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ABSTRACT: Bentonite is a natural and environmentally clay mineral, and 14 

bentonite-derived mesoporous materials (BDMMs) were obtained conveniently from 15 

the alkali and acid treatment of bentonite. In the present study, BDMMs were explored 16 

for immobilization of laccase obtained from Trametes versicolor. As a result, 17 

bentonite-derived mesoporous materials-Laccase (BDMMs-Lac) was developed for the 18 

removal of tetracycline (TC). The enzyme immobilization process was carried out 19 

through physical adsorption contact (ion exchange adsorption, hydrogen bond 20 

adsorption, and Van der waals adsorption) between the BDMMs and laccase. The 21 

process of immobilization remarkably increased its operating temperature. The 22 

BDMMs-Lac exhibited over 60% removal efficiency for TC within three hours in the 23 

presence of 1-hydroxybenzotriazole (HBT). In conclusion, BDMMs-Lac showed more 24 

promising potential than free laccase for practical continuous applications. 25 

Keywords: Bentonite-derived mesoporous materials, Laccase, Physisorption 26 

Immobilization, Tetracycline, Catalysis   27 
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1. Introduction 28 

Laccase (EC 1.10.3.2) is an oxidoreductase that belongs to the multicopper oxidase 29 

protein family (Huang et al., 2017; Madhavi and Lele, 2009; Zhang et al., 2014). 30 

Laccase has the ability to catalyze some substrates to water (Spina et al., 2015; Huang et 31 

al., 2016). In the presence of small molecular weight mediators, laccase has more 32 

extensive substrate range and thus exhibits wider applicability in polluted water (Cheng 33 

et al., 2016; Chen et al., 2016; Rodriguez and Toca, 2006). The use of laccases also 34 

offers a method that is free from secondary pollution during actual wastewater treatment 35 

(Lai et al., 2016; Liu et al., 2013; Monje et al., 2010). However, the low stability and 36 

high production costs of laccase limit its applicability (Ashe et al., 2016; Li et al., 37 

2018)
 
. 38 

Immobilization can overcome the limits of laccase application by enhancing the 39 

enzyme properties  (Mohamad et al., 2015; Cheng et al., 2016)
 
. The immobilization 40 

methods of laccase have been explored for years (Deng et al., 2013; Guzik et al., 2014; 41 

Zhou et al., 2018). Immobilization can increase the stability of enzymes and thus 42 

improve the operability of laccase in practice (Lai et al., 2019; Sheldon and van Pelt, 43 

2013). Multifarious carriers have been studied for the successful immobilization of 44 
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laccase  (Zhou et al., 2013; Liu et al., 2012). Clays are low-cost, eco-friendly, 45 

recyclable, have low mass transfer, and demonstrate microbial corrosion resistance 46 

capacity (An et al., 2015; Li et al., 2015; Liang et al., 2017; Wu et al., 2017). Through 47 

activation or etching, they can attain highly specific surface areas and numerous 48 

functional groups (Gong et al., 2009; Osuna et al., 2018; Shu et al., 2016; Zeng et al., 49 

2017).  50 

Bentonite, which has layered structure with cations such as Na
+
 or Ca

2+
, shows 51 

promising and highly suitable application for the loading of an extensive range of 52 

biomolecules (Liang et al., 2017; Ghiaci et al., 2009; Ma et al., 2018). After etching, 53 

bentonite exhibited highly improved characteristics, including those relation to cation 54 

exchange capacity and surface area (Liang et al., 2017; Bajpai and Sachdeva, 2002; Shu 55 

et al., 2014). Furthermore, bentonite, as a natural mineral, is eco-friendly, inexpensive, 56 

and accessible  (Long et al., 2011; Issaabadi et al., 2017). The application of bentonite 57 

for enzyme immobilization has been studied by several research groups (Salem and 58 

Salem, 2017; Andjelkovi et al., 2015). Conversely, the utilization of mesoporous and 59 

high surface area bentonite for the immobilization of laccase and other different 60 

biocatalysts remains to be explored (Xu et al., 2012; Andjelkovi et al., 2015; Zhou et al., 61 
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2018). 62 

