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ABSTRACT 14 

The widespread existence of hydrophobic organic compounds (HOCs) in soil 15 

and water poses a potential health hazard to human, such as skin diseases, heart 16 

diseases, carcinogenesis, etc. Surfactant-enhanced bioremediation has been regarded 17 

as one of the most viable technologies to treat HOCs contaminated soil and 18 

groundwater. As a biosurfactant that has been intensively studied, rhamnolipids has 19 

shown to enhance biodegradation of HOCs in soils, however, the underlying 20 

mechanisms are not fully disclosed. In this paper, properties and production of 21 

rhamnolipids are summarized. Then effects of rhamnolipids on the biodegradation of 22 

HOCs, including solubilization, altering cell affinity to HOCs, and facilitating 23 

microbial uptake are reviewed in detail. Special attention is paid to how rhamnolipids 24 

changes the bioavailability of HOCs, which are crucial for understanding the 25 

mechanism of rhamnolipids-mediated biodegradation. The biodegradation and 26 

toxicity of rhamnolipids are also discussed. Finally, perspectives and future research 27 

directions are proposed. This review adds insight to rhamnolipids-enhanced 28 

biodegradation process, and helps in application of rhamnolipids in bioremediation. 29 

Keywords: Rhamnolipids; Hydrophobic organic compounds; Microorganism; 30 

Biodegradation; Bioremediation 31 
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1. Introduction 52 

The anthropogenic environmental pollution by hydrophobic organic compounds 53 

(HOCs) is well documented (Luo et al., 2014; Wang et al., 2010). The widespread 54 

existence of HOCs in soil and water causes serious problems to ecosystem and human 55 

health, and thus has drawn increasing attentions (Cheng et al., 2016; Lee et al., 2014; 56 

Lin and Gan, 2011). It is reported that these compounds are carcinogenetic and 57 

teratogenetic, and could cause allergy, skin diseases, heart diseases, etc., after 58 

long-term exposure (Cheng et al., 2018; Xiong et al., 2018; Daifullah and Girgis, 59 

2003; Štandeker et al., 2007). The sound and effective techniques to treat HOCs 60 

contaminated sites have been proposed, and bioremediation is considered to have 61 

higher ecological significance and greater promise (Budd et al., 2009; Cheng et al., 62 

2017b; Zhu et al., 2010). However, due to the hydrophobicity, most of HOCs either 63 

exist as non-aqueous phase liquids (NAPLs) or strongly adsorb onto soil matrix, 64 

which greatly decrease the bioremediation efficiency (de la Cueva et al., 2016; Ren et 65 

al., 2018). 66 

Various studies have shown that the addition of surfactants facilitates removal of 67 

HOCs from contaminated soil and water (Mao et al., 2015; Trellu et al., 2016; Zhong 68 

et al., 2017). They are able to decrease the surface/interfacial tension of immiscible 69 

phase, increase the apparent solubility of HOCs, and thereby enhance the 70 

bioremediation (Cheng et al., 2017b; Zhang et al., 2015). Compared to chemical 71 

surfactants, biosurfactants have higher solubilizing ability towards hydrophobic 72 

pollutants (Barnadas-Rodríguez and Cladera, 2015; Yu et al., 2015). In addition, 73 

biosurfactants are more eco-friendly than most chemical synthetic surfactants (De et al., 74 

2015; Yadav et al., 2016). As a result, biosurfactants have been promising alternatives 75 

in surfactant-based bioremediation (Zhong et al., 2017). Rhamnolipids, as a class of 76 
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anionic glycolipid biosurfactant, have attracted particular interest. They present the 77 

maximum number of patents and publications among biosurfactants. According to 78 

Müller et al. (2012), more than 200 patents were registered for biosurfactants until 79 

2012, and 50% of them are related to rhamnolipids. At the end of 2017, the numbers of 80 

publications on rhamnolipids and biosurfactants have reached 2100 and 4500, 81 

respectively.  82 

Rhamnolipids are the most extensively studied and used biosurfactant in 83 

bioremediation area (De et al., 2015; Kim et al., 2015). They are biodegradable, less 84 

toxic, and can be produced from renewable resources (Gudiña et al., 2015; Ramírez et 85 

al., 2015). Studies also suggested that rhamnolipids are as good or better than 86 

synthetic surfactants (e.g., Tween 80 and Triton X-100) in enhancing aqueous 87 

solubility of HOCs, such as alkanes (Kiran et al., 2016), polycyclic aromatic 88 

hydrocarbons (PAHs) (Mahanty et al., 2011), polychlorinated biphenyls (PCBs) 89 

(Chakraborty and Das, 2016), and pesticides (Singh et al., 2016). Moreover, it has 90 

been demonstrated that the presence of rhamnolipids could decrease the energy 91 

consumption of biodesulfurization by resting cells in biphasic O/W systems with 92 

hydrocarbon as the oil phase (Raheb et al., 2012). Due to these advantages, many 93 

studies have been performed on rhamnolipids-enhanced bioremediation in recent 94 

years (Lladó et al., 2012; Tahseen et al., 2016). 95 

Some review papers (Bai et al., 2017; Hošková et al., 2013; Lamichhane et al., 96 

2017; Shao et al., 2017) and few book chapters (Galabova et al., 2014; Leitermann et 97 

al., 2010) have summarized data on the application of rhamnolipids in bioremediation. 98 

To the best of our knowledge, however, these articles are mainly focused on 99 

biosynthesis and characteristics of rhamnolipids (Bai et al., 2017; Hošková et al., 100 

2013), influence of rhamnolipids on microbial metabolism process (Shao et al., 2017), 101 
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or simply the remediation efficiency (Lamichhane et al., 2017). To date, a 102 

comprehensive overview on mechanisms for rhamnolipids to enhance biodegradation 103 

of HOCs from a microscopic view point of interactions between rhamnolipids, HOCs, 104 

and microorganisms, are still in scarce. However, such an overview is important to fill 105 

the knowledge gap and definitely required, and thus is the focus of this article. 106 

