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A B S T R A C T   

Comprehending the response of microbial communities in rivers along urbanization gradients to hydrologic 
characteristics and pollution sources is critical for effective watershed management. However, the effects of 
complex factors on riverine microbial communities remain poorly understood. Thus, we established a bacteria- 
based index of biotic integrity (Ba-IBI) to evaluate the microbial community heterogeneity of rivers along an 
urbanization gradient. To examine the response of Ba-IBI to multiple stressors, we employed a Bayesian network 
based on structural equation modeling (SEM-BN) and revealed the key control factors influencing Ba-IBI at 
different levels of urbanization. Our findings highlight that waterborne nutrients have the most significant direct 
impact on Ba-IBI (r = − 0.563), with a particular emphasis on ammonia nitrogen, which emerged as the primary 
driver of microbial community heterogeneity in the Liuyang River basin. In addition, our study confirmed the 
substantial adverse effects of urbanization on river ecology, as urban land use had the greatest indirect effect on 
Ba-IBI (r = − 0.460). Specifically, the discharge load from wastewater treatment plants (WWTP) was found to 
significantly negatively affect the Ba-IBI of the entire watershed. In the low urbanized watersheds, rice culti-
vation (RC) and concentrated animal feeding operations (CAFO) are key control factors, and an increase in their 
emissions can lead to a sharp decrease in Ba-IBI. In moderately urbanized watersheds, the Ba-IBI tended to 
decrease as the level of RC emissions increased, while in those with moderate RC emissions, an increase in point 
source emissions mitigated the negative impact of RC on Ba-IBI. In highly urbanized watersheds, Ba-IBI was not 
sensitive to changes in stressors. Overall, our study presents a novel approach by integrating Ba-IBI with multi- 
scenario analysis tools to assess the effects of multiple stressors on microbial communities in river sediments, 
providing valuable insights for more refined environmental decision-making.   

1. Introduction 

River ecosystems face a multitude of stressors, both natural and 
anthropogenic in origin (Uddin et al., 2022). These stressors encompass 
changes in flow patterns, increased impervious surfaces, and industrial 
discharges (Javed et al., 2017). These stressors can significantly impact 
the ecological health and resilience of river ecosystems, leading to 
environmental problems, such as eutrophication and loss of biodiversity 
(Gammal et al., 2022; Zhu et al., 2022). The limited effectiveness of 
several river management measures can be attributed to a poor under-
standing of the combined effects of these stressors (de Vries et al., 2021). 
Therefore, comprehensive understanding of the factors influencing 
riverine ecosystems is critical for promoting their sustainable use and 

protection. 
A variety of methods, including physical (e.g., ecological flows), 

chemical (e.g., water quality index), and biological (e.g., index of biotic 
integrity) have been used in river ecological health assessment (Karr, 
1981; Uddin et al., 2022; Zheng et al., 2023). With the maturity of online 
monitoring technology, conventional physicochemical indicators are 
widely adopted in river ecological evaluation. Physicochemical methods 
offer a cost-effective and convenient approach for determining the 
pollution level of water bodies but lack specific response to stressors (Li 
et al., 2018). Biological indicators directly reflect the physicochemical 
properties of the river and are highly sensitive to changes in environ-
mental factors (Sagova-Mareckova et al., 2021). Moreover, biological 
indicators contain valuable insights into the dynamics of river 
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biogeochemical cycles, rendering them a superior choice for assessing 
and decoupling river ecology (Maavara et al., 2020). Hence, the use of 
biological indicators in ecological assessment has garnered increasing 
attention. 

Current biomonitoring mostly focuses on macro-organisms, such as 
plankton and macroinvertebrates (Bolotov et al., 2012). Based on this, 
previous studies have considered the response of different biomes to 
different ecological conditions and developed multi-species-based in-
dexes, such as the fish-based index of biological integrity (F-IBI) and 
Ephemeroptera, Plecoptera and Trichoptera (EPT) index (Bacigalupi 
et al., 2021; Li et al., 2018). Compared to macro-organisms, bacteria in 
sediments were more abundant and exhibited higher specificity between 
different habitats (Zhang et al., 2022). In addition, sediment bacterial 
communities are direct participants in river material cycling and energy 
flow and are highly responsive to changes in river physicochemical 
characteristics as well as to specific stressors (Caruso et al., 2016; Wang 
et al., 2018). Thus, sediment bacterial communities represent valuable 
information for decoupling and predicting the response of riverine 
ecosystems to stressors. The effects of stressors on riverine ecosystems 
are multifaceted, as they can impact all biotic levels and lead to changes 
in community structure and spatial distribution. Considering the un-
certainties of complex response processes, cross-boundary indexes 
involving multiple taxonomic levels may be more reliable and repro-
ducible than single-species indexes (Sagova-Mareckova et al., 2021). 
The bacteria-based index of biotic integrity (Ba-IBI) is a comprehensive 
index that considers multiple taxonomic and functional aspects of 
sediment bacteria. Many studies have developed the Ba-IBI and 
demonstrated its effectiveness in assessing the heterogeneity of rivers 
caused by fluvial inputs (Zhang et al., 2020) and dam construction (Yang 
et al., 2019). 