Antibiotic pollution has become of increasing environmental concern (Manaia et 63 

al., 2016). Antibiotics are widely utilized to treat diseases caused by various bacterial or 64 

pathogenic microbes, however, their Misuse and over accumulation threaten the 65 

environment (Liu et al., 2016; Polesel et al., 2016). Tetracycline (TC) is one of the most 66 

widely used antibiotics (Nasseh et al., 2018; Gothwal and Shashidhar, 2015). The poor 67 

degradation of TC from traditional municipal wastewater treatment plants has led to a 68 

latent negative impact on aquatic organisms, thus necessitating the exploration of 69 

treatment technologies (Halling-Sørensen, 2002; Huang et al., 2017; Tan et al., 2015). 70 

Among the numerous treatment methods, the biodegradation of TC by laccase or 71 

immobilized laccase is effective  (Islas-Espinoza et al., 2018; Xu et al., 2012). 72 

Although modified bentonite materials have been frequently applied to immobilize 73 

enzymes, the use of mesoporous and high surface area bentonite for laccase 74 

immobilization has not been explored (Andjelkovi et al., 2015; Ghiaci et al., 2009; Liu 75 

et al., 2012). Bentonite can be modified to be mesoporous and to possess a high surface 76 

area (Toor et al., 2015; Önal and Sarıkaya, 2007). NaOH-HCl etching modification is an 77 

alkali/acid activation composite modification process (Önal and Sarıkaya, 2007). This 78 
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method has been utilized for the etching of clay materials such as Halloysite, Kaolinite, 79 

from wich mesoporous materials have successfully obtained (Li et al., 2015; Zhou et al., 80 

2014). However, the use of alkali/acid activation composite modification for bentonite 81 

has not been explored. Thus, in this study, bentonite-derived mesoporous materials 82 

(BDMMs) were constructed by NaOH-HCl etching. The BDMMs were utilized for 83 

laccase immobilization to obtain bentonite-derived mesoporous materials-Laccase 84 

(BDMMs-Lac), and the characteristics of BDMMs and the treatment capacity of 85 

BDMMs-Lac were explored. BDMMs-Lac was applied for TC antibiotic removal in the 86 

presence of the redox mediator 1-hydroxybenzotriazole (HBT). This study is aimed at 87 

establishing new eco-friendly, low-cost, and re-usable carriers for immobilizing laccase 88 

and for exploring the treatment capacity and removal ability of immobilized laccase for 89 

emerging antibiotic pollutants. 90 

2. Material and methods 91 

2.1. Materials 92 

Laccase (≥ 0.5 U mg
-1

) from Trametes versicolor, HBT, TC, and 2, 2-azino-bis 93 

(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were obtained from Sigma-Aldrich (St. 94 

Louis, MO, USA). Bentonite was provided by Sinopharm Chemical Reagent Co. Ltd. 95 

Ac
ce
pt
ed
 M
S



 

7 

 

(Shanghai, China). All of the other chemicals were of analytical grade. 96 

2.2. Etching of the Bentonite 97 

Pristine bentonite was added to NaOH (6 M) and stirred. The bentonite was then 98 

washed five times with ultrapure water, dried at 383 K for 12 h, and then added to HCl 99 

(5 M) at 353 K with constant stirring for 6 h. The above material was then washed and 100 

dried to obtain BDMMs. 101 

2.3. Laccase Activity Assays 102 

Laccase activity was tested using ABTS as a substrate (Zhang et al., 2014). Briefly, 103 

the assay compound consisted of 0.1 M citrate buffer (pH=5), 1 mM ABTS and free 104 

laccase or BDMMS-Lac samples. The activity of BDMMS-Lac and free laccase was 105 

detected at an absorbance of 420 nm (UV-2250, Shimadzu Corp., Japan). One unit of 106 

laccase activity was defined as the amount of BDMMS-Lac or free laccase required to 107 

oxidize 1 µM of substrate per minute. 108 

2.4. Laccase Immobilization 109 

The BDMMs was suspended in citrate phosphate buffer (0.1 M, pH=3-8) 110 

containing laccase (0.5-4 mg/mL). The mixtures were then incubated. Later, the sample 111 

was centrifuged and the bottom solid was collected and washed several times with 112 
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citrate buffer (0.1 M, pH=5). The final solid BDMMs-Lac was obtained after freeze 113 

drying at 173 K for 12 h. Fig. 1 depicts the typical process for the stepwise etching of 114 

pristine bentonite, and the adsorption loading of laccase. 115 

Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption immobilization on 116 

BDMMs. 117 

2.5. Stability Assessment 118 

2.5.1. Thermal Stability 119 

For temperature stability, free laccase and immobilized laccase were added to 120 

centrifuge tubes containing citrate buffer (pH=5) and were maintained at 303 K to 353 121 