 107 

2. Rhamnolipids 108 

As a biosurfactant produced by Pseudomonas aeruginosa, rhamnolipids were 109 

first reported in 1949 (Jarvis and Johnson, 1949). They are composed of L-rhamnose 110 

and β-hydroxy fatty acids moieties (Kiran et al., 2016). Up to date, over 60 congeners 111 

and homologues of rhamnolipids have been reported in literatures (Kourmentza et al., 112 

2018). They are different in the number of rhamnose rings, chain length, and the 113 

saturability of fatty acid moiety (Lovaglio et al., 2015). Four common rhamnolipid 114 

homologues are Rha-C10-C10, Rha-C10, Rha2-C10-C10 and Rha2-C10, respectively (Liu 115 

et al., 2017). 116 

It was reported that rhamnolipids can lower the interfacial tension of 117 

hexadecane/water from 43 to below 1 mN/m, decrease the surface tension of water 118 

from 72 to < 30 mN/m, and have critical micelle concentration (CMC) value in the 119 

range of 10 to 200 mg/L (Dubeau et al., 2009; Hörmann et al., 2010; Müller et al., 120 

2012). CMC is an important characteristic for surfactants, defined as the 121 

concentration of surfactants at which micelles begin to form and corresponds to the 122 

point at which the surfactant achieves the lowest stable surface/interfacial tension 123 

(Santos et al., 2016). Surface activity of rhamnolipids can be maintained even under 124 

extreme conditions of temperature (able to withstand 90 °C up to 120 min, and even 125 

120°C for 15 min) and pH (range from 3 to 11) (Hošková et al., 2015; Jackson et al., 126 
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2015; Pornsunthorntawee et al., 2008). Patel et al. (1997a, 1997b) reported that the 127 

hydrophilic/lipophilic balance (HLB) is 13 for monorhamnolipid and 21 for 128 

dirhamnolipid, which are indicative of the strong emulsifying capacity. According to 129 

Lebrón-Paler et al. (2006), pKa values of Rha-C10-C10 are 4.28 and 5.50, respectively, 130 

with the concentration below and above the CMC, suggesting rhamnolipids belong to 131 

weak acid, which is due to their terminal carboxylic group. In compare with the 132 

synthetic surfactants, rhamnolipids are more biocompatible, which enable them to be 133 

used as a carbon source supporting microbial growth (Galabova et al., 2014; 134 

Leitermann et al., 2010). In addition, rhamnolipids have a minimal toxic influence on 135 

aquatic microorganisms, plants, and indigenous microbial communities (Johann et al., 136 

2016). Due to these properties, rhamnolipids are suitable for various industrial 137 

applications, such as wetting, solubilization, foaming, emulsification, detergents, 138 

phase dispersion, and lubrication (Lovaglio et al., 2015). 139 

Bacteria of Pseudomonas genus are the main rhamnolipids-producing strains (De 140 

et al., 2015); however, many other species also have been found to produce 141 

rhamnolipids, e.g., Pseudoxanthomonas sp. (Nayak et al., 2009), Acinetobacter 142 

calcoaceticus (Hošková et al., 2013), Burkholderia sp. (Tavares et al., 2013) and 143 

Streptomyces sp. (Hošková et al., 2015). An overview of rhamnolipids producing 144 

bacteria is shown in Table 1. 145 

Please insert Table 1 146 

It has been reported that many microorganisms can utilize renewable resources 147 

to produce rhamnolipids (De et al., 2015; Prabu et al., 2015; Radzuan et al., 2017), for 148 

example, a P. aeruginosa can produce as much as 0.43 g/L of rhamnolipids when they 149 

grow on agro-industrial by-products (Radzuan et al., 2017). This is conducive to 150 

producing various homologs (Lovaglio et al., 2015; Ramírez et al., 2015). 151 
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The carbon, nitrogen and phosphorus source types have significant impacts on 152 

the production of rhamnolipids (Hošková et al., 2015; Varjani and Upasani, 2016). 153 

Rhamnolipids are generally produced under growth-limiting conditions, but 154 

C-limitation was not included (Müller et al., 2012). P-limitation and N-limitation have 155 

been mostly described for rhamnolipids production (De et al., 2015; Varjani and 156 

Upasani, 2017). Interestingly, the replacement of nitrogen source, for example NaNO3 157 

instead of (NH4)2SO4, could significantly enhance the total rhamnolipids 158 

concentration (Hošková et al., 2013). In addition to N-limitation and P-limitation, 159 

limitation of trace element salts and multivalent ions, such as Mg, Ca, K, and Na can 160 

also improve the yield of rhamnolipids (Arora et al., 2016; Gudiña et al., 2015). The 161 

most important conditions influencing production of rhamnolipids by P. aeruginosa 162 

have been discussed in detail by Müller et al. (2011). Several possible strategies are 163 

proposed to optimize the production of rhamnolipids, including (a) process 164 

optimization (Long et al., 2017); (b) screening for new non-pathogenic 165 

rhamnolipids-producing strains (Zhao et al., 2015); (c) recombinant production of 166 

rhamnolipids (Tiso et al., 2015); and (d) biocatalysis for customized rhamnolipids 167 

glycolipids (Müller et al., 2012). 168 

 169 

3. Solubilization of HOCs 170 

3.1 Solubilization mechanism 171 

Comparing with the bulk phase, the intermolecular forces of an interface are not 172 

balanced because of excessive free energy, which is measured as interfacial tension 173 