Urbanization has profoundly altered both the hydrological patterns 
and pollutant discharges within watersheds. Alterations in land use 
patterns caused by urbanization can significantly impact the hydrologic 
cycle of rivers, leading to altered dispersion patterns of nonpoint source 
pollutants (Zhang et al., 2021). Urbanization plays a direct role in 
increasing point source discharges, adding to the complexity of water 
pollution. The combined effects of multiple stressors are typically either 
antagonistic, where the joint effects are less than the sum of individual 
effects, or synergistic, where the joint effects are greater than the sum of 
individual effects (Birk et al., 2020). The majority of previously devel-
oped Ba-IBI have been utilized to investigate the response of microbial 
communities to individual sources of pollution or the physicochemical 
properties of rivers (Wang et al., 2021; Zhang et al., 2022). Nevertheless, 
few studies have employed Ba-IBI for decoupling analysis in the pres-
ence of combined impacts from multiple pressure sources, which con-
strains the full potential of Ba-IBI for analyzing complex scenarios 
involving pressure source interactions. Assuming that the common ef-
fects of stressors are simply additive may result in an overestimation or 
underestimation of their actual effects. This gap in the literature high-
lights the need for further research to better understand the intricate 
interactions among different stressors in river environments. 

Model simulations present an opportunity to elucidate the intricate 
relationships between stressors and microbial communities and facili-
tate the prediction of potential changes. Quantitative analytical tools 
like Random Forests, Generalized Linear Models (GLMs), and Bayesian 
Networks (BNs) have gained increasing popularity in environmental 
predictions (Aguilera et al., 2011; Li et al., 2017; Wang et al., 2022). 
Compared to linear-based or black box models, Bayesian Networks 
(BNs) offer an interpretable model structure through directed acyclic 
graphs (DAG) and consider the uncertainty of predictions and re-
lationships among variables (Aguilera et al., 2011). Moreover, BNs can 
integrate expert knowledge and observational data, which holds great 
promise for microbial community decoupling and prediction (de Vries 
et al., 2021). The core of BN modeling is establishing the network 
structure, which can be achieved using statistical tools such as Structural 
Equation Modeling (SEM). SEM shares a similar structure with BNs and 

can test the significance of the model structure (Marcot and Penman, 
2019). Combining SEM with BNs can provide a robust structure for BN 
modeling and also leverage the attribution analysis advantages of SEM 
(Kim et al., 2022; Li et al., 2018). 

Building upon the strengths of sediment bacterial communities in 
evaluating river ecological quality and the outstanding capabilities of 
SEM-BN in decoupling, the objectives of this study are threefold: (1) to 
establish Ba-IBI as a tool for assessing river ecological quality in complex 
watersheds; (2) to employ Ba-IBI to investigate the impacts of multiple 
stressors on microbial community heterogeneity; and (3) to quantify the 
responses of microbial communities to stressors along an urbanization 
gradient. In this study, we harness the full potential of Ba-IBI for envi-
ronmental decoupling, enabling an exploration of complex scenarios 
involving multiple stressors. It offers a fresh perspective on ecological 
conservation and restoration in intricate watersheds. 

2. Materials and methods 

2.1. Study area 

The Liuyang River is a secondary tributary of the Yangtze River, 
located in Changsha, China, with the total length of 234.8 km and the 
watershed area of 4665 km2. The Liuyang River Basin (LYRB) experi-
ences an average annual temperature of 17.4 ◦C and an average annual 
precipitation of 1601.1 mm, primarily concentrated from April to 
September. Originating from the northern foothills of Dawei Mountain, 
the Liuyang River flows westward, eventually joining the Xiangjiang 
River. Along its course, it traverses diverse landscapes. The LYRB’s 
upper reaches are predominantly forested (68%), while the middle 
reaches traverse agricultural lands (19%), and the lower reaches run 
through highly populated urban areas (9%). Due to the rapid urbani-
zation and population growth in recent decades, the aquatic ecosystem 
of the Liuyang River has been seriously damaged (Jia et al., 2018). 