K for 120 min. They reacted with the ABTS and were centrifuged and then measured at 122 

420 nm (UV-2250, SHimadzu Corp.). 123 

2.5.2. Reusability of Immobilized Laccase 124 

The BDMMs-Lac was dispersed in citrate-phosphate buffer (pH 5) containing 1 125 

mM ABTS and then incubated at 303 K. The sample was centrifuged (6,570 ×g) and the 126 

concentration of the transformed ABTS was measured. The BDMMs-Lac was washed 127 

with citrate-phosphate buffer. The above procedure was repeated for 10 cycles. 128 

Ac
ce
pt
ed
 M
S



 

9 

 

2.6. Immobilized Laccase System for the Removal of TC 129 

The effect of parameters such as BDMMs-Lac dosage (0.5–4 mg/mL) and reaction 130 

time (10–180 min) were studied. The reaction mixture containing BDMMs-Lac and 10 131 

mg/L of TC solution was placed at 303 K for 120 min. TC was tested at the absorbance 132 

of 360 nm (UV-2250, Shimadzu Corp.). All of the experiments were examined in 133 

triplicate. To determine the possible removal of TC due to adsorption onto the BDMMs, 134 

heated-devitalized BDMMs-Lac was used to remove the TC. 135 

3. Results and Discussion 136 

3.1. Structural Characterization 137 

The morphologies of the bentonite, BDMMs, and BDMMs-Lac samples are 138 

presented on Scanning Electron Microscopy (SEM) images (Fig. 2). The Fig. 2 (a) 139 

illustrates the unbroken structure of the crude bentonite, which consisted of 140 

homogeneous particles. Fig. 2 (b) indicates the etching appearance of BDMMs whereby 141 

the integrated particles were visually damaged and the interlamellar spacing was 142 

enlarged. Relevant Energy dispersive spectroscopic (EDS) analysis confirmed that no 143 

obvious elemental change occurred after etching (Fig. 2 (b)). Fig. 2 (c) and Fig. 2 (d) 144 

showed no alteration in the structure of BDMMs-Lac before or after degradation in 145 
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comparison with BDMMs. 146 

The N2 adsorption-desorption curves of the samples are presented in Fig. 3A. The 147 

values of BDMMs were highly elevated in contrast to that of original bentonite. The 148 

plot style also changed from III style (H3 hysteresis loop) to V style (H4 hysteresis loop) 149 

(Zhang et al., 2016; Yu and Zhang, 2010). The hysteresis loop showed that both 150 

bentonite and BDMMs consisted of slit holes, which were formed by the accumulation 151 

of flaky particles or layered structures (Yang et al., 2010; Chen et al., 2017). The BET 152 

results indicated that the pristine bentonite had a surface area equal to 3.30 m
2
/g, a pore 153 

size equal to 2.73 nm and a pore volume equal to 22.46 mm
3
/g. Meanwhile, the surface 154 

area of BDMMs was 244.62 m
2
/g, the pore size was 5.53 nm, and the pore volume was 155 

338.8 mm
3
/g. The specific surface areas were higher than that detected in previous 156 

researches (Bajpai and Sachdeva, 2002; Ghiaci et al., 2009). 157 

The Fig. 3B shows the FTIR spectra of bentonite, BDMMs, BDMMs-Lac, and 158 

BDMMs-Lac after degradation. The broad adsorption band around 3438 cm
−1

 among all 159 

of the samples could be attributed to the stretching vibration of O-H caused by water 160 

molecules that are present in the hydrogen bonded interlayer (Jiang et al., 2018; Ztrk et 161 

al., 2008). The adsorption band at 1637 cm
−1

 in all of the samples indicates the 162 
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stretching vibration of crystal water molecules in the lattice (Ztrk et al., 2008). The band 163 

at 1429 cm
-1

 was presumed to represent the symmetric stretching vibration absorption 164 

peak of –COOH (Wen et al., 2019; Chen et al., 2017; Tang et al., 2014). The absorption 165 

bands around 1027 and 696 cm
−1

 of spectrum a, b, c and d were caused by the bending 166 

vibration of Si-O-Si and Si-O, respectively (Huang et al., 2016; Ztrk et al., 2008). 167 