(Özdemir and Malayoglu, 2004; Prosser and Franses, 2001). Rhamnolipids are 174 

composed of a hydrophilic head (one or two rhamnose molecules) and a hydrophobic 175 

tail (one or two 3-hydroxy fatty acid chains) (Galabova et al., 2014). The addition of 176 
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rhamnolipids to a given solution will reduce the interfacial tension due to the 177 

adsorption of rhamnolipids at liquid-air or liquid-liquid interface (Pacwa-Płociniczak 178 

et al., 2011). Based on the classic surfactant aggregation theories, at concentrations 179 

lower than CMC, surfactant molecules exist alone as monomers in aqueous phase, and 180 

accumulate at the liquid-liquid or air-liquid interface (Ansari et al., 2013; Guo et al., 181 

2016). Once the surface adsorption of rhamnolipids reaches its threshold, the 182 

monomers in the bulk phase start to form aggregates as the Gibbs energy required for 183 

establishing non-polar chains in contact with water is higher than that of the repulsive 184 

head group interactions (Rodrigues, 2015). Manko et al. (2014) systematically studied 185 

the thermodynamic properties of rhamnolipid micellization and adsorption. The 186 

maximal surface excess concentration of rhamnolipids at water–air interface was 187 

determined as 2.01×10-6 mol/m2 by using the Gibbs adsorption equation. The 188 

corresponding minimal area occupied by one rhamnolipid molecule at the water–air 189 

interface was measured as 82.6 Å2. Physical rhamnolipids interactions with HOCs will 190 

enhance their aqueous dispersion, which arises from hydrophobic interactions between 191 

HOCs and rhamnolipid monomers below the CMC, or rhamnolipids encapsulation of 192 

HOCs into micelle cores above the CMC (Hua et al., 2003; Zhang and Miller, 1994). 193 

The process of partitioning HOCs into a micellar core is called solubilization. 194 

For HOCs contaminated soil environment, the addition of rhamnolipids can be 195 

expected to enhance bioremediation by desorption and solubilization of HOCs (Cheng 196 

et al., 2017a). In generally, the hydrophilic head of rhamnolipids tends to enter into 197 

the water and the hydrophobic tail is apt to combine with HOCs. At low 198 

concentrations, the accumulation of rhamnolipid monomers at the soil-oil interface 199 

would cause the repulsive force between solid phase and rhamnolipid hydrophilic 200 

head, resulting in desorption of HOCs from soil (Cheng et al., 2017a; He et al., 2015). 201 
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As concentration increasing, the interfical tension would be decreased due to 202 

rhamnolipid molecules gradually occupying interficial sites (Santos et al., 2016). 203 

When rhamnolipid concentrations in the aqueous phase are above CMC, HOCs would 204 

be incorporated into hydrophobic cores of micelles through strong competetion 205 

between rhamnolipid micelles and soil particles (Lamichhane et al., 2017; 206 

Pacwa-Płociniczak et al., 2011). This solubilization facilitates the mobilization and 207 

availability of HOCs, which assists in the subsequent treatments. 208 

It is generally accepted that solubilization is mainly caused by the formation of 209 

micelles when surfactant concentrations are above the CMC. However, several reports 210 

have suggested that solubilization activity of rhamnolipids to HOCs is excellent even 211 

at very low concentration. For example, in a recent study by Zhong et al. (2016) it 212 

showed that rhamnolipids could enhance the solubility of octadecane and hexadecane 213 

with concentrations both below and above the CMC, and the solubilization was more 214 

efficient at sub-CMC concentrations. Similarly, Singh et al. (2016) reported 215 

rhamnolipids could effectively enhance the aqueous phase solubility of chlorpyrifos at 216 

very low concentrations (below CMC).  217 

It was hypothesized that the solubilization activity of rhamnolipids to HOCs is 218 

related to the aggregation behavior at low concentrations (Zhong et al., 2016). Studies 219 

have shown the concentrations at which rhamnolipids form aggregates, namely 220 

critical aggregation concentration (CAC), can be lower than CMC. Using dynamic 221 

lighter scattering method, Abbasi et al. (2013) observed the signs of aggregate 222 

formation in multi-component rhamnoliplids system with the concentrations below 223 

CMC. Recently, the results of cryo-transmission electron microscopy (cryo-TEM) and 224 

dynamic light scattering (DLS) further demonstrated the occurrence of dirhamnolipid 225 

aggregates when below CMC (Zhong et al., 2015).  226 
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The mechanism for rhamnolipids to enhance aqueous dispersion of HOCs can be 227 

summarized as follows (Fig. 1). (i) Rhamnolipids monomers accumulate at the 228 

interface between HOCs and aqueous phase. By reducing the interfacial tension they 229 

decrease the repulsive forces between these two phases, and allow formation of micro 230 

droplets. (ii) Rhamnolipids molecules form co-aggregates with some HOCs or form 231 

micelles to incorporate HOCs, which are responsible for HOC solubilization at 232 

rhamnolipids concentrations below CMC and above CMC, respectively. 233 

Please insert Figure 1 234 

3.2 Biodegradation of solubilized HOCs 235 

Bioavailable is a key term in biodegradation, which is defined as “substrates are 236 

freely available to cross microbial cell membrane from the medium the 237 

microorganism inhabits at a given time” (Semple et al., 2004). For HOCs, the 238 

biodegradation involves degrading sorbed or NAPL-state HOCs at the interface, 239 

aqueous HOCs (dissolution as a molecular state), and micellar HOCs 240 

(pseudo-solubilization). It is known that the rhamnolipids/HOCs co-aggregates, as 241 

tiny HOCs reservoirs, can enhance the mass transfer to microbial cells (Bordoloi and 242 

Konwar, 2009; Sponza and Gök, 2010). Therefore, the addition of rhamnolipids can 243 

enhance bioavailability of the sorbed or NAPL-state HOCs (Brown, 2007; Guha and 244 