The proportion of urban land use is a widely used indicator for 
measuring the degree of urbanization (de Jesús-Crespo and Ramírez, 
2011; Simonin et al., 2019). In the LYRB, woodland cover is negatively 
correlated with the degree of urbanization, while cropland proportion is 
positively correlated in low and moderately urbanized watersheds, with 
the highest proportion found in the moderately urbanized areas 
(Fig. S1). 

2.2. Data sources 

Fifty-one sampling sites were set up along the LYRB and sampling 
was carried out in January and July 2021 respectively. In this study, the 
sampling sites were positioned at the river’s center to ensure both 
representativeness and sample stability. At each sampling site, the dis-
solved oxygen (DO), pH, and water temperature were measured in situ 
using HACH HQ30d portable meters (HACH Company, Loveland, Col-
orado, USA). Water samples were collected from subsurface water using 
sterilized water collectors and transported on ice to the laboratory for 
determining of total nitrogen (TN), ammonia nitrogen (NH+

4 -N), nitrate 
nitrogen (NO−

3 -N), total phosphorus (TP), chloride (Cl− ) and sulfate 
(SO2−

4 ). Sediment samples were collected using the portable sludge 
samplers and stored at − 20 ◦C prior to DNA extraction and sediment 
physicochemical analysis. Some parts of the sediment samples were sent 
to Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) for 16s 
rRNA sequencing, and the rest were used for measuring the same 
chemical parameters as the water sample. 

In order to evaluate the impact of stressors on river ecology, we 
conducted an analysis of environmental factors which have been 
established or postulated to possess the potential for ecological influ-
ence. The environmental factors including water quality, land use, the 
emission loads from point and non-point sources, and flow in each sub- 
basin are summarized in Table S1. The input data for the Soil and Water 
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Assessment Tool (SWAT) model used for hydrological simulation 
included Digital Elevation Model (DEM), land use, soil, and weather 
data are listed in Table S2. 

2.3. Establishment of Ba-IBI 

2.3.1. Selection of reference sites 
Ba-IBI was developed following standard protocols (Huang et al., 

2015), and reference sites selection was deemed critical since all metrics 
are compared to these sites. The reference sites are considered to be in an 
environment with minimal disturbance (Karr, 1981). To assess the level 
of contamination at each sampling site, we utilized the Comprehensive 
Water Quality Identification (CWQI) index from a previous study (Wu 
et al., 2019). The CWQI is based on the five levels classified by the 
Chinese surface water environmental quality standards, with TN, 
NH+

4 -N, TP and DO as the main variable. The calculation of CWQI is 
detailed in the supplementary material (Text S1). Sampling sites were 
divided into three groups based on the 25th and 75th percentiles of the 
CWQI range. The sampling sites with the lowest CWQI were set as the 
reference sites, and those with the highest CWQI was set as the impaired 
sites. 

2.3.2. Metrics selection and index development 
The candidate metrics dataset can be divided into 4 categories based 

on 4 aspects of microbial communities: diversity, composition, toler-
ance, and function (Zhang et al., 2020). The composition metrics consist 
of the dominant taxa’s relative abundance in various taxonomic levels. 
The tolerance metrics consist of the proportion of genus-level taxa that 
are tolerant or sensitive to a single stressor based on redundancy analysis 
(Li et al., 2017). Meanwhile, functional metrics investigate changes in 
bacterial characteristics, metabolic processes, and functional pathways 
at varying levels of contamination. To reduce the effect of extreme 
values and ensure that the data can be analyzed on the same scale, all 
proportional metrics (between 0 and 1) were transformed by the 
arcsine-square root, while other metrics were log-transformed (Jia et al., 
2013). All metrics are then screened in three steps. Firstly, range tests 
were conducted to exclude metrics with zero values in the samples. 
Next, the Mann-Whitney U test was used to remove metrics that showed 
no significant differences between the reference and impaired sites. 
Finally, redundancy tests were performed to exclude metrics that 
showed significant correlation. Further details on the development of 
our index can be found in the supplementary material (Text S2). 

