Wet Removal of Sulfur Dioxide and Nitrogen Oxides from Simulated Flue Gas by Ca(ClO)₂ Solution

Yang Zhou,^{a,b} Caiting Li,^{a,b} Chunzhen Fan,^{a,b} Mengfan Fu,^{a,b} Li Tao,^c Minge Yu,^{a,b} and Mengying Zhang^{a,b}

^aCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China ctli@hnu.edu.cn and ctli3@yahoo.com (for correspondence)

^bMinistry of Education, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082, People's Republic of China

^cHunan Electric Power Corporation Research Institute, Changsha 410007, People's Republic of China

Published online 24 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ep.12153

To study the simultaneous removal of Sulfur Dioxide (SO_2) and Nitrogen Oxides (NO_x) from simulated flue gas by wet method, a bubbling device containing calcium hypochlorite $(Ca(ClO)_2)$ solution was used in the experiments. In the first place, thermodynamic analysis was conducted to determine the depth of reaction process, and the reaction mechanism of desulfurization and denitration was proposed. After that, experimental results exhibited that SO₂ could be removed by $Ca(ClO)_2$ solution completely while the removal efficiency of NO_x was 41.2%. Moreover, on the basis of high SO_2 removal efficiency, the effects of various factors on the removal efficiency of NO_x , such as: the height of liquid layer, Ca(ClO)₂ concentration, reaction temperature, initial pH value, O₂ percent, SO₂ concentration, and additives were investigated, respectively. Finally, simultaneous removal of SO₂ and NO_x under the optimized conditions were investigated, SO₂ removal efficiency of 100% and NO_x removal efficiency of 85.9% were achieved. The analysis of reaction products indicated that the main anions in the liquid phase were SO_4^2 and NO_3^- . © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1586–1595, 2015

Keywords: desulfurization, denitration, a bubbling device, thermodynamic analysis, additives

INTRODUCTION

Recently, Sulfur Dioxide (SO_2) and Nitrogen Oxides (NO_x) discharged from the flue gas, which are main components of air pollutants, have been received much attention from the government and the public. It is known that the emission of SO_2 and NO_x are primary contributors to acid rain, which is associated with acidification of lakes and streams, corrosion of buildings and monuments. Moreover, they can affect human health by irritating lungs and lowering resistance to respiratory infection (such as influenza) [1]. As the world's largest producer and consumer of coal, China has paid great attention on the emission of SO_2 and NO_x from fossil fuel combustion, while that has promoted the development of technologies to eliminate them.

Techniques for SO₂ removal were more mature than NO_x removal. Wet flue gas desulfurization, which showed high removal efficiency, was widely used in coal-fired boilers and power plants. For NO_x removal, selective catalytic reduction (SCR) [2] is the most popular one. However, the high cost, large area, and potential poisoning of catalysts have made SCR processes less attractive. The cheap catalysts and lowtemperature catalytic technology is a growing tendency for further research and utilization of SCR [3]. Recently, many literatures have been published about the research on simultaneous removal of SO₂ and NO_x, the methods contained catalysis [4], photocatalysis [5], electron beam [6], nonthermal plasma [7], and wet method [1,8-10]. Among them, wet scrubbing process has gained much more concern because SO2 is easily soluble in water and could be removed completely after scrubbing by absorbent. Additionally, it is the most economical method, and has advantages of controlling other soluble gases. Nevertheless, NO, which is the majority of NO_x in the flue gas, is insoluble; therefore, wet method is difficult for denitrification [11]. To date, lots of technologies over wet method have been developed for simultaneous removal of SO2 and NOx, which include reduction and oxidation. Removal of SO2 and NOx using urea solution was studied by Fang et al. [12,13], it showed that urea played the role of reductant in the reaction process and exhibited high removal efficiency after additives were added into the absorbent. Besides, many oxidations have been tested for SO₂ and NO_x removal as well, such as KMnO₄, NaClO₂, NaClO, and H₂O₂ [1,8,9,14]. Among these oxidants, KMnO₄ showed high removal efficiency and stable properties. However, the oxidants were difficult to be widely applied in industry due to their high cost.