Jaffé, 1996a, 1996b; Lanzon and Brown, 2013). However, it has been observed that 245 

the increasing apparent solubility of HOCs due to rhamnolipids solubilization does 246 

not always result in enhancement of bioavailability (Liu et al., 2017; Zhong et al., 247 

2014). Potential mechanism regarding these contradictory results is whether to form 248 

hemispherical micelle or not (Brown, 2007; Brown and Al Nuaimi, 2005). When 249 

surfactants adsorb onto a surface, they will form hemi-micelles on it, which is similar 250 

to the formation of micelles in the aqueous phase. These hemi-micelles have 251 
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hydrophobic cores and can provide additional partitioning sites for HOCs (Lanzon 252 

and Brown, 2013; Zhou and Zhu, 2005). According to a model developed by Guha 253 

and Jaffe´ (1996a, 1996b), aqueous HOCs can be transported into cells, and the 254 

pathway is described as (A) in Fig. 2. For the mass transfer from micellar cores into 255 

microbial cells, it was assumed to have three steps (pathway (B)). The first step is 256 

transporting surfactant/HOCs aggregates from the bulk fluid to cells. Then micellar 257 

HOCs will be transported into hemi-micelles adsorbed on the cell surface under the 258 

condition of micelle breakdown due to micellar relaxation kinetics. Finally, HOCs 259 

will be transferred from hemi-micelles into cells. The later research found that the 260 

formation of hemi-micelles on the cell surface is necessary for surfactant-enhanced 261 

biodegradation of HOCs (Brown, 2007; Brown and Al Nuaimi, 2005). And thus a 262 

limiting case was supplemented in the process of mass transfer (pathway (C)): if there 263 

is no hemi-micelles formation on cell surface, the direct transport of micellar HOCs 264 

into cells will not occur. 265 

Please insert Figure 2 266 

Based on above revised model, Lanzon and Brown (2013) made a series of 267 

experiments and the results demonstrated that the effect of surfactant solubilization on 268 

the biodegradation of HOCs is related to following aspects. (1) The formation of 269 

hemi-micelles on cell surface. Specifically, when hemi-micelles adsorbed on the cell 270 

surface are dominant in the system, micellar HOCs are directly available to cells; 271 

while surfactant monomers are dominant in the system, micellar HOCs can’t be 272 

directly available to bacterial cells. (2) The impact of partitioning and mass transfer 273 

on bioavailable HOCs concentration. A system is at equilibrium in which has a 274 

sufficiently small mass of HOCs. After adding surfactant, if solid-phase HOCs aren’t 275 

residual due to partitioning into micelles, the bioavailable HOCs concentration will be 276 
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decreased, and thus depress biodegradation rate. (3) The ability of microbe utilizing 277 

the enhanced available HOCs. For example, when microbial growth is already at 278 

maximum specific growth rate, the addition of surfactant will not affect the total 279 

biodegradation rate.  280 

 281 

4. Effect of rhamnolipids on affinity between cells and HOCs 282 

Rhamnolipids not only have the ability to increase the solubility of HOCs, but 283 

also have biological effects of modifying cell surface properties (De et al., 2015). Cell 284 

surface hydrophobicity (CSH) is an important parameter for microorganisms. It has 285 

been known that CSH can affect the efficiency of many bioprocesses, including cell 286 

adherence to HOCs and cell-to-cell interactions (Habimana et al., 2014). It has been 287 

well reported that bacterial CSH can be affected by surfactants (Owsianiak et al., 2009; 288 

Sun et al., 2016). For example, Owsianiak et al. (2009) found that rhamnolipids could 289 

increase the CSH of microbial consortia with low hydrophobicity, while reduce the 290 

CSH microbial consortia with high hydrophobicity. Knowledge of how rhamnolipids 291 

affect CSH is important for evaluation on the affinity between cells and HOCs and 292 

thus biodegradation of HOCs. 293 

4.1 Rhamnolipids-induced removal of outer membrane components 294 

CSH depends on the proportion of hydrophilic and hydrophobic regions on the 295 

cell envelope. For most of Gram-negative microorganisms, the hydrophobicity is 296 

attributed to certain lipids and proteins presented in the outer membrane of the cells 297 

(Zimmermann et al., 2016). For example, outer membrane (OM) of Gram-negative 298 

bacteria comprises an inner leaflet of phospholipids, an outer leaflet of LPS, and 299 

proteins inserted in the lipid bilayer (Whitfield et al., 1997). From inside to outside, 300 

lipid A tail, core oligosaccharide including 2-keto-3-deoxyoctonic (KDO), and 301 
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O-antigen together constitute the typical structure of LPS (Kastowsky et al., 1992). 302 

One way for rhamnolipids to change CSH is to induce the removal of LPS from 303 

bacterial cell envelope, which has been firstly reported by Al-Tahhan et al. (2000). The 304 

possible mechanisms for rhamnolipids-induced LPS release have been proposed 305 

(Figure 3), which are: 1) rhamnolipids could directly remove LPS or the O-antigen 306 

part of LPS through micellar capture, resulting in the exposure of hydrophobic LPS 307 

lipid A (Bhattacharjee et al., 2016; Zhao et al., 2011); 2) rhamnolipids form complex 308 

with Mg2+, which is crucial for bridging LPS molecules and maintaining stability of 309 

LPS-LPS interactions, leading to direct release of LPS; 3) rhamnolipids can affect the 310 

structure of OM proteins which are responsible for the synthesis of LPS (Andersen 311 

and Otzen, 2014), and this has been evidenced by Fourier Transform Infrared 312 

Spectroscopy (FTIR) spectra (Zeng et al., 2011). It should be noted that the 313 

replacement or denaturation of components in OM would result in the irreversible 314 

alteration of CSH (Zhang and Zhu, 2014). 315 

Please insert Figure 3 316 

4.2 Adsorption of rhamnolipids 317 

Another way to modify the CSH can be attributed to adsorption of rhamnolipids 318 

on the cell surface driven by polar interactions between rhamnolipid molecules and 319 

functional groups on bacterial outer envelope serving as adsorption sites (Hou et al., 320 