2.4. BN model establishment and scenario analysis 

Referring to previous modeling experience, our BN modeling process 
consists of 3 steps (Aguilera et al., 2011; de Vries et al., 2021; Marcot and 
Penman, 2019). 1) Model structure and parameterization: Based on the 
results of the SEM, an influence diagram was established, revealing the 
relationship between environmental variables and Ba-IBI. The nodes 
were then classified into 3 or 4 classes using the Self-organizing Maps 
(SOM) Toolbox in MATLAB (Li et al., 2018); 2) Model training and 
validation: The BN model is trained and validated using Netica 6.0.9 
software, which provides a visual graphical interface and can input 
continuous data. We employed 10-fold cross-validation, and use the 
accuracy and the area under the receiver operating characteristic curve 
(AUC) as the evaluation metrics of the model; and 3) Sensitivity and 
scenario analysis: Sensitivity analysis complements the attribution 
analysis performed in SEM by identifying the primary drivers of Ba-IBI 
across areas with varying degrees of urbanization. Scenario analysis, 
on the other hand, allows predicting changes in the probability distri-
bution of a target node by introducing or removing specific stressors. In 
addition, for the given inputs, the scenario simulation can predict the 
change of the target node by the expected value of the Conditional 
Probability Table (CPT) (de Vries et al., 2021). In this study, we 

simulated the variations of Ba-IBI under different levels of urbanization 
with imposing or reducing stressor scenarios based on the observed data. 

2.5. Data analysis method 

Based on the Operational Taxonomic Units (OTUs), the diversity 
indexes were calculated using the vegan package in R (version 4.1.2). 
Functional metrics were selected using METAGENassist (Arndt et al., 
2012). To evaluate the performance of Ba-IBI in quantitatively evalu-
ating the ecological quality of rivers, we fitted a least squares regression 
between Ba-IBI and CWQI using IBM SPSS 24. 

In this study, the Spearman correlation between Ba-IBI and stressors 
was calculated using the Correlation Plots in Origin (2022b) (version 
9.75). To further investigate the effect of environmental variables on Ba- 
IBI, we introduced SEM path analysis to quantify their direct and indi-
rect effects on Ba-IBI. We considered the multilevel relationships be-
tween urbanization processes, human activities, environmental changes, 
and ecological status and provided a high-confidence structure for BN 
modeling. The SEM was built using AMOS 24.0 (Amos Development 
Corp., Chicago, IL, USA), with evaluation of Chi-square/Degree of 
Freedom (CMN/DF) < 4, Root Mean Square Error of Approximation 
(RMSEA) < 0.08, Comparative Fit Index (CFI) > 0.95, and Goodness of 
Fit Index (GFI) > 0.90. Principal component analysis (PCA) was used to 
reduce the dimensionality of the water contaminants and sediment 
contaminants variables before establishing the SEM (Table S4). 

3. Results and discussion 

3.1. Ba-IBI for assessing river ecological heterogeneity 

In this study, 13 reference sites and 13 impaired sites were defined 
separately (Fig. 1). A candidate metric library of river ecological het-
erogeneity consisting of 131 metrics was developed (Table S3). To 
ensure that candidate metrics were well-distributed across all samples, 
exhibited substantial variability between impaired and reference sites, 
and were free from redundant biological information, all metrics were 
then screened by range, heterogeneity, and redundancy tests. The 
comprehensive screening process is outlined in the supplementary ma-
terial (Text S2). Only five core metrics were retained for the develop-
ment of Ba-IBI: M18 (Gammaproteobacteria), M59 (Xanthobacteraceae), 
M71 (Bradyrhizobiaceae), M88 (Pedomicrobium), and M112 (Ammonia 
oxidizer). Among them, M18 and M112 increased with the decline of 
ecological quality, while M59, M71, and M88 decreased with the decline 
of ecological quality. Overall, the significant difference in river ecolog-
ical quality is well reflected by the core metrics (Fig. S2). 