Calcium hypochlorite (Ca(ClO)₂), which is also called bleaching powder, is a cheap and practical absorbent. As a mature chemical product with steady quality, strong oxidizing ability, and wide source, it has been widely used in waste water treatment [15–17]. However, it was rarely used in flue gas treatment, and the use for simultaneous removal of SO₂ and NO_x was much less. According to the previous investigation, when Ca(ClO)₂ dissolves into water, it can react with H₂O as Eq. 1 [18]. The generated HClO played the main role of oxidation during the process of eliminating

^{© 2015} American Institute of Chemical Engineers

Figure 1. Schematic diagram of the experimental system.

pollutants, which can greatly improve removal efficiency of SO_2 and $\mathrm{NO}_x.$

$$2\text{ClO}^- + 2\text{H}_2\text{O} \rightarrow 2\text{OH}^- + 2\text{HClO}$$
(1)

To improve removal efficiency of NO_x and reduce the cost of simultaneous removal of SO_2 and NO_x , $Ca(ClO)_2$ solution used as absorbent was investigated in this work while the reaction mechanisms of desulfurization and denitration were deduced, and the depth of the reaction was analyzed from thermodynamic measurement. On the basis of high SO_2 removal efficiency, some experiments were performed to explore the effect of different parameters on denitration efficiency in $Ca(ClO)_2$ solution. Finally, experiments about simultaneous removal of SO_2 and NO_x under the optimized conditions were done and the liquid reaction products were analyzed.

EXPERIMENTAL

Experimental Apparatus

Figure 1 showed the schematic diagram of experimental apparatus, it included a flue gas simulation system, an absorption reactor and a flue gas analysis system. A bubbling device with two or three reactors (height of 400 mm and volume of 1000 mL) connected in series was used as the absorption reactor and the gas sparger was made by a sand core (height of 23 mm and radius of 11 mm) with many tiny pores.

Reagents

All the reagents used in this work were analytical pure grade (AR), including: $Ca(ClO)_2$ [28–32% (available chlorine), Tianjin, China], potassium permanganate (99.5%, Changsha, China), sodium chlorite (78%, Yancheng, China), hydrogen peroxide (30.0%, Changsha, China), sodium hydroxide (96.0%, Tianjin, China), sulfuric acid (95.98%, Zhuzhou, China), and anhydrous calcium chloride (96.0%, Tianjin, China).

Experimental Methods

The basic flue gas was made up of N_2 (99.99%), O_2 (99.999%), NO (20.0%NO + 80.0%N₂), and SO₂ (20.4%SO₂ + 79.6%N₂). During the experiment, SO₂, NO, O₂, and N₂ were metered through the mass flow controllers (MFC, Beijing Sevenstar Electronics,

China) and mixed in a mixer, in which SO_2 and NO were diluted by N_2 to the desired concentration, and the simulated flue gas was formed. The absorption reactions occurred when simulated flue gas was introduced into bubbling reactor. The concentrations of SO_2 and NO_x (NO and NO_2) in influent (dotted line in Figure 1) and effluent gas (full line in Figure 1) of the absorption processes were measured by flue gas analyser (KANE950, UK) to calculate the removal efficiency of SO_2 and NO_x . After the reactor, a desiccator was used to remove the water vapor in simulated flue gas and protect the flue gas analyzer. Then, the exhaust gas was eliminated by an absorber (0.5 mol L⁻¹ KMnO₄ solution) before it was emitted into atmosphere.

In addition, the reaction temperature was regulated by digital control thermostat water bath tank (ZKSY-4 type, Gongyi Yuhua Instrument, Henan, China). The initial pH value of solution was adjusted through H_2SO_4 (0.5 mol L⁻¹) and NaOH solution (0.5 mol L⁻¹) and measured by a micro-computer pH meter (HANNA HI8424, Italy).

The removal efficiency of this study was defined as:

$$E_{\rm f}(\%) = \frac{C_{\rm in} - C_{\rm out}}{C_{\rm in}} \times 100\%$$
 (2)

where $E_{\rm f}$ (%) is the removal efficiency of SO₂ and NO_x, $C_{\rm in}$ (mg m⁻³), and $C_{\rm out}$ (mg m⁻³) represent concentration of SO₂ and NO_x in inlet and outlet, respectively.

The experimental error is inevitable. Hence, $E_{\rm f}$ is the average of three replicates and the error bars in the figures represent the standard deviation from the mean of the series of experiments at each condition.

REACTION MECHANISM

For better understanding the process of simultaneous removal of SO_2 and NO_x using $Ca(ClO)_2$, the reaction mechanism of simultaneous desulfurization and denitration was considered in step by step pattern. In this way, the absorption process could be divided into three parts in sequence: (1) the diffusion of SO_2 and NO_x in gas phase; (2) SO_2 and NO_x transfer from gas to the liquid phase; (3) the diffusion of SO_2 and NO_x in liquid phase. In the absorption process, physical and chemical interactions were involved in every part. While the physical process would be influenced by the total flow rate, residence time, SO_2 concentration, NO concentration, and temperature, the chemical process related to some chemical reactions both in gas and liquid phase.