2017). The bacterial cell surface contains hydrophilic and hydrophobic sites. The 321 

orientation of rhamnolipids adsorbed onto the cell surface determines the effect of 322 

rhamnolipids on CSH. Figure 4 illustrates the relationship between the orientation and 323 

the change of CSH. On the one hand, rhamnolipid may adsorb to the cell surface 324 

through the interactions between carboxyl or rhamnosyl groups and polar structures of 325 

cell surface by hydrogen bonding, dipolar, electrostatic, or short-term forces (e.g., 326 
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O-antigen of LPS), turning cell surface more hydrophobic (Liu et al., 2014). On the 327 

other hand, the adsorption could also be driven by van der Waals and hydrophobic 328 

forces between nonpolar structures of cell surface (e.g., lipids and some proteins) and 329 

hydrophobic tails of rhamnolipids, causing the decrease of CSH (Górna et al., 2011; 330 

Zhong et al., 2008). Overall, adsorption of rhamnolipids on cell surface may result in 331 

the exposure of the group with an opposite polarity into the environment (Mańko et 332 

al., 2014). Such a way of orientation of rhamnolipids is always inclined to change 333 

CSH from hydrophilic to hydrophobic, or from hydrophobic to hydrophilic (Zhong et 334 

al., 2007). The CSH of Bacillus subtilis BUM (with 73.5% of initial CSH) 335 

significantly decreased with the adsorption of rhamnolipids (Zhao et al., 2011). For 336 

relatively hydrophilic P. aeruginosa, the adsorption of rhamnolipids at low 337 

concentration resulted in a significant increase of CSH (Zhong et al., 2008). However, 338 

authors found that CSH could be slightly reduced at high rhamnolipids concentration. 339 

This is probably due to the double-layer adsorption of rhamnolipids, or the 340 

accumulation of micelles on the hydrophilic sites of cell surface (Mohanty and 341 

Mukherji, 2013). 342 

Please insert Figure 4 343 

4.3 Effect of rhamnolipids concentration on CSH 344 

It is shown by many studies that the change of CSH is highly related to 345 

rhamnolipids concentration (Domingues et al., 2014; Sun et al., 2016). Sun et al. 346 

(2016) reported the addition of rhamnolipids significantly enhanced the CSH of P. 347 

stutzier KS0013, and CSH was increased from 14.9% to 24.1, 27.0, 29.2, 30.1 and 348 

33.5% with 0.005, 0.010, 0.015, 0.020 and 0.025% of rhamnolipids concentrations, 349 

respectively. The control of CSH through rhamnolipids concentration could be an 350 

important strategy to improve the efficiency of bioremediation. 351 
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The orientation of rhamnolipid monomers and micelle deposition on cell surface 352 

are the basic means for altering CSH when rhamnolipids concentrations are low and 353 

high, respectively (Zhong et al., 2007). The effect of monomer adsorption is even 354 

more significant than that of micelle deposition (İkizler et al., 2017; Liu et al., 2014). 355 

When rhamnolipids are at low concentration, the adsorption is the presence of 356 

tight-binding of one moiety of rhamnolipid molecules to the chemical groups on cell 357 

surface (İkizler et al., 2017), and the orientation always tends to alternate the CSH 358 

(Liu et al., 2014). While at high concentration level, the change of CSH is less 359 

sensitive to micelle deposition since it is a simple accumulation of rhamnolipid 360 

micelles on originally hydrophilic sites of cell surface or pre-adsorbed rhamnolipids 361 

layer (Zhong et al., 2007). At these points, using low-concentration of rhamnolipids 362 

can be a way for controlling CSH (Liu et al., 2014). 363 

The native hydrophobicity of microorganisms is related to the proteins and lipids 364 

on cell surface (Yoneda et al., 2016). Al-Tahhan et al. (2000) showed that 365 

rhamnolipids at concentrations much less than the CMC caused the removal of LPS, 366 

leading to an increase in CSH. In contrast, the study by Sotirova et al. (2009) 367 

demonstrated when the concentration was above CMC, rhamnolipids caused the 368 

decrease of total LPS content of 22%, associated with an increase in CSH to 31% 369 

adherence. When the concentration of rhamnolipid was decrease to below CMC, 370 

however, rhamnolipids did not influence the LPS component of OM but caused 371 

significant changes in outer membrane protein (OMP) composition of P. aeruginosa 372 

(Galabova et al., 2014; Sotirova et al., 2009). According to above results, the removal 373 

of proteins and lipids from cell surface is related to the concentration of rhamnolipids, 374 

but no obvious relationship was found among them. 375 
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5. Rhamnolipids-induced enhancement of cell membrane permeability and 376 

uptake of HOCs 377 

It is reported that the permeability barriers imposed by cell envelopes lower 378 

whole-cell catalyzed reactions about 10 to 100 folds comparing with free enzymes 379 

catalyzed reactions (Sotirova et al., 2008). The permeability of OM is an important 380 

parameter for substrate uptake for Gram-negative bacteria. Solutes and metabolites 381 

less than 5 kDa are able to freely permeate OM, mainly owing to the presence of a 382 

plentiful protein (Schmidt et al., 2016). The induced permeability enhancement for 383 

microbial cells will probably enhance the enzyme reaction (Nesin et al., 2011).  384 

One of the theoretical bases for the application of rhamnolipids in 385 

bioremediation processes is the enhancement in cell permeability (Jadhav et al., 2011; 386 

Magalhães and Nitschke, 2013). The permeabilization can facilitate the mass transfer 387 

and reduce the toxic effect of prolonged incubation with HOCs, thus leading to the 388 

increase of mineralization rate (Tecon and van der Meer, 2010). Jadhav et al. (2011) 389 

investigated the potential of mono-rhamnolipid to permeabilize Bacillus sp VUS 390 