Ecological heterogeneity of rivers was quantitatively assessed by Ba- 
IBI, which ranged from 1.05 to 4.66 in all samples with a mean of 3.17. 
To discern variations in river ecological quality, we categorized it into 
three levels based on the 25th and 75th percentiles of Ba-IBI: “low” 
(1.05–2.71), “medium” (2.71–3.84), and “high” (3.84–4.66), repre-
senting severely, moderately, and mildly impaired river ecology, 
respectively. According to the box plots, significant differences were 
exhibited between reference and impaired sites, with most reference 
sites at “high” levels and most impaired sites at “low” levels (Fig. 2a). 
Besides, a strong negative correlation was shown between Ba-IBI and 
CWQI (Spearman’s r = − 0.80), indicating that Ba-IBI decreased with the 
deterioration of water quality (Fig. 2b). Both of these findings under-
score the effectiveness of Ba-IBI in assessing variations in river ecology. 

The Ba-IBI at the sampling sites exhibited significant differences 
along the urbanization gradient. Notably, most impaired sites were sit-
uated in towns and cultivated areas characterized by high to moderate 
levels of urbanization, while all reference sites were located in upstream 
regions covered by forests. This pattern suggests that human activities 
associated with urbanization are likely the primary drivers of river 
ecology (Fig. 1). Furthermore, all five core indicators are considered to 
be closely related to human activities or water quality (Fig. S3). 
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Gammaproteobacteria exhibit a significant positive correlation with the 
daily average discharge volume (m3/day) from wastewater treatment 
plants (WWTP) within the sub-basin. This could potentially be attrib-
uted to the fact that Gammaproteobacteria are known to contain various 
pathogenic bacterial species, such as E. coli and Vibrio cholerae, which 
are found in higher concentrations in treated medical wastewater 
(Kiersztyn et al., 2019; Li et al., 2012). Bradyrhizobiaceae, a 
nitrogen-fixing bacteria, showed a significant negative correlation with 
the emission from RC and WWTP, while a positive correlation was 
observed for ammonia-oxidizing bacteria (AOB). The discharge of 
nitrogen-rich effluents from WWTP and RC may lead to an increase in 
the abundance of nitrogen-fixing and ammonia-oxidizing bacteria in the 
river (Lin et al., 2020; Zhu et al., 2023). The relative abundance of 
Xanthobacteraceae decreases with increasing industrial emissions and 
WWTP. While Xanthobacteraceae are known for their significant role in 
the degradation of toxic organic compounds, such as polycyclic aromatic 
hydrocarbons, in polluted environments, recent studies suggest that 
their relative abundance decreases in urbanized areas (Simonin et al., 
2019). Pedomicrobium, a bacterium sensitive to heavy metals, exhibited 

a significant negative correlation with industrial discharges (Chen et al., 
2022; Yang et al., 2022). The aforementioned findings demonstrate that 
the core indicators of Ba-IBI reveal a strong response to stressors, 
particularly anthropogenic. 

3.2. Relative importance of environmental factors 

To account for the intricate interplay between sediment microbes 
and stressors, we constructed a conceptual framework that connects 
various environmental factors, such as urban land use, pollution sources, 
flow dynamics, and water and sediment properties, to Ba-IBI (Fig. 3 and 
S5). The model exhibits high fitting performance (CMIN/DF = 1.37, GFI 
= 0.94, CFI = 0.97, RSMEA = 0.06), which demonstrates the plausibility 
of the conceptual model. 

As illustrated in Fig. 3, Urban had a significant negative indirect 
effect on Ba-IBI (r = − 0.460), which was primarily mediated by changes 
in water nutrient concentrations (r = 0.745). This result underscores the 
adverse impact of urbanization on riverine ecology and supports the 
discussion on the distribution of Ba-IBI in Section 3.1. On the one hand, 

Fig. 1. Study area and distribution of sampling sites (Red for impaired sites, green for reference sites, and yellow for other sites).  

