were of analytical grade.
- 97 2.2. Etching of the Bentonite
- 98 Pristine bentonite was added to NaOH (6 M) and stirred. The bentonite was then
- 99 washed five times with ultrapure water, dried at 383 K for 12 h, and then added to HCl
- 100 (5 M) at 353 K with constant stirring for 6 h. The above material was then washed and
- 101 dried to obtain BDMMs.
- 102 2.3. Laccase Activity Assays

- 103 Laccase activity was tested using ABTS as a substrate (Zhang et al., 2014). Briefly,
- 104 the assay compound consisted of 0.1 M citrat outer (pH=5), 1 mM ABTS and free
- 105 laccase or BDMMS-Lac samples. The activity of BDMMS-Lac and free laccase was
- 106 detected at an absorbance of 420 the (UV-2250, Shimadzu Corp., Japan). One unit of
- 107 laccase activity was defined as the amount of BDMMS-*Lac* or free laccase required to
- 108 oxidize 1 µM of substrate per minute.
- 109 2.4. Laccase Immobilization
- 110 The BDMMs was suspended in citrate phosphate buffer (0.1 M, pH=3-8)
- 111 containing laccase (0.5-4 mg/mL). The mixtures were then incubated. Later, the sample
- 112 was centrifuged and the bottom solid was collected and washed several times with

- 113 citrate buffer (0.1 M, pH=5). The final solid BDMMs-Lac was obtained after freeze
- 114 drying at 173 K for 12 h. Fig. 1 depicts the typical process for the stepwise etching of
- 115 pristine bentonite, and the adsorption loading of laccase.
- 116 Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption immobilization on
- 117 <u>BDMMs.</u>
- 118 2.5. Stability Assessment
- 119 2.5.1. Thermal Stability

- 120 For temperature stability, free laccase and inmubilized laccase were added to
- 121 centrifuge tubes containing citrate buffer (pH=C an) were maintained at 303 K to 353
- 122 K for 120 min. They reacted with the ABAS and were centrifuged and then measured at
- 123 420 nm (UV-2250, SHimadz, Corp.
- 124 2.5.2. Reusability & Immobilited Laccase
- 125 The BDMMs-Lac was dispersed in citrate-phosphate buffer (pH 5) containing 1
- 126 mM ABTS and then incubated at 303 K. The sample was centrifuged (6,570 ×g) and the
- 127 concentration of the transformed ABTS was measured. The BDMMs-Lac was washed
- 128 with citrate-phosphate buffer. The above procedure was repeated for 10 cycles.

130 The effect of parameters such as BDMMs-Lac dosage (0.5–4 mg/mL) and reaction 131 time (10–180 min) were studied. The reaction mixture containing BDMMs-Lac and 10 132 mg/L of TC solution was placed at 303 K for 120 min. TC was tested at the absorbance 133 of 360 nm (UV-2250, Shimadzu Corp.). All of the experiments were examined in 134 triplicate. To determine the possible removal of TC due to adsor non onto the BDMMs, heated-devitalized BDMMs-Lac was used to remove the T 135 3. Results and Discussion 136 137 3.1. Structural Characterization 138 The morphologies of the ben BDMMs, and BDMMs-Lac samples are nite, oscopy (SEM) images (Fig. 2). The Fig. 2 (a) presented on Scanning Eleg 139 ron ucture of the crude bentonite, which consisted of 140 illustrates the 141 homogeneous particles. Fig. 2 (b) indicates the etching appearance of BDMMs whereby 142 the integrated particles were visually damaged and the interlamellar spacing was 143 enlarged. Relevant Energy dispersive spectroscopic (EDS) analysis confirmed that no 144 obvious elemental change occurred after etching (Fig. 2 (b)). Fig. 2 (c) and Fig. 2 (d) showed no alteration in the structure of BDMMs-Lac before or after degradation in 145

146 comparison with BDMMs.

147	The N_2 adsorption-desorption curves of the samples are presented in Fig. 3A. The
148	values of BDMMs were highly elevated in contrast to that of original bentonite. The
149	plot style also changed from III style (H3 hysteresis loop) to V style (H4 hysteresis loop)
150	(Zhang et al., 2016; Yu and Zhang, 2010). The hysteresis loop showed that both
151	bentonite and BDMMs consisted of slit holes, which were formarby the accumulation
152	of flaky particles or layered structures (Yang et al., 2010; Meneral., 2017). The BET
153	results indicated that the pristine bentonite had a surface area equal to $3.30 \text{ m}^2/\text{g}$, a pore
154	size equal to 2.73 nm and a pore volume equal $2246 \text{ mm}^3/\text{g}$. Meanwhile, the surface
155	area of BDMMs was 244.62 m ² /g, the port size was 5.53 nm, and the pore volume was
156	338.8 mm ³ /g. The specific curface reas were higher than that detected in previous
157	researches (Bajpained Scholva, 2002; Ghiaci et al., 2009).
158	The Fig. 3B shows the FTIR spectra of bentonite, BDMMs, BDMMs-Lac, and
159	BDMMs- <i>Lac</i> after degradation. The broad adsorption band around 3438 cm ⁻¹ among all
160	of the samples could be attributed to the stretching vibration of O-H caused by water
161	molecules that are present in the hydrogen bonded interlayer (Jiang et al., 2018; Ztrk et
162	al., 2008). The adsorption band at 1637 cm^{-1} in all of the samples indicates the