Desulfurization Reaction Mechanism

When the reaction took place in liquid phase, the main existence forms of sulfur were S(IV) and S(VI) species. The possible existence forms of sulfur species were SO₃, SO₂·H₂O, HSO₃⁻, SO₃²⁻, HSO₄⁻, and SO₄²⁻, respectively [19]. However, as S(IV) species could be oxidized into S(VI) species by O₂ and HClO, SO₄²⁻ was the main existence form of sulfur in the solution. The mechanism of SO₂ absorption using Ca(ClO)₂ solution was shown in Figure 2, and the overall reaction could be written as:

$$Ca^{2+} + 2ClO^{-} + 2SO_{2} + 2H_{2}O \rightarrow CaSO_{4}(s) + 4H^{+} + SO_{4}^{2^{-}} + 2Cl^{-}$$
(3)

Denitration Reaction Mechanism

The mechanism of NO_x removal by Ca(ClO)₂ solution could be illustrated in Figure 3. Obviously, the absorption process of NO_x in $Ca(ClO)_2$ solution was more complex than that of SO₂. Numerous chemical reactions were involved in the process. Main nitrogen oxides species in liquid and gas phases were considered as NO, NO₂, N₂O₃, N₂O₄, HNO₂, and HNO₃ [20,21]. In addition, in gas phase, the oxidation of NO to NO₂ was a limiting step for the manufacture of HNO₃ because of the very low solubility of NO. Other species such as dinitrogen trioxide (N2O3) and dinitrogen tetraoxide (N₂O₄) were produced rapidly. Nitrous acid was also formed in gas phase through some reversible reactions. Furthermore, in the liquid phase, high soluble compounds of N2O3 and N₂O₄ dissolved and reacted rapidly with water, then nitrous and nitric acids were produced [22]. So did the less soluble species NO2. Nitric acid was stable in the liquid phase

Figure 2. Reaction mechanism of SO_2 absorption in $Ca(ClO)_2$ solution.

whereas aqueous nitrous acid could desorb directly or decompose into NO. But when $Ca(ClO)_2$ dissolved into water, HClO was formed in the liquid phase, and then the decomposition of HNO₂ was prevented as it was oxidized to HNO₃. This oxidation obviously improved the overall absorption rate. According to the analysis of the reaction, it could be deduced that NO₃⁻ was the main existence form of nitrogen in the solution. Thus, combining all equations in Figure 3, the overall reaction could be written as:

$$6ClO^{-} + 4NO + 2H_2O \rightarrow 4H^{+} + 4NO_3^{-} + 6Cl^{-}$$
 (4)

Chemical Thermodynamics

To estimate reaction depth of the two chemical reactions (Eqs. 3 and 4), thermodynamic calculations of the two equations were performed. Enthalpy change of reaction $[\Delta_r H_m(T)]$, entropy change $[\Delta_r S_m(T)]$, and Gibbs function of reaction $[\Delta_r G_m(T)]$ were calculated, respectively. Thermodynamics parameters including, standard formation enthalpy, standard entropy, and standard formation Gibbs function of substances [23] were given in Table 1.

Enthalpy change, entropy change, and Gibbs function of the reactions (Eqs. 3 and 4) adjusted at 298.15 K were obtained by Eqs. 5–7, respectively [12,24]:

$$\Delta_{\rm r} H_{\rm m}^{\Theta} = \sum \gamma \ \Delta_{\rm f} H_{\rm m}^{\Theta} (\rm products) - \sum \gamma \ \Delta_{\rm f} H_{\rm m}^{\Theta} (\rm reactants)$$

$$(5)$$

$$\Delta_{\rm r} S_{\rm m}^{\Theta} = \sum \gamma \ \Delta_{\rm f} S_{\rm m}^{\Theta} (\rm products) - \sum \gamma \ \Delta_{\rm f} S_{\rm m}^{\Theta} (\rm reactants)$$

$$\Delta_{\rm r} \sigma_{\rm m} = \sum \gamma \ \Delta_{\rm f} \sigma_{\rm m} \ (\text{products}) - \sum \gamma \ \Delta_{\rm f} \sigma_{\rm m} \ (\text{reactants})$$
(6)

$$\Delta_{\rm r} G_{\rm m}^{\Theta} = \sum \gamma \, \Delta_{\rm f} G_{\rm m}^{\Theta} ({\rm products}) - \sum \gamma \, \Delta_{\rm f} G_{\rm m}^{\Theta} ({\rm reactants})$$
(7)