NCIM 5342. It was shown that mono-rhamnolipid had excellent performance in 391 

Bacillus cell permeabilization, and the efficiency of textile dye Brown 3REL 392 

decolorization was enhanced by 50%. On the other hand, permeabilized cells can be 393 

as a source of proteins and insoluble enzymes with analogous effects as those 394 

immobilized by conventional methods, allowing them to be tested under the identical 395 

conditions as those observed in vivo (Oliveira et al., 2016). Rhamnolipids can 396 

partition into microbial membrane because of the amphiphilicity, which causes the 397 

alteration of membrane in physicochemical properties and function (e.g., transport 398 

and energy generation) (Bai and McClements, 2016). Recently, many studies focus on 399 

the membrane actions of rhamnolipids, especially the induction of membrane 400 
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permeabilization in liposome system (Diaz De Rienzo et al., 2016; Inès and Dhouha, 401 

2015). The mechanism underlying rhamnolipids-induced leakage of liposomes might 402 

be that rhamnolipids adsorb onto the outer leaflet of microbial membrane, flip the 403 

inner leaflet, and then properly intercalate the phospholipid molecules, leading to 404 

destabilization of the membrane (Sánchez et al., 2010; Zhang and Zhu, 2014). Some 405 

researchers suggested rhamnolipids could induce the release of cell surface materials, 406 

such as LPS and outer membrane protein (OMP) (Kim et al., 2015; Sotirova et al., 407 

2009; Galabova et al., 2014) which are not only responsible for cell surface 408 

hydrophobicity, but also responsible for cell permeability characteristics (Amro et al., 409 

2000). The removal of cellular LPS is probably due to solubilization of OM through 410 

binding the aggregated rhamnolipids to the membrane, followed by the reduction of 411 

LPS (Sotirova et al., 2009). This usually occurs when the concentration of 412 

rhamnolipids is above CMC. When its concentration is below CMC, rhamnolipids 413 

could cause a marked reduction in the amount of proteins. This is probably because 414 

rhamnolipids monomers can cause alterations in membrane organization (Galabova et 415 

al., 2014). Fig. 5 shows the rhamnolipids-induced membrane permeabilization. 416 

Please insert Figure 5 417 

In the studies by Magalhães and Nitschke (2013), they observed an increase in 418 

cell permeability with the presence of rhamnolipids, and the hypothetical action site is 419 

the phospholipids in cell membrane, although the mechanism was not completely 420 

understood. In order to confirm the permeabilizing effect of rhamnolipids, 421 

Scanning-Electron Microscopy (SEM) was used to observe the morphologic changes 422 

of strain cells by Sotirova et al. (2008). The results showed strain cells in 0.5% 423 

rhamnolipids solution had significant changes in cell shapes and membranes fold, and 424 

formed various cavities with different shapes and sizes as compared to the untreated 425 
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cells. Result of several other studies showed that the addition of rhamnolipids can 426 

eliminate cyclopropane fatty acids of 17:0 cyclo and 19:0 cyclo which have been 427 

recognized can assist in tolerance of disturbance and stabilize membrane lipids 428 

(Denich et al., 2003; Mrozik et al., 2007). Moreover, Sánchez et al. (2010) studied the 429 

action of direhamnolipid on biological membrane through determining the release of 430 

carboxyfluorescein, and the results showed that permeabilization of dirhamnolipid 431 

induced leakage in liposomes with concentrations below the CMC, at which the 432 

solubilization of membrane was not observed.  433 

The permeabilization can facilitate the mass transfer of HOCs through cell 434 

membrane, and thus lead to an increase in HOC uptake rate (Tecon and van der Meer, 435 

2010). Jadhav et al. (2011) investigated the potential of mono-rhamnolipid to 436 

permeabilize Bacillus sp VUS NCIM 5342. It was shown that mono-rhamnolipid had 437 

excellent performance in Bacillus cell permeabilization, and the efficiency of textile 438 

dye Brown 3REL decolorization was enhanced by 50%. 439 

 440 

6. The biodegradation of rhamnolipids 441 

Mohan et al. (2006) investigated the biodegradation of rhamnolipids and the 442 

results showed that rhamnolipids could be rapidly degraded under aerobic conditions, 443 

while the degradation was remarkably slower under anaerobic conditions. In another 444 

study it was shown that microorganisms can degrade rhamnolipids after the 445 

biodegradation of solubilized HOCs (Oberbremer et al., 1990). Maslin and Maier 446 

(2000) proposed that rhamnolipids by themselves may serve as a carbon source. This 447 

observation caused increasing attentions because preferred utilization of rhamnolipids, 448 

as an alternative carbon source, may affect biodegradation efficiency of primary 449 

contaminants (Ławniczak et al., 2013). Ghosh and Mukherji (2016) carried out the 450 
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biodegradation experiment of pyrene by P. aeruginosa with the presence of 451 

rhamnolipids JBR 515, and they found that rhamnolipids were preferentially degraded 452 

as compared to pyrene. According to observations concerning the preferential use of 453 

rhamnolipids over HOCs, a negative impact of rhamnolipids supplementation may 454 

well exist in environmental biodegradation trials. Moreover, it is also plausible that 455 

rhamnolipids may be co-degraded with substrates, which means their effect on 456 

biodegradation of substrates will be slowly diminished. Lin et al. (2011) observed a 457 

significant increase in the biodegradation rate of diesel oil in the initial stage, while 458 

the process efficiency was similar to that of the control group (without rhamnolipids) 459 

in the latter stages. 460 

 However, biodegradability can be an advantage of rhamnolipids for HOC 461 

degradation. It has been reported that the biodegradation of surfactants may cause the 462 