163	stretching vibration of crystal water molecules in the lattice (Ztrk et al., 2008). The band
164	at 1429 cm ⁻¹ was presumed to represent the symmetric stretching vibration absorption
165	peak of -COOH (Wen et al., 2019; Chen et al., 2017; Tang et al., 2014). The absorption
166	bands around 1027 and 696 cm^{-1} of spectrum a, b, c and d were caused by the bending
167	vibration of Si-O-Si and Si-O, respectively (Huang et al., 2016; Ztrk et al., 2008).
168	However, the band at 3627 cm ⁻¹ was interpreted as the stretching bibration of O-H due
169	to the existence of interlayered adsorption water molecules that disappeared after
170	etching (Huang et al., 2015). The same phenomenor was also observed in the peaks of
171	2352, 829, and 462 cm ⁻¹ . The presence of narrow balds at 2352 cm ⁻¹ might correspond
172	to the impurities mixed in the benton te. The other bands in the range of 500-800 cm^{-1}
173	were the lattice vibration of M-O, NO-M, and O-M-O (Andjelkovi et al., 2015). Their
174	changes among the different curves may be attributed to the ion exchange and regent
175	reaction during the etching process (Li et al., 2015).
176	The X-ray diffraction (XRD) patterns of the bentonite and BDMMs are displayed
177	in Fig. 3C. The characteristic reflection of bentonite at 5.8 °belonged to montmorillonite

- 178 (Chen et al., 2017). It was disappeared after etching. The reductions in BDMMs may be
- 179 due to the activation of etching regents. The basal space reflections presented a sharp

- peak at $2\theta = 26.64^{\circ}$ in the XRD spectrum of the bentonite and BDMMs samples and 180 181 indicated a (101) basal spacing of 1.54 nm (JCPDS Card No. 46-1045) (Toor et al., 182 2015). The characteristic XRD peaks for quartz ($2\theta = 26.64^{\circ}$, 42.45° , 68.32°), marked by 183 their indices (101), (200), (301), were almost identical between the bentonite and 184 BDMMs. No obvious shifts in the characteristic peaks of the bentonite and BDMMs 185 were observed, demonstrating that there was no expansion in **M**terlamellar spacing. Thus, the same XRD patterns of the bentonite and B 186 firmed that they possessed the same crystal structure and interplanar 187 188 Fig. 2. and d) 189 BDMMs-Lac after TC degradation. 190 Fig.3. A) BET nitrogen adsorpti plots of the bentonite and BDMMs. B) FT-IR spectra 191 ac, and BDMMs-Lac after degradation. C) XRD curves of the of bentonite, BDMI 192 bentonite and BDMMs
- 193 3.2. Optimum Conditions of Laccase Immobilization
- 194 Immobilization using bentonite as a support material is influenced by many factors
- 195 (Liu et al., 2012). As shown in Fig. 4A, when the initial laccase concentration increased
- 196 from 0.5 to 4 mg/mL, the loaded laccase on the bentonite also increased. However, the

197 activity of the immobilized laccase only increased until 2 mg/mL. When the laccase 198 concentration exceeded 2 mg/mL, a decrease in the activity recovery of BDMMs-Lac 199 was observed. Some similar observations have been made in previous studies (Kadam et 200 al., 2017). This phenomenon could be attributed to the overloading of laccase on 201 supports, as the overloading of laccase on the surface of the supports would result in the 202 congestion or crowding of the laccase molecules (Liu et al., 20) Diffusion-controlled limitations appeared when the laccase loading was high. Th 203 ation or crowding of laccase also resulted in the conformational char of the laccase molecules, and a 204 nportant for maintaining laccase 205 suitable laccase concentration was four 206 activity. Thus the optimum laccase concentration was set as 2 mg/mL for the subsequent 207 analyses. the activity and the relative activity of BDMMs-Lac 208 As depicted changed with the increase in immobilization time from 15 to 180 min. The relative 209 210 activity of BDMMs-Lac increased remarkably until 30 min, following which the 211 relative activity remained the same from 30 to 120 min. The activity of BDMMs-Lac 212 almost reached 800 U/g, following which the activity and relative activity began to decline. The activity of the immobilized enzymes depends on the nature of the enzyme 213