Fig. 2. Sensitivity test for Ba-IBI. (a) Sensitivity of Ba-IBI in distinguishing river ecological impairment. (b) Ordinary least squares regression of the Ba-IBI and 
comprehensive water quality identification (CWQI) index. 
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high urban land cover leads to the accumulation of pollutants on 
impervious surfaces, which can weaken the self-purification capacity of 
natural water bodies and soils, ultimately exacerbating river pollution 
(Ding et al., 2016). This is supported by the significant direct impact of 
Urban on W-Nutrients (r = 0.516). On the other hand, highly urbanized 
areas often feature higher concentrations of anthropogenic point source 
emissions, including those from sewage treatment plants and industrial 
facilities. In our model, Urban has a significant indirect effect on 
W-Nutrients through WWTP (r = 0.229). In addition, emissions from 
industrial sources exhibited a weak negative indirect effect on Ba-IBI (r 
= − 0.059). Industrial wastewater and sewage plant effluent contain 
high concentrations of nutrients and chemicals that have the potential to 
modify the structure and metabolism of microbial communities. Addi-
tionally, even low levels of antibiotics present in wastewater can pro-
mote the development of antibiotic resistance in pathogenic bacteria 
and accumulate in sediments, thereby posing a potential threat to 
human health (Mello et al., 2018). Overall, CAFO and RC had no sig-
nificant effect on Ba-IBI (Table S6), which may be attributed to the 
non-linear relationship among the variables (Kim et al., 2022). How-
ever, sensitivity analysis of the BN model indicated that CAFO and RC 
were more important stressors than others in low and mid-urban areas 
(Fig. S7). This may be due to the fact that most of the cultivated land and 
breeding farms are located in the middle and upper reaches of the 
watershed, where urban distribution is sparse. 

W-Nutrients had a significant effect on Ba-IBI (r = − 0.617). Based on 
the Principal Component Analysis (PCA) results (Table S4), TN and 
NH4

+-N in water were identified as the primary contributors to the first 
principal component of water nutrients, accounting for more than 80% 
of the variance. This finding indicates that nitrogen loading, particularly 
the presence of ammonia nitrogen, is likely the primary factor contrib-
uting to the observed heterogeneity in sediment microbial communities 
in the LYRB. Rivers in urban areas typically carry higher nitrogen loads, 
and ammonia nitrogen, predominantly of anthropogenic origin, is a 
leading cause of river impairment in China (Huang et al., 2021; Xuan 
et al., 2022). Furthermore, W-Sulfate had significant negative effects on 
Ba-IBI (r = − 0.068) through S-Nutrients. It has been proven that the S2−

after SO4
2− reduction could stimulate the release of PO4

3− in sediments, 
and the high concentration of W-Sulfate may exacerbate river eutro-
phication (Chen et al., 2016). The significant direct effect of Industrial 
on W-Sulfates (r = 0.869) is consistent with previous studies demon-
strating that industrial emissions and fuel combustion increase riverine 
sulfate (Torres-Martínez et al., 2020). It is worth to mention that the 

relative importance of W-Sulfate in highly urbanized watersheds were 
higher than other watersheds (Fig. S7). This observation is likely a 
consequence of sulfate pollution in rivers stemming from industrial 
emissions and combustion processes. 

Flow has weak positive indirect effects on Ba-IBI (r = 0.088). The 
impact of flow on river ecology is multifaceted. On the one hand, The 
increase in flow may promote the resuspension of NH4

+-N in the sedi-
ment and inhibit the sedimentation of NO3

− in the water, which may 
increase the rate of nitrification and decrease the rate of mineralization, 
resulting in the transfer of nitrogen from the sediment to the water 
(Karthäuser et al., 2021; Lü et al., 2022). On the other hand, high-flow 
conditions have the potential to dilute pollutants and can exert a posi-
tive influence on river water quality (Tian et al., 2019). 

3.3. Effects of multiple stressors on Ba-IBI under different urbanization 
scenarios 

BN was developed based on the structure validated by SEM (Fig. 4). 
The SOM clustering algorithm was used to discretize them into 3 or 4 
states (Table S6). The K-fold cross-validation results illustrated that the 
average accuracy of the model was 0.70 and the average AUC was 0.78, 
indicating the strong performance of the model in predicting Ba-IBI 
(Fig. S6). 

The results of the scenario analysis reveal a significant difference in 
Ba-IBI along the urbanization gradient. As the level of urbanization 
shifts from “Low” to “High”, the proportion of Ba-IBI at “Low” increases 
by 18.2% (Fig. 5). Taking into account the relationship between land use 
patterns and urbanization (Fig. S1), the impact of urbanization on Ba-IBI 
can be summarized as follows: Ba-IBI is highest in forested watersheds, 
followed by agricultural and urban watersheds. Furthermore, Ba-IBI in 
watersheds with different degrees of urbanization exhibit different re-
sponses to stressors (Fig. 6). For the entire basin, Ba-IBI is linearly 
related to RC, WWTP, Industrial, and Flow, whereby the proportion of 
Ba-IBI at “Low” increases as these stressors change from “Low” to “High” 
(Fig. 6a, i, m, q). In contrast, the proportion of Ba-IBI at “High” 
decreased as CAFO changed from “Low” to “High” (Fig. 6e), suggesting 
that watersheds with better ecological quality may be more vulnerable 
to CAFO than impaired areas. WWTP has negative impacts on all types of 
watersheds, highlighting its significance as a key control factor for the 
ecology of the entire watershed (Fig. 6i~l). 