However, the band at 3627 cm
−1 

was interpreted as the stretching vibration of O-H due 168 

to the existence of interlayered adsorption water molecules that disappeared after 169 

etching (Huang et al., 2015). The same phenomenon was also observed in the peaks of 170 

2352, 829, and 462 cm
-1

. The presence of narrow bands at 2352 cm
−1

 might correspond 171 

to the impurities mixed in the bentonite. The other bands in the range of 500-800 cm
−1

 172 

were the lattice vibration of M-O, M-O-M, and O-M-O (Andjelkovi et al., 2015). Their 173 

changes among the different curves may be attributed to the ion exchange and regent 174 

reaction during the etching process (Li et al., 2015). 175 

The X-ray diffraction (XRD) patterns of the bentonite and BDMMs are displayed 176 

in Fig. 3C. The characteristic reflection of bentonite at 5.8° belonged to montmorillonite 177 

(Chen et al., 2017). It was disappeared after etching. The reductions in BDMMs may be 178 

due to the activation of etching regents. The basal space reflections presented a sharp 179 
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peak at 2θ = 26.64° in the XRD spectrum of the bentonite and BDMMs samples and 180 

indicated a (101) basal spacing of 1.54 nm (JCPDS Card No. 46-1045) (Toor et al., 181 

2015). The characteristic XRD peaks for quartz (2θ= 26.64°, 42.45°, 68.32°), marked by 182 

their indices (101), (200), (301), were almost identical between the bentonite and 183 

BDMMs. No obvious shifts in the characteristic peaks of the bentonite and BDMMs 184 

were observed, demonstrating that there was no expansion in interlamellar spacing. 185 

Thus, the same XRD patterns of the bentonite and BDMMs confirmed that they 186 

possessed the same crystal structure and interplanar spacing. 187 

Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, c) BDMMs-Lac, and d) 188 

BDMMs-Lac after TC degradation. 189 

Fig.3. A) BET nitrogen adsorption/desorption plots of the bentonite and BDMMs. B) FT-IR spectra 190 

of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation. C) XRD curves of the 191 

bentonite and BDMMs. 192 

3.2. Optimum Conditions of Laccase Immobilization 193 

Immobilization using bentonite as a support material is influenced by many factors 194 

(Liu et al., 2012). As shown in Fig. 4A, when the initial laccase concentration increased 195 

from 0.5 to 4 mg/mL, the loaded laccase on the bentonite also increased. However, the 196 
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activity of the immobilized laccase only increased until 2 mg/mL. When the laccase 197 

concentration exceeded 2 mg/mL, a decrease in the activity recovery of BDMMs-Lac 198 

was observed. Some similar observations have been made in previous studies (Kadam et 199 

al., 2017). This phenomenon could be attributed to the overloading of laccase on 200 

supports, as the overloading of laccase on the surface of the supports would result in the 201 

congestion or crowding of the laccase molecules (Liu et al., 2012). Diffusion-controlled 202 

limitations appeared when the laccase loading was high. The agglomeration or crowding 203 

of laccase also resulted in the conformational change of the laccase molecules, and a 204 

suitable laccase concentration was found to be important for maintaining laccase 205 

activity. Thus the optimum laccase concentration was set as 2 mg/mL for the subsequent 206 

analyses.  207 

As depicted in Fig. 4B, the activity and the relative activity of BDMMs-Lac 208 

changed with the increase in immobilization time from 15 to 180 min. The relative 209 

activity of BDMMs-Lac increased remarkably until 30 min, following which the 210 

relative activity remained the same from 30 to 120 min. The activity of BDMMs-Lac 211 

almost reached 800 U/g, following which the activity and relative activity began to 212 

decline. The activity of the immobilized enzymes depends on the nature of the enzyme 213 

Ac
ce
pt
ed
 M
S



 