214	protein (Liu et al., 2012). As time progressed, the possible amounts of inactivated
215	laccase increased during immobilization, and the laccase flexibility declined. With the
216	increase in physical adsorption immobilization time, the adsorption site on BDMMs
217	was eliminated. The relevant steric hindrance and diffusion limitations might have also
218	resulted in the decrease in laccase activity (Liu et al., 2012).
219	The effect of solution pH on the activity of free and BDMASLac was explored at
220	different pH values ranging from 3.0 to 8.0 (Fig. 4C). The her and immobilized laccase
221	typically demonstrated maximal activity at pH 40 and pH 5.0. The variation in
222	optimum pH was also previously surveyed in in noblized laccase on magnetic bimodal
223	mesoporous carbon (Liu et al., 2012) It may be attributed to the electrostatic interaction
224	affected by the support microenventment around the laccase. Different pH values
225	resulted in different michaenvironments. The isoionic point influenced the net charge of
226	the laccase and carrier such that the laccase activity could be hindered or invoked (Chen
227	et al., 2015; Liu et al., 2012; Zhang et al., 2015). BDMMs-Lac showed better
228	adaptability when the pH value was above 5. As the pH increased to 6, the free laccase
229	and BDMMs-Lac maintained 37% and 48% of their relative activity, respectively. To a
230	certain extent, this result indicated that immobilization could retain laccase activity.

- 231 Fig. 4. A) Effect of laccase concentrations from 0.5 mg/mL to 4 mg/mL on the activity of the
- 232 immobilized laccase. B) Effect of time from 15 min to 180 min on the activity of the immobilized
- 233 laccase. C) Effect of pH from 3.0 to 8.0 on the activity of the free and immobilized laccase.
- 234 3.3. Properties of BDMMs-Lac
- 235 Operational stability is important for determining processing costs (Liu et al.,
- 236 2012). The results presented in Fig. 5A showed that BDMMs-Laborated 37% and 64% of
- 237 its original activity after three and five cycles, respectively. The physical adsorption
- 238 immobilization exhibited weak binding forces between enzyme and carrier. Thus, the
- activity loss may have resulted from the lacce leaching during the washing stages
- 240 (Skoronski et al., 2017).
- 241 The thermostability of free Lecase and BDMMs-*Lac* was explored over a 242 temperature range of 30 K b 353 K. As indicted in Fig. 5B, BDMMs-*Lac* was more
- stable than the free faccase, and both free laccase and BDMMs-Lac presented their
- highest stability at 313 K. Furthermore, between 323 K and 353 K, the immobilized
- laccase maintained 96% of its initial activity, while free laccase could only retain 0.54%
- of its initial activity when the temperature exceeded 343 K. The results were attributed
- 247 to the high thermostability of BDMMs-Lac towards denaturation. Immobilization

248 increased laccase rigidity and decreased laccase conformational flexibility (Andjelkovi

249 et al., 2015). The highly improved thermal stability of BDMMs-Lac benefits its

- application in high-temperature industrial processes (Menezes-Blackburn et al., 2011).
- 251 Fig. 5. A) Operational stability of BDMMs-Lac in continuous cycles. B) Thermal stability studies of
- 252 free laccase and BDMMs-Lac at 303-353 K for up to 120 min.
- 253 3.4. Removal of TC The effect of reaction time on removal of TC is displa 254 The removal of TC could be attributed to the combined effects gradation by BDMMs-Lac and 255 in Fig. 6A, approximately 60% of the 256 the adsorption by the BDMMs support. A 257 TC was removed in 120 min by BDY Ms*ac.* The more important contribution of the laccase catalytic process co e confirmed, as the adsorption only contributed 258 10 th 259 moval. However, the result also revealed the benefit of approximately 20 employing BDMMs as immobilization support in the removal process. The 260 261 accumulation of the catabolite might inhibit the removal process, which was reported in 262 a previous study (Yang et al., 2017). The relationship between immobilized laccase dosage and TC removal is presented 263
- 264 in Fig. 6B. The removal efficiency of TC gradually increased with increased in

282 it has wide applicability for the elimination of micropollutants from wastewater.

283

284 Acknowledgements

285	This study was financially supported by the Program for the National Natural
286	Science Foundation of China (81773333, 51109016, 51278176, 51408206, 51879101,
287	51579098, 51779090, 51709101, 51521006, 51809090, 51709101, the National
288	Program for Support of Top-Notch Young Professionals of Chipa (2014), The Natural
289	Science Foundation of Hunan province (2018JJ2012), Hunan Water Conservancy
290	Science and Technology Project ([2016]194, 2,)[2017]230-22), the Fundamental
291	Research Funds for the Central Universities (531109200027, 531107051080,
292	531107050978), the Hunan Provincial Science and Technology Plan Project
293	(2017SK2361, 2017SK226, 2018SK20410, 2017SK2243, 2016RS3026), the Program
294	for New Century Excellent Talents in University (NCET-13-0186), the Program for
295	Changjiang Scholars and Innovative Research Team in University (IRT-13R17), the
296	Scientific Research Fund of Hunan Provincial Education Department (No.521293050).
297	
298	References