release of HOCs from the micellar cores into the aqueous phase, eliminating the 463 

blocking effect of surfactants (Liu et al., 2017; Pęziak et al., 2013). Under such 464 

conditions, the biodegradability of rhamnolipids is beneficial for the degradation of 465 

the solubilized hydrocarbon. Zeng et al. (2011) found that the metabolism of 466 

rhamnolipids as carbon and energy source contributed to the growth of Candida 467 

tropicalis, which further enhanced the degradation of hexadecane. However, 468 

contradictive results were obtained by Ghosh and Mukherji (2016), who confirmed 469 

that the preferred utilization of rhamnolipids decreased the specific growth rate during 470 

the biodegradation of pyrene. These results indicate that unintended effects of 471 

rhamnolipids on HOCs biodegradation efficiency will occur when rhamnolipids are 472 

available to microorganisms in the system. Therefore, in practical applications, it is 473 

necessary to find the balance between the biodegradability of rhamnolipids and their 474 

effects on the HOCs biodegradation (Kumar et al., 2017; Maire and Fatin-Rouge, 475 
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2017). Parameters to be considered include the physical properties of rhamnolipids 476 

(stability, etc.), solubilization capacity of rhamnolipids for HOCs, and a suitable 477 

degree of biodegradability (Brycki et al., 2014). 478 

 479 

7. Toxicity of rhamnolipids 480 

Surfactants can be toxic to functionally important bacteria or may change 481 

bacterial community composition (Álvarez-Paino et al., 2015). Therefore, it is 482 

necessary to know their potential toxic effect to microorganisms when considering the 483 

environmental impacts of rhamnolipids. 484 

One opinion is that rhamnolipids have no toxic effect on the microbial cells 485 

cultured in medium (Banat et al., 2010; Hadibarata and Kristanti, 2014; Solaiman et 486 

al., 2016). Hadibarata and Kristanti (2014) investigated the effects of diverse 487 

surfactants on the growth of Armilaria sp. F022, and they observed that the system 488 

with rhamnolipids (10 mg/L) obtained the highest biomass. Solaiman et al. (2016) 489 

found that the lag phase of bacteria could be shortened by the presence of 490 

rhamnolipids. Several studies also have shown that addition of rhamnolipids can 491 

enhance the activity of indigenous microbes in the soil and sediment (Guo et al., 2016; 492 

Liao et al., 2015; Mathurasa et al., 2012). Liao et al. (2015) reported that the 493 

microbial number significantly increased with increasing concentrations of 494 

rhamnolipids. Besides, it was also found that rhamnolipids can promote microbial 495 

growth in solid-state fermentation systems (Liu et al., 2010; Zhou et al., 2011). For 496 

instance, Zhou et al. (2011) reported that rhamnolipids caused a significant increase of 497 

P. simplicissimum biomass. The promoting effect might be directly due to 498 

rhamnolipids, or the greater levels of dissolved organic matter released by the 499 

surfactants, serving as carbon sources for additional microbial growth.  500 
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The second opinion is that rhamnolipid has toxic effect on the growth of 501 

microorganisms during the HOCs biodegradation but it depends on the concentration 502 

of rhamnolipids. Sotirova et al. (2008) found that the application of low concentration 503 

of rhamnolipids has no effect on the growth of Gram-negative P. aeruginosa and 504 

Gram-positive B. subtilis, but high concentration (above CMC) of rhamnolipids 505 

showed toxic effects to B. subtilis. Fuchedzhieva et al. (2008) reported that the 506 

presence of rhamnolipids suppressed B. cereus growth on fluoranthene solution, and 507 

the inhibitory effect of rhamnolipids was better expressed when rhamnolipids 508 

concentrations are above 100 mg/L. This phenomenon was also shown by Mukherjee 509 

et al., (2006), and they suggested that the toxicity of rhamnolipids towards the 510 

microorganisms at high concentrations could be an issue hindering their applicability. 511 

It was suggested that with the increase of surfactant concentration, the formed 512 

surfactant micelles may solubilize cell membranes by forming mixed micelles with 513 

cell membrane lipids, leading to the necrosis of cells (Kim et al., 2013). In all, these 514 

results demonstrated thatconcentration is an important factor that should be seriously 515 

considered for successful application of rhamnolipids in bioremediation. 516 

 517 

8. Conclusions and perspectives 518 

Rhamnolipids have been frequently employed to enhance the bioremediation of 519 

HOCs polluted soil and water environment due to their high solubilizing ability, 520 

environmental friendly, etc. This paper provides a comprehensive review on the 521 

interaction mechanisms of rhamnolipids with HOCs and microorganism including 522 

solubilization, changing affinity through rhamnolipids adsorption or LPS release, 523 

permeabilization, with the aim of a better understanding and controlling of 524 

rhamnolipids-mediated HOCs biodegradation. In addition, effects from 525 
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biodegradation and toxicity of rhamnolipids should be considered since the factors are 526 

also important for the successful application of rhamnolipids in bioremediation of 527 

HOCs pollution. 528 

Rhamnolipids-mediated biodegradation provides a promising way to remediate 529 

HOCs contaminated environment. The following main areas need to be considered for 530 

subsequent work in research and practical application: 531 

(1) The commercial application of rhamnolipids is limited due to the high cost of 532 

production. Some measures could be taken to make the production of 533 

rhamnolipids more profitable and economically feasible, for example, using 534 

cheaper renewable substrates, optimizing growth/production conditions and 535 

employing original and effective multi-step downstream processing methods. 536 

Moreover, it is also necessary to find recombinant and mutant 537 

microorganisms that could utilize a wide range of cheap substrates to grow or 538 

produce rhamnolipids in high yield, bringing a real breakthrough for their 539 

economic production. 540 

(2) Currently, the data on the formation of rhamnolipid/HOCs aggregates below 541 