Specifically, the increase of all stressors significantly increases the 
proportion of Ba-IBI at “Low” in low urbanized watersheds (Fig. 6). In 

Fig. 3. (a) The SEM path framework and model results of the impact of environmental factors on Ba-IBI. The solid line represents a significant effect (p < 0.1), while 
the dashed line represents an insignificant effect (p > 0.1), *** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1. (b) Direct and indirect effects of 
each explanatory variable on Ba-IBI. RC stands for the emission of rice cultivation, CAFO stands for the emission of concentrated animal feeding operation, and 
WWTP stands for the emission of waste water treatment plant. “W-” and “S-” represent environmental factors in water and sediment, respectively. 
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particular, the proportion of Ba-IBI at “Low” will increase by 16.5% as 
the elevated TN in the watershed due to RC emissions increases from 2.0 
mg/L to 4.4 mg/L (Fig. 6b). Similarly, with the increase of CAFO 

emission loadings from 205 m3/d to 816 m3/d, the percentage of Ba-IBI 
at the “Low” level will increase by 17.5% (Fig. 6f). Massive fertilization 
during rice cultivation resulted in a dramatic increase in the diffuse 
nitrogen load on the ground surface (Liang et al., 2023). CAFO waste-
water, characterized by high pollutant and pathogen contents, has the 
potential to disrupt the ecological balance of water bodies (Gržinić et al., 
2023; Zhu et al., 2023). The watersheds with “High” flow resulted in a 
significantly higher proportion of Ba-IBI at the “Low” level, as compared 
to those with “Mid” and “Low” flow (Fig. 6r). As the base concentration 
of pollutants is low, high-flow watersheds are often accompanied by 
more precipitation, which may cause the silt in the forest to be washed 
into the river channel, adding pollutants to the water and making the 
river turbid (Bu et al., 2014). 

In moderately urbanized watersheds, there was a negative correla-
tion between Ba-IBI and increasing levels of RC emissions. In detail, as 
RC emissions escalated from “Low” to “High”, the proportion of Ba-IBI at 
the “Low” level increased by 5.4% (Fig. 6c). However, when examining 
the scenario of moderate RC emissions, the proportion of Ba-IBI in the 
“low” category exhibited a significantly lower trend compared to other 
scenarios. Conversely, WWTP, Industrial, and CAFO showed an opposite 
trend (Fig. 6g, k, o). It reveals that there is an antagonistic relationship 
between point source pollution and RC in the watershed. Specifically, 
increased point source emissions were found to offset the negative ef-
fects of RC on Ba-IBI. One potential explanation for this phenomenon is 
the ongoing urbanization process, which has led to the transformation of 
large areas of previously cultivated land in many agricultural land- 
dominated watersheds into non-agricultural zones, including indus-
trial and residential areas (Han et al., 2022). The positive effect of flow 

Fig. 4. BN model linking Ba-IBI to environmental variables after training with observational data. Blue represents target nodes and yellow represents input nodes. 
Node states are listed in Table S6. 

Fig. 5. Scenario analysis results for the state probability distribution of Ba-IBI 
(Red for “Low”, yellow for “Mid” and green for “High”) along the urbaniza-
tion gradient. 
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Fig. 6. Scenario analysis result of the state probability (%) distribution of Ba-IBI (Red for “Low”, yellow for “Mid” and green for “High”) changes with different states 
of the stressors (a–d: RC, e–h: CAFO, i–l: WWTP, m–p: Industrial, q–t: Flow) under different levels of urbanization: Overall (first row), Low-Urban: (second row), Mid- 
Urban (third row) and High-Urban (last row). 
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on Ba-IBI suggests that the dilution effect of flow on pollutants plays a 
more important role in this watershed (Fig. 6s). The increase in flow 
resulted in the accelerated transfer of pollutants, leading to greater 
dilution and transfer effects on pollutants compared to mixing and 
diffusion effects in this watershed (Müller et al., 2020). 