299 Ali, M.M.M., Ahmed, M.J., Hameed, B.H., 2018. NaY zeolite from wheat (Triticum

- 300 aestivum L.) straw ash used for the adsorption of tetracycline. J. Clean. Prod. 172,
- 301 602-608.
- 302 An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., Yu, W.H., 2015. Immobilization of
- enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 114,
 283-296.
- 305 Andjelkovi, U., Milutinovi Nikoli, A., Jovi Jovi I, N.A., Bankor, Bajt, T., Mojovi,
- 306 Z., Vuj I, Z., Jovanovi, D.A., 2015. Efficient stable and of Saccharomyces
- 307 cerevisiae external invertase by immobilisation modified beidellite nanoclays.
- 308 Food Chem. 168, 262-269.
- 309 Ashe, B., Nguyen, L.N., Hai, F.I., Lee D., van de Merwe, J.P., Leusch, F.D.L., Price,
- 310 W.E., Nghiem, L.D., 2016. In pacts of redox-mediator type on trace organic
- 311 contaminants digradation by laccase: Degradation efficiency, laccase stability and
- 312 effluent toxicity. International Biodeterioration and Biodegradation. 113, 169-176.
- 313 Bajpai, A.K., Sachdeva, R., 2002. Immobilization of diastase onto acid-treated
- bentonite clay surfaces. Colloid & Polymer Science. 280, 892-899.
- 315 Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J., 2015. Bioremediation of
- soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides,

- 317 chlorophenols and heavy metals by composting: Applications, microbes and future
- 318 research needs. Biotechnol. Adv. 33, 745-755.
- 319 Chen, Y., Peng, J., Xiao, H., Peng, H., Bu, L., Pan, Z., He, Y., Chen, F., Wang, X., Li,
- 320 S., 2017. Adsorption behavior of hydrotalcite-like modified bentonite for Pb^{2+} , Cu^{2+}
- and methyl orange removal from water. Appl. Surf. Sci. 420, 773-781.
- 322 Chen, Y.Y., Stemple, B., Kumar, M., Wei, N., 2016. Cell Since Display Fungal
- 323 Laccase as a Renewable Biocatalyst for Degradation of Resistent Micropollutants
- Bisphenol A and Sulfamethoxazole. Environ. Sci **Fe**hnol. 50, 8799-8808.
- 325 Cheng, M., Zeng, G., Huang, D., Lai, C. Xu, P., Zhang, C., Liu, Y., 2016. Hydroxyl
- 326 radicals based advanced oxidation processes (AOPs) for remediation of soils
- 327 contaminated with organic companies: Å review. Chem. Eng. J. 284, 582-598.
- 328 Cheng, Y., He, Hi Xang, C. Zeng, G., Li, X., Chen, H., Yu, G., 2016. Challenges and

329 solutions for biofiliration of hydrophobic volatile organic compounds. Biotechnol.

- 330 Adv. 34, 1091-1102.
- 331 Deng, J., Zhang, X., Zeng, G., Gong, J., Niu, Q., Liang, J., 2013. Simultaneous removal
- of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide
- nanocomposite as an adsorbent. Chem. Eng. J. 226, 189-200.

- 334 Ghiaci, M., Aghaei, H., Soleimanian, S., Sedaghat, M.E., 2009. Enzyme immobilization:
- 335 Part 2. Immobilization of alkaline phosphatase on Na-bentonite and modified
- bentonite. Appl. Clay Sci. 43, 308-316.
- 337 Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., Liang,
- 338 Y., 2009. Removal of cationic dyes from aqueous solution using magnetic multi-wall
- 340 Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wan, J., Zhang, C., Cheng, M., Qin,
- 341 X., Xue, W., 2017. Stabilized Nanoscale Zerollent Iron Mediated Cadmium
- Accumulation and Oxidative Damage of Boe chern nivea (L.) Gaudich Cultivated in
- 343 Cadmium Contaminated Sedimente Environ. Sci. Technol. 51, 11308-11316.
- 344 Gothwal, R., Shashidhar, T. 2015, Artibiotic Pollution in the Environment: A Review.
- 345 CLEAN-Soil An Water 43, 479-489.
- 346 Guzik, U., Hupert-Kocurek, K., Wojcieszyska, D., 2014. Immobilization as a Strategy
- for Improving Enzyme Properties-Application to Oxidoreductases. Molecules. 19,
- 348 **8995-9018**.
- 349 Halling-Sørensen, G.S.B., 2002. Toxicity of Tetracyclines and Tetracycline
- 350 Degradation Products to Environmentally Relevant Bacteria, Including Selected