CMC concentration is even less clear. The research is needed to describe the 542 

morphology and stability of formed aggregates, as well as the sub-CMC 543 

solubilization ability for different HOCs. Moreover, it is necessary to verify 544 

whether the conclusions on rhamnolipid micelles are still suitable for 545 

sub-CMC aggregates, for example, the mechanism for micellar 546 

bioavailability based on hemi-micelles formation on cell surface. 547 

(3) The mechanisms of rhamnolipid-induced release of LPS and rhamnolipid 548 

adsorbed on cell surface to change CSH have been recognized. However, 549 

how to regulate rhamnolipids achieving the optimal microbial CSH remains 550 

Ac
ce
pt
ed
 M
S



 

24 

 

rarely discussed. In addition, the studies about rhamnolipid-induced release 551 

of LPS and rhamnolipid adsorption changing CSH are carried out 552 

independently. The question is how rhamnolipids perform in the actual 553 

application system. It is of importance to solve these problems in the near 554 

future. 555 

(4) The study of rhamnolipids permeabilization is built mainly on indirect 556 

evidence, such as the measure of released cell surface materials. The direct 557 

analysis and determination are needed to further investigate the 558 

permeabilization mechanism through advanced instruments and inspection 559 

methods. 560 

(5) In some cases, the preferential biodegradation of rhamnolipids might result in 561 

the less effectiveness in the contaminant bioremediation process. Therefore, 562 

it is of importance to solve these problems in the further, for example, the 563 

investigation of suitable strain and environmental conditions. 564 

(6) Future researches should not only focus on exploring how to enhance the 565 

efficiency, but also on extending this challenging problem through 566 

illuminating the complex mechanisms underlying the whole system based on 567 

the extensive data of other surfactants, e.g., interactions among rhamnolipids, 568 

microorganisms and HOCs. 569 

(7) A great deal of research efforts have been devoted to enhance the 570 

biodegradation of HOCs by means of rhamnolipids. However, most of the 571 

attempts are limited to the laboratory or theory study, and larger scale 572 

experiments are needed to demonstrate the feasibility of field application of 573 

this technique. 574 

(8) Another important consideration is that most studies have been conducted 575 
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with simulated wastewater or single HOCs in growth media, which means 576 

that few studies are executed on actual polluted water. The wide differences 577 

could be obtained between contaminants removal efficiencies in simulated 578 

and actual polluted wastewater due to the fact that the compositions of real 579 

wastewater are more complex. Hence a massive effort is required to assess 580 

these application technologies of rhamnolipids for use with actual 581 

contaminated wastewater. 582 
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Figure legends: 1059 

Fig. 1 Schematic representation of rhamnolipids-enhaned the aqueous dispersion of 1060 

HOCs 1061 

Fig. 2 Schematic diagram describing the uptake of HOCs by the bacterial cell 1062 

Pathway (A): the transfer of aqueous HOCs into the cell; Pathway (B): the direct mass 1063 

transfer of micellar HOCs into the cell when the formation of hemi-micelles on the 1064 

cell surface occurs; Pathway (C): the micellar HOCs are not directly bioavailable 1065 

when no hemi-micelles are formed on the cell surface. Adapted with permission from 1066 

refs (Brown, 2007; Lanzon and Brown, 2013). 1067 

Fig. 3 Schematic diagram for removal of LPS by rhamnolipids: (I) Direct removal of 1068 

LPS or the O-antigen part of LPS by rhamnolipids micellar capture as previously 1069 

described (Zhao et al., 2011); (II) Complex formation between rhamnolipids and Mg2+ 1070 

(Al-Tahhan et al., 2000); (III) Inhibition of synthesis and transport of LPS caused by 1071 

the effect of rhamnolipids on protein described by Andersen and Otzen (2014). 1072 

Fig. 4 Orientation of rhamnolipids at cell surface of microorganisms. The possible 1073 

adhesion of microbial cells to hydrophobic or hydrophilic interface is indicated. The 1074 

hydrophobic (hydrophilic) moiety of rhamnolipids will contact microbial cells with 1075 

relative high (low) CSH (cell surface hydrophobicity), and the hydrophilic 1076 

(hydrophobic) moiety of rhamnolipids exposed to environment reduces (increase) the 1077 

CSH (Górna et al., 2011; Liu et al., 2014). 1078 

Fig. 5 Schematic diagram of rhamnolipids-induced the permeabilization of cell 1079 

membrane: The intercalation of rhamnolipids monomers into phospholipid molecules 1080 

cause the destabilization of the membrane (Zhang and Zhu, 2014); the release of 1081 

several cell surface materials induced by rhamnolipids increase the permeability of 1082 

the membrane (Amro et al., 2000; Kim et al., 2015). 1083 
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Table 1  1084 

An overview of recent studies on rhamnolipid producing bacteria 1085 

Strain Carbon source Main composition Reference 

Burkholderia 

thailandensis 
glycerol di-RLs Funston et al. (2016) 

Burkholderia 

kururiensis 
glycerol di-RLs Tavares et al. (2013) 

Pseudomonas 

aeruginosa 
sunflower oil 

Rha-C10-C10 

Rha2-C10-C10 
Amani et al. (2013) 

Acinetobacter 

calcoaceticus 

sunflower oil/ 

sodium citrate 
di-RLs Hošková et al. (2013) 

Enterobacter 

asburiae 

sunflower oil/ 

sodium citrate 
mono-RLs Hošková et al. (2013) 

Pseudomonas 

chlororaphis 

waste cooking 

oil 
di-RLs Lan et al. (2015) 

Pseudomonas 

nitroreducens 
glucose 

a mixture of 

rhamnolipid 
Onwosi and Odibo (2012) 

Pseudomonas 

stutzeri 
lignite coal 

a mixture of 

rhamnolipid 
Singh and Tripathi (2013) 
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