14 

 

protein (Liu et al., 2012). As time progressed, the possible amounts of inactivated 214 

laccase increased during immobilization, and the laccase flexibility declined. With the 215 

increase in physical adsorption immobilization time, the adsorption site on BDMMs 216 

was eliminated. The relevant steric hindrance and diffusion limitations might have also 217 

resulted in the decrease in laccase activity (Liu et al., 2012).  218 

The effect of solution pH on the activity of free and BDMMs-Lac was explored at 219 

different pH values ranging from 3.0 to 8.0 (Fig. 4C). The free and immobilized laccase 220 

typically demonstrated maximal activity at pH 4.0 and pH 5.0. The variation in 221 

optimum pH was also previously surveyed in immobilized laccase on magnetic bimodal 222 

mesoporous carbon (Liu et al., 2012). It may be attributed to the electrostatic interaction 223 

affected by the support microenvironment around the laccase. Different pH values 224 

resulted in different microenvironments. The isoionic point influenced the net charge of 225 

the laccase and carrier such that the laccase activity could be hindered or invoked (Chen 226 

et al., 2015; Liu et al., 2012; Zhang et al., 2015). BDMMs-Lac showed better 227 

adaptability when the pH value was above 5. As the pH increased to 6, the free laccase 228 

and BDMMs-Lac maintained 37% and 48% of their relative activity, respectively. To a 229 

certain extent, this result indicated that immobilization could retain laccase activity. 230 
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Fig. 4. A) Effect of laccase concentrations from 0.5 mg/mL to 4 mg/mL on the activity of the 231 

immobilized laccase. B) Effect of time from 15 min to 180 min on the activity of the immobilized 232 

laccase. C) Effect of pH from 3.0 to 8.0 on the activity of the free and immobilized laccase. 233 

3.3. Properties of BDMMs-Lac 234 

Operational stability is important for determining processing costs (Liu et al., 235 

2012). The results presented in Fig. 5A showed that BDMMs-Lac lost 37% and 64% of 236 

its original activity after three and five cycles, respectively. The physical adsorption 237 

immobilization exhibited weak binding forces between enzyme and carrier. Thus, the 238 

activity loss may have resulted from the laccase leaching during the washing stages 239 

(Skoronski et al., 2017).  240 

The thermostability of free laccase and BDMMs-Lac was explored over a 241 

temperature range of 303 K to 353 K. As indicted in Fig. 5B, BDMMs-Lac was more 242 

stable than the free laccase, and both free laccase and BDMMs-Lac presented their 243 

highest stability at 313 K. Furthermore, between 323 K and 353 K, the immobilized 244 

laccase maintained 96% of its initial activity, while free laccase could only retain 0.54% 245 

of its initial activity when the temperature exceeded 343 K. The results were attributed 246 

to the high thermostability of BDMMs-Lac towards denaturation. Immobilization 247 
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increased laccase rigidity and decreased laccase conformational flexibility (Andjelkovi 248 

et al., 2015). The highly improved thermal stability of BDMMs-Lac benefits its 249 

application in high-temperature industrial processes (Menezes-Blackburn et al., 2011). 250 

Fig. 5. A) Operational stability of BDMMs-Lac in continuous cycles. B) Thermal stability studies of 251 

free laccase and BDMMs-Lac at 303-353 K for up to 120 min. 252 

3.4. Removal of TC 253 

The effect of reaction time on removal of TC is displayed in Fig. 6A. The removal 254 

of TC could be attributed to the combined effects of degradation by BDMMs-Lac and 255 

the adsorption by the BDMMs support. As shown in Fig. 6A, approximately 60% of the 256 