- 351 Tetracycline-Resistant Bacteria. Arch. Environ. Con. Tox. 42, 263-271.
- Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P.,
- 353 Cheng, M., Wan, J., 2017. Effects of calcium at toxic concentrations of cadmium in
- 354 plants. Planta. 245, 863-873.
- 355 Huang, D., Hu, C., Zeng, G., Cheng, M., Xu, P., Gong, X., Wang, R., Xue, W., 2016.
- 356 Combination of Fenton processes and biotreatment for waster are treatment and soil
- 357 remediation. Sci. Total Environ. 574, 1599-1610.
- 358 Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., Wang, R., Wan, J., 2017.
- 359 The effects of rice straw biochar on indigeneas inicrobial community and enzymes
- activity in heavy metal-contaminant d seciment. Chemosphere. 174, 545-553.
- 361 Huang, D., Wang, R., Liu, T., Zoog, G., Lai, C., Xu, P., Lu, B., Xu, J., Wang, C.,
- 362 Huang, C., 2015 Application of molecularly imprinted polymers in wastewater
- treatment: a review. Environ. Sci. Pollut. R. 22, 963-977.
- Huang, D., Xue, W., Zeng, G., Wan, J., Chen, G., Huang, C., Zhang, C., Cheng, M., Xu,
- 365 P., 2016. Immobilization of Cd in river sediments by sodium alginate modified
- 366 nanoscale zero-valent iron: Impact on enzyme activities and microbial community
- 367 diversity. Water Res. 106, 15-25.

Islas-Espinoza, M., Aydin, S., Heras, A.D.L., Ceron, C.A., Mart nez, S.G.,
Vázquez-Chagoyán, J.C., 2018. Sustainable bioremediation of antibacterials, metals
and pathogenic DNA in water. J. Clean. Prod. 183, 112-120.
Issaabadi, Z., Nasrollahzadeh, M., Sajadi, S.M., 2017. Green synthesis of the copper
nanoparticles supported on bentonite and investigation of its catalytic activity. J.
Clean. Prod. 142, 3584-3591.
Jiang, C., Yin, L., Wen, X., Du, C., Wu, L., Long, Y., Liu, Y., Wa, Y., Yin, Q., Zhou, Z.
Pan, H., 2018. Microplastics in Sediment and Surface Water of West Dongting Lake
and South Dongting Lake: Abundance, Source and Composition. Int. J. Env. Res.
Pub. He. 15, 2164.
Kadam, A.A., Jang, J., Lee, U.S., 2017. Supermagnetically Tuned Halloysite Nanotubes
Functionalized with Amin silane for Covalent Laccase Immobilization. ACS Appl.
Mater. Inter. 9, 15492-15501.

- 381 Križnik, L., Vasić, K., Knez, Ž., Leitgeb, M., 2018. Hyper-activation of ß-galactosidase
- 382 from Aspergillus oryzae via immobilization onto amino-silane and chitosan
- 383 magnetic maghemite nanoparticles. J. Clean. Prod. 179, 225-234.
- Lai, C., Wang, M., Zeng, G., Liu, Y., Huang, D., Zhang, C., Wang, R., Xu, P., Cheng,

- M., Huang, C., Wu, H., Qin, L., 2016. Synthesis of surface molecular imprinted 385 386 TiO₂/graphene photocatalyst and its highly efficient photocatalytic degradation of 387 target pollutant under visible light irradiation. Appl. Surf. Sci. 390, 368-376. 388 Lai, C., Zhang, M., Li, B., Huang, D., Zeng, G., Qin, L., Liu, X., Yi, H., Cheng, M., Li, 389 L., Chen, Z., Chen, L., 2019. Fabrication of CuS/BiVO₄ (0 4 0) binary heterojunction 390 photocatalysts with enhanced photocatalytic activity for Cir Moxacin degradation and mechanism insight. Chem. Eng. J. 358, 891 - 902. 391 Park, C., Kim, S.W., 2017. Lee, S.J., Lee, J.H., Yang, X., Yoo, H.Y., Han, 392 393 Re-utilization of waste glycerol for production of bioethanol by IS 394 immobilized Enterobacter aeroge Clean. Prod. 161, 757-764. es. . ., Huang, D., Zhou, C., Liu, X., Cheng, M., Xu, Li, B., Lai, C., Zeng, G., Q 395 u, S., 2018. Facile Hydrothermal Synthesis of Z-Scheme 396 P., Zhang, C., Bi2Fe4O9/Bi2WOO Heterojunction Photocatalyst with Enhanced Visible Light 397 398 Photocatalytic Activity. ACS Appl Mater Interfaces. 10, 18824-18836. 399 Li, T., Shu, Z., Zhou, J., Chen, Y., Yu, D., Yuan, X., Wang, Y., 2015. Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a 400
- 401 novel approach. Appl. Clay Sci. 107, 182-187.