It’s noteworthy that Ba-IBI in highly urbanized watersheds showed 
insensitivity to changes in stressors (Fig. 6d, h, l, p, t). Previous studies 
have explored alternative stable theories in riverine microbial commu-
nities, suggesting that high environmental pressures can lead to a 
catastrophic shift in microbial communities within riverine sediment to 
a new, low-biodiversity steady state (Shang et al., 2021). In this stable 
state, controlling the input of pollution sources alone proves to be 
limited in restoring the functions of the river benthic ecosystem. Addi-
tional restoration measures, such as bioremediation, become necessary 
(Gonze et al., 2017; Scheffer et al., 2001). 

3.4. Implications in riverine environmental management 

Current river management faces the challenge of identifying effec-
tive measures for improving river ecology (Sendzimir and Schmutz, 
2018). Sediment microbial communities respond rapidly to environ-
mental changes and can provide valuable insights into the effects of 
pollution sources on river ecosystems. Ba-IBI is a versatile index that 
comprehensively assesses microbial community characteristics, 
including diversity, structure, and sensitivity to environmental factors. 
Attribution analysis tools help identify key factors influencing river 
ecology. Our study showcases the efficacy of Ba-IBI in decoupling and 
predicting the impacts of diverse stressors on distinct microbial com-
munities in watershed sediments, even in complex scenarios involving 
multiple stressor interactions. These findings can inform the prioritiza-
tion of targeted environmental stress mitigation measures for effective 
management practices. 

The differences in land use patterns and sources of pollutants 
contribute to variations in the influencing factors of benthic microbial 
communities in watersheds with different degrees of urbanization (Feng 
et al., 2022; Qu et al., 2017). The discharge load from WWTP has a 
significant negative impact on Ba-IBI throughout the basin. In the case of 
the irreversible urbanization process, enhancing the effluent quality 
from WWTPs can potentially benefit the ecology of the LYRB. Our study 
reveals that the controlling factors for benthic microbial communities in 
low-urbanization watersheds are CAFO and RC. In moderately urban-
ized watersheds, we observed antagonistic effects between RC and point 
source pollution emissions. These findings offer valuable insights into 
strategies for enhancing water quality in the basin. For instance, in 
low-urbanization areas, it is crucial to regulate the scale of farms and the 
expansion of cultivated land. In moderately urbanized areas, efforts 
should focus on controlling agricultural non-point source emissions, as 
well as preventing complex sources of watershed pollution resulting 
from urban expansion. Due to the intense environmental pressure in 
highly urbanized watersheds, the response of Ba-IBI to changes in 
stressors is limited. Therefore, additional research is necessary to 
investigate the benthic habitat of this watershed and identify potential 
solutions for river restoration (Fu et al., 2020). 

4. Conclusion 

Our study introduces Ba-IBI as a tool for decoupling the impacts of 
multiple stressors on river sediment microbial communities. We 
employed SEM-BN to quantitatively analyze the primary drivers of mi-
crobial communities across an urbanization gradient. The results illus-
trated that nutrients in water exerted the greatest direct effect on Ba-IBI 
(r = − 0.563). Additionally, PCA results highlight that nitrogen loading 
in the water, particularly ammonia nitrogen, emerges as the predomi-
nant driver of sediment microbial community heterogeneity within the 
LYRB. Urban was the most important indirect factor for Ba-IBI hetero-
geneity (r = − 0.460). The discharge load of WWTP has a significant 

negative impact on Ba-IBI throughout the basin. In low urbanized wa-
tersheds, RC and CAFO are the key controlling factors. The proportion of 
Ba-IBI classified as “Low” is projected to increase by 16.5% as the 
elevated TN in the watershed, caused by RC emissions, increases from 
2.0 mg/L to 4.4 mg/L. Similarly, the percentage of Ba-IBI classified as 
“Low” is expected to increase by 17.5% when the wastewater emission 
loadings from CAFO increases from 205 m3/d to 816 m3/d. In moder-
ately urbanized watersheds, a shift from “Low” to “High” RC emissions 
leads to a 5.4% increase in the proportion of Ba-IBI at “Low.” Moreover, 
our findings indicate that, under a moderate scenario of rice cultivation 
(RC) emissions, an increase in point source emissions offset the negative 
impact of RC on Ba-IBI. In contrast, Ba-IBI in highly urbanized water-
sheds were not sensitive to the changes in stressors, suggesting a new 
steady state of low biodiversity. Our study emphasizes the significance 
of controlling key factors in watersheds with low to moderate levels of 
urbanization and implementing restoration measures promptly in highly 
urbanized watersheds. 
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