TC was removed in 120 min by BDMMs-Lac. The more important contribution of the 257 

laccase catalytic process could thus be confirmed, as the adsorption only contributed 258 

approximately 20% of the removal. However, the result also revealed the benefit of 259 

employing BDMMs as immobilization support in the removal process. The 260 

accumulation of the catabolite might inhibit the removal process, which was reported in 261 

a previous study (Yang et al., 2017). 262 

The relationship between immobilized laccase dosage and TC removal is presented 263 

in Fig. 6B. The removal efficiency of TC gradually increased with increased in 264 
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immobilized laccase dosage from 0.4 to 4 mg/mL. When the dosage was 4 mg/mL, the 265 

removal efficiency reached 52%. When the dosage was 2 mg/mL, the removal amount 266 

reached 1.85 mg/g. The removal efficiency began to decrease when the BDMMs-Lac 267 

dosage was higher than 4 mg/mL, and this phenomenon was attributed to excessive 268 

dosage, leading to contact site reduction between TC and mediator HBT, as well as 269 

contributing to the consumption of laccase activity (Sun et al., 2017). 270 

Fig. 6. A) Time-course of the removal and adsorption rates for TC by BDMMs-Lac and the 271 

heated-devitalized BDMMs-Lac. B) Effect of immobilized laccase dosage on the removal rates of 272 

TC by BDMMs-Lac. 273 

4. Conclusions 274 

The surface area, average pore size, and pore volume of BDMMs obtained from 275 

this study were all increased (3.3→244.62 m
2
/g, 2.73→5.53 nm, 22.46→338.8 mm

3
/g). 276 

The stability of BDMMs-Lac was improved compared to free laccase, particularly 277 

thermal stability. The biodegradation rate of BDMMs-Lac for TC reached nearly 60%. 278 

This study showed that BDMMs could be conveniently and efficiently obtained and has 279 

potential applicability in further practical biomacromolecule immobilization. 280 

Furthermore, as the obtained BDMM-Lac is an economical and eco-friendly biocatalyst, 281 
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it has wide applicability for the elimination of micropollutants from wastewater. 282 
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Figure Captions 539 

Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption immobilization on 540 

BDMMs. 541 

Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, c) BDMMs-Lac, and d) 542 

BDMMs-Lac after TC degradation.. 543 

Fig. 3. A) BET nitrogen adsorption/desorption plots of the bentonite and BDMMs. B) FT-IR spectra 544 

of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation. C) XRD curves of the 545 

bentonite and BDMMs. 546 

Fig. 4. A) Effect of laccase concentrations from 0.5 mg/mL to 4 mg/mL on the activity of the 547 

immobilized laccase. B) Effect of time from 15 min to 180 min on the activity of the immobilized 548 

laccase. C) Effect of pH from 3.0 to 8.0 on the activity of the free and immobilized laccase. 549 

Fig. 5. A) Operational stability of BDMMs-Lac in continuous cycles. B) Thermal stability studies of 550 

free laccase and BDMMs-Lac at 303-353 K for up to 120 min. 551 

Fig. 6. A) Time-course of the removal and adsorption rates for TC by BDMMs-Lac and the 552 

heated-devitalized BDMMs-Lac. B) Effect of immobilized laccase dosage on the removal rates of 553 

TC by BDMMs-Lac. 554 
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Fig. 1. Schematic of BDMMs preparation and succeeding laccase physisorption immobilization on 556 

BDMMs. 557 
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 560 

Fig. 2. SEM images and related EDS of a) bentonite, b) BDMMs, c) BDMMs-Lac, and d) 561 

BDMMs-Lac after TC degradation.. 562 
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 565 

Fig.3. A) BET nitrogen adsorption/desorption plots of the bentonite and BDMMs. B) FT-IR spectra 566 

of bentonite, BDMMS, BDMMS-Lac, and BDMMs-Lac after degradation. C) XRD curves of the 567 

bentonite and BDMMs. 568 
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Fig. 4. A) Effect of laccase concentrations from 0.5 mg/mL to 4 mg/mL on the activity of the 570 

immobilized laccase. B) Effect of time from 15 min to 180 min on the activity of the immobilized 571 

laccase. C) Effect of pH from 3.0 to 8.0 on the activity of the free and immobilized laccase.. 572 

  573 

Ac
ce
pt
ed
 M
S



 

39 

 

 574 

Fig. 5. A) Operational stability of BDMMs-Lac in continuous cycles. B) Thermal stability studies of 575 

free laccase and BDMMs-Lac at 303-353 K for up to 120 min.   576 
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 577 

Fig. 6. A) Time-course of the removal and adsorption rates for TC by BDMMs-Lac and the 578 

heated-devitalized BDMMs-Lac. B) Effect of immobilized laccase dosage on the removal rates of 579 

TC by BDMMs-Lac. 580 
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