402	Liang, J.,	Yang, Z.	, Tang, L.	, Zeng,	G., Y	ı, M.,	Li, X.,	Wu, H	., Qian,	Y., Li, 1	X., Luo,
-----	------------	----------	------------	---------	-------	--------	---------	-------	----------	-----------	----------

- 403 Y., 2017. Changes in heavy metal mobility and availability from contaminated
 404 wetland soil remediated with combined biochar-compost. Chemosphere. 181,
- 405 281-288.
- 406 Liu, J., Cai, Y., Liao, X., Huang, Q., Hao, Z., Hu, M., Zhang, D., Li, Z., 2013.
- 407 Efficiency of laccase production in a 65-L air-lift reactor for provide green industrial
- 408 and environmental application. J. Clean. Prod. 39, 154-16.
- 409 Liu, J., Luo, Q., Huang, Q., 2016. Removal of 17β rendial from poultry litter via solid
- 410 state cultivation of lignolytic fungi. J. Clean. 2001139, 1400-1407.
- 411 Liu, Y.Y., Zeng, Z.T., Zeng, G.M., Jung, L., Pang, Y., Li, Z., Liu, C., Lei, X.X., Wu,
- 412 M.S., Ren, P.Y., Liu, Z.F. Chen, Y., Xie, G.X., 2012. Immobilization of laccase on
- 413 magnetic bimoth meroporous carbon and the application in the removal of phenolic
- 414 compounds. Bioresource Technol. 115, 21-26.
- 415 Long, F., Gong, J., Zeng, G., Chen, L., Wang, X., Deng, J., Niu, Q., Zhang, H., Zhang,
- 416 X., 2011. Removal of phosphate from aqueous solution by magnetic Fe Zr binary
- 417 oxide. Chem. Eng. J. 171, 448-455.
- 418 Ma, J., Amjad Bashir, M., Pan, J., Qiu, L., Liu, H., Zhai, L., Rehim, A., 2018.

- 419 Enhancing performance and stability of anaerobic digestion of chicken manure using
- 420 thermally modified bentonite. J. Clean. Prod. 183, 11-19.
- 421 Madhavi, V., Lele, S.S., 2009. Laccase: Properties and Applications. BioResources. 4,
- 422 1694-1717.
- 423 Manaia, C.M., Macedo, G., Fatta-Kassinos, D., Nunes, O.C., 2016. Antibiotic resistance
- 424 in urban aquatic environments: can it be controlled? Apple Sicrobiol. Biot. 100,
- 425 1543-1557.
- 426 Menezes-Blackburn, D., Jorquera, M., Gianfreda, Leroo, M., Greiner, R., Garrido, E.,
- 427 2011. Activity stabilization of Aspergillus aig r and Escherichia coli phytases
- 428 immobilized on allophanic synthetic oppounds and montmorillonite nanoclays.
- 429 Bioresource Technol. 102 9360 3237.
- 430 Mohamad, N.R., Marzuri, N.H.C., Buang, N.A., Huyop, F., Wahab, R.A., 2015. An
- 431 overview of technologies for immobilization of enzymes and surface analysis
- 432 techniques for immobilized enzymes. Biotechnol. Biotec. Eq. 29, 205-220.
- 433 Monje, P.G., Gonzalez-Garcia, S., Moldes, D., Vidal, T., Romero, J., Moreira, M.T.,
- 434 Feijoo, G., 2010. Biodegradability of kraft mill TCF biobleaching effluents:
- 435 Application of enzymatic laccase-mediator system. Water Res. 44, 2211-2220.

436	Nasseh, N., Taghavi, L., Barikbin, B., Nasseri, M.A., 2018. Synthesis and
437	characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for
438	photocatalytic degradation of tetracycline in simulated wastewater. J. Clean. Prod.
439	179, 42-54.
440	Önal, M., Sarıkaya, Y., 2007. Preparation and characterization of acid-activated
441	bentonite powders. Powder Technol. 172, 14-18.
442	Osuna, F.J., Cota, A., Pavón, E., Alba, M.D., 2018. A comprehensive and in-depth
443	analysis of the synthesis of advanced adsorbert paterials. J. Clean. Prod. 194,
444	665-672.

- 445 Polesel, F., Andersen, H.R., Trapp, , Posz, B.G., 2016. Removal of Antibiotics in
- 446 Biological Wastewater Treatment Systems-A Critical Assessment Using the
- 447 Activated Slude Moleling Framework for Xenobiotics (ASM-X). Environ. Sci.
 448 Technol. 50, 10316-10334.
- 449 Rodriguez, C.S., Toca, H.J., 2006. Industrial and biotechnological applications of
- 450 laccases: a review. Biotechnol. Adv. 24, 500-13.
- 451 Salem, S., Salem, A., 2017. A novel design for clean and economical manufacturing
- 452 new nano-porous zeolite based adsorbent by alkali cement kiln dust for lead uptake

- 453 from wastewater. J. Clean. Prod. 143, 440-451.
- 454 Sheldon, R.A., van Pelt, S., 2013. Enzyme immobilisation in biocatalysis: why, what
- 455 and how. Chem. Soc. Rev. 42, 6223-6235.
- 456 Shu, Z., Li, T., Zhou, J., Chen, Y., Sheng, Z., Wang, Y., Yuan, X., 2016. Mesoporous
- 457 silica derived from kaolin: Specific surface area enlargement via a new
- 458 zeolite-involved template-free strategy. Appl. Clay Sci. 123, 7
- 459 Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., Wang, Y., 201 Tanylate-free preparation
- 460 of mesoporous silica and alumina from natural involution in application in
- 461 methylene blue adsorption. Appl. Clay Sci. 12, 31-40
- 462 Skoronski, E., Souza, D.H., Ely, C., Froik F., Fernandes, M., Junior, A.F., Ghislandi,
- 463 M.G., 2017. Immobilization detaccase from Aspergillus oryzae on graphene
- 464 nanosheets. Int. V. Bior Macromol. 99, 121-127.
- 465 Spina, F., Cordero, C., Schilirò, T., Sgorbini, B., Pignata, C., Gilli, G., Bicchi, C.,
- 466 Varese, G.C., 2015. Removal of micropollutants by fungal laccases in model solution
- 467 and municipal wastewater: evaluation of estrogenic activity and ecotoxicity. J. Clean.
- 468 Prod. 100, 185-194.
- 469 Sun, K., Huang, Q., Li, S., 2017. Transformation and toxicity evaluation of tetracycline

470 in humic acid solution by laccase coupled with 1-hydroxybenzotriazole. J. Hazard.

- 471 Mater. 331, 182-188.
- 472 Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015. Application of
- 473 biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125,
- 474 70-85.
- 475 Tang, W., Zeng, G., Gong, J., Liang, J., Xu, P., Zhang, C., Huang, B., 2014. Impact of
- 476 humic/fulvic acid on the removal of heavy metals from avecous solutions using
- 477 nanomaterials: A review. Sci. Total Environ. 468, 44-1027.
- 478 Toor, M., Jin, B., Dai, S., Vimonses, V. 205. Activating natural bentonite as a
- 479 cost-effective adsorbent for remove of ongo-red in wastewater. J. Ind. Eng. Chem.
- 480 21, 653-661.
- 481 Wen, X., Du, C., Wan, Zong, G., Huang, D., Yin, L., Deng, R., Tan, S., Zhang, J.,
- 482 2019. Immobilizing laccase on kaolinite and its application in treatment of malachite
- 483 green effluent with the coexistence of Cd (Π). Chemosphere. 217, 843-850.
- 484 Wu, H., Lai, C., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Li, X., Liu, J., Chen, M.,
- 485 Lu, L., Hu, L., Wan, J., 2017. The interactions of composting and biochar and their
- 486 implications for soil amendment and pollution remediation: a review. Crit. Rev.

- 487 Biotechnol. 37, 754-764.
- 488 Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z.,
- 489 Huang, C., Xie, G.X., Liu, Z.F., 2012. Use of iron oxide nanomaterials in wastewater
- 490 treatment: A review. Sci. Total Environ. 424, 1-10.
- 491 Xu, P., Zeng, G.M., Huang, D.L., Lai, C., Zhao, M.H., Wei, Z., Li, N.J., Huang, C., Xie,
- 492 G.X., 2012. Adsorption of Pb(II) by iron oxide nanoparticles immobilized
- 493 Phanerochaete chrysosporium: Equilibrium, kinetic, theraed manic and mechanisms
- 494 analysis. Chem. Eng. J. 203, 423-431.
- 495 Yang, C., Chen, H., Zeng, G., Yu, G., Luc S., 10 Biomass accumulation and control
- 496 strategies in gas biofiltration. Biotechnol. Adv. 28, 531-540.
- 497 Yang, J., Lin, Y.H., Yang, A.D., Y, T.B., Ye, X.Y., Lin, J., 2017. Degradation of
- 498 tetracycline by immovilized laccase and the proposed transformation pathway. J.
- 499 Hazard. Mater. 322, 525-531.
- 500 Yu, J.G., Zhang, J., 2010. A simple template-free approach to TiO2 hollow spheres with
- 501 enhanced photocatalytic activity. Dalton T. 39, 5860-5867.
- 502 Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang,
- 503 R., Jiang, D., 2017. Precipitation, adsorption and rhizosphere effect: The mechanisms

for Phosphate-induced Pb immobilization in soils-A review. J. Hazard. Mater. 339,

- 505 354-367.
- 506 Zhang, C., Lai, C., Zeng, G., Huang, D., Yang, C., Wang, Y., Zhou, Y., Cheng, M.,
- 507 2016. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic
- sulfamethazine from aqueous solution. Water Res. 95, 103-112.
- 509 Zhang, C., Liu, L., Zeng, G., Huang, D., Lai, C., Huang, C., 🌇 Z., Li, N., Xu, P.,
- 510 Cheng, M., Li, F., He, X., Lai, M., He, Y., 2014. Utilitation of nano-gold tracing
- 511 technique: Study the adsorption and transmission f laccase in mediator-involved
- 512 enzymatic degradation of lignin during solid vate fermentation. Biochem. Eng. J. 91,
- 513 149-156.
- 514 Zhang, Y., Zeng, G.M., Tang, L. Chen, J., Zhu, Y., He, X.X., He, Y., 2015.
- 515 Electrochemical Sense: Based on Electrodeposited Graphene-Au Modified Electrode
- and NanoAu Carrier Amplified Signal Strategy for Attomolar Mercury Detection.
- 517 Anal. Chem. 87, 989-996.
- 518 Zhou, C., Lai, C., Huang, D., Zeng, G., Zhang, C., Cheng, M., Hu, L., Wan, J., Xiong,
- 519 W., Wen, M., Wen, X., Qin, L., 2018. Highly porous carbon nitride by
- 520 supramolecular preassembly of monomers for photocatalytic removal of

sulfamethazine under visible light driven. Applied Catalysis B: Environmental. 220,

522 202-210.

- 523 Zhou, C., Sun, T., Gao, Q., Alshameri, A., Zhu, P., Wang, H., Qiu, X., Ma, Y., Yan, C.,
- 524 2014. Synthesis and characterization of ordered mesoporous aluminosilicate
- 525 molecular sieve from natural halloysite. J. Taiwan Inst. Chem. E. 45, 1073-1079.
- 526 Zhou, X., Lai, C., Huang, D., Zeng, G., Chen, L., Qin, L., Xu, Preheng, M., Huang, C.,
- 527 Zhang, C., Zhou, C., 2018. Preparation of water-compatible molecularly imprinted
- 528 thiol-functionalized activated titanium dioxide: Active adsorption and efficient
- 529 photodegradation of 2, 4-dinitrophenol in a reous solution. J. Hazard. Mater. 346,
- 530 113-123.
- 531 Zhou, Z., Hartmann, M., Chinelka, P.F., Stucky, G.D., Stucky, G.D., Weidinger, I.M.,
- 532 Scheller, F.W., Wilder and, P., Wollenberger, U., Park, J., Shi, C., Kim, J., Hyeon,
- 533 T., Hyeon, T., Ha, S., Jung, H., Kim, J., 2013. Progress in enzyme immobilization in
- ordered mesoporous materials and related applications. Chem. Soc. Rev. 42, 3894.
- 535 Ztrk, N., Tabak, A., Akgl, S., Denizli, A., 2008. Reversible immobilization of catalase
- by using a novel bentonite-cysteine (Bent-Cys) microcomposite affinity sorbents.
- 537 Colloids and Surfaces A: Physicochemical and Engineering Aspects. 322, 148-154.
- 538

539 Figure Captions

- 540 Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption immobilization on
- 541 BDMMs.
- 542 Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, c) BDMMs-Lac, and d)
- 543 BDMMs-Lac after TC degradation..
- 544 Fig. 3. A) BET nitrogen adsorption/desorption plots of the bentonite and MMs. B) FT-IR spectra
- 545 of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation C) XRD curves of the
- 546 bentonite and BDMMs.
- 547 Fig. 4. A) Effect of laccase concentrations from 0.1 mg/nL to 4 mg/mL on the activity of the
- 548 immobilized laccase. B) Effect of time from 15 nin to 180 min on the activity of the immobilized
- 549 laccase. C) Effect of pH from 3.0.0 8.0 the activity of the free and immobilized laccase.
- **Fig. 5**. A) Operation distability of BDMMs-Lac in continuous cycles. B) Thermal stability studies of
- free laccase and BDMMs Lac at 303-353 K for up to 120 min.
- 552 Fig. 6. A) Time-course of the removal and adsorption rates for TC by BDMMs-Lac and the
- 553 heated-devitalized BDMMs-Lac. B) Effect of immobilized laccase dosage on the removal rates of
- 554 TC by BDMMs-Lac.

561 Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, c) BDMMs-Lac, and d)

562 BDMMs-Lac after TC degradation..

565

566 Fig.3. A) BET nitrogen adsorption/desorption plots of the bentonite and BDMMs. B) FT-IR spectra

567 of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation. C) XRD curves of the

568 bentonite and BDMMs.

- 570 Fig. 4. A) Effect of laccase concentrations from 0.5 mg/mL to 4 mg/mL on the activity of the
- 571 immobilized laccase. B) Effect of time from 15 min to 180 min on the activity of the immobilized
- 572 laccase. C) Effect of pH from 3.0 to 8.0 on the activity of the free and immobilized laccase.

Fig. 5. A) Operational stability of BDMMs-Lacin continuous cycles. B) Thermal stability studies of

576 free laccase and BDMMs-Lac at 303-353 h for the to 120 min.

- 579 heated-devitalized BDMMs-Lac. B) Effect of immobilized laccase dosage on the removal rates of
- 580 TC by BDMMs-Lac.