The chemical reaction equilibrium constants (K^{Θ}) of Eqs. 2 and 3 were given as follows [24]:

$$\Delta G^{\Theta} = -RT \ln K^{\Theta} \tag{8}$$

Thermodynamic calculation results were shown in Table 2 The results stated that $\Delta_r H_m^{\Theta}$ values of the two chemical reactions are negative, which was conformed to the exothermic nature of the process [25,26]. Therefore, increasing the reaction temperature was unfavorable for the two reactions from the thermodynamic point of view. $\Delta_r S_m^{\Theta} < 0$ KJ mol⁻¹ indicated that entropy of the reaction was reducing in the process, which implied that the amount of gas molecule

Figure 3. Reaction mechanism of NO_x absorption in $Ca(ClO)_2$ solution.

continuously decreased during the reaction [27]. Besides, the values of K^{Θ} in the two chemical reactions were >10⁵, so the reactions could completely took place under the experimental conditions [12].

For the reaction with constant temperature, pressure and only work of volume expansion is done, Gibbs energy was indicative of process spontaneity [28]. The Gibbs function of the reaction could be written as follows [26] (ignoring the impact of temperature on thermodynamic parameters):

$$\Delta_{\rm r}G_{\rm m} = \Delta_{\rm r}H_{\rm m}^{\Theta} - T \ \Delta_{\rm r}S_{\rm m}^{\Theta} \tag{9}$$

 $\Delta_r G_m$ at different temperatures were calculated through Eq. 9, the results were listed in Table 3. The negative values of $\Delta_r G_m$ indicated that two reactions happened spontaneously, the reaction depth was greater [24].

RESULTS AND DISCUSSION

A sequence of experiments for simultaneous removal of SO_2 and NO_x were conducted. According to the experiments, the discussion was divided into four parts: $(SO_2 + NO_x)$ -Ca(ClO)₂ experiment, NO_x -Ca(ClO)₂ experiment, liquid reaction products and comparison of the results of this study with some published works.

(So₂ + NO_x)-Ca(ClO)₂ Experiment

 SO_2 and NO_x were removed simultaneously by $Ca(ClO)_2$ solution as shown in Figure 4. It could be observed that SO_2 was cleaned up by $Ca(ClO)_2$ solution with the removal efficiency of 100%. As SO_2 was a soluble gas, SO_2 could rapidly react with water to form HSO_3^- and SO_3^{2-} in liquid phase according to the equations listed in Figure 2. Once contact with water, the SO_2 gas would be absorbed by the solution. So the main limiting step of SO_2 absorption was the diffusion rate in gas phase, then it could be deduced that the gas-

Table 1. Standard formation enthalpy, standard entropy, and standard formation Gibbs function.

Substance	$\frac{\Delta_{\rm f} H_m^{\Theta}}{(\rm KJ \cdot mol^{-1})}$	$\frac{\Delta_{\rm f} S_m^{\Theta}}{\rm J} \cdot ({\rm mol} \cdot {\rm K})^{-1}$	$ \begin{array}{c} \Delta_{\rm f} G_m^{\Theta} \\ (\rm kJ \cdot mol^{-1}) \end{array} $
Ca(ClO) ₂ (aq)	-757.20	27.40	-627.14
$SO_2(g)$	-296.81	248.22	-300.13
$H_2O(l)$	-285.83	69.95	-237.14
$CaSO_4(s)$	-1425.2	108.40	-1309.10
$H_2SO_4(aq)$	-909.27	20.10	-744.63
HCl(aq)	-167.15	56.50	-131.25
NO(g)	91.29	210.76	87.60
HNO ₃ (aq)	-207.36	146.40	-111.34
$CaCl_2(aq)$	-877.13	59.80	-816.05

liquid reaction between SO_2 and $Ca(ClO)_2$ solution was completely gas-film controlled. What's more, the results also demonstrated that desulfurization using the $Ca(ClO)_2$ solution was feasible and efficient. However, due to the solubility of SO_2 in water was 20 times more than that of NO [11], the experimental results of NO_x removal (the NO_x removal efficiency was 42.2%) were dissatisfactory compared with that of SO_2 . As a result, SO_2 could be removed easily by $Ca(ClO)_2$ solution, but not NO_x , and improving NO_x removal was the key point in the following experiments.

NO_x-Ca(ClO)₂ Experiment

Effect of the Liquid Layer Height

The effect of the liquid layer height was evaluated through changing the liquid layer height of bubbling reactors. As shown in Figure 5, the removal efficiency of NO_x was significantly affected by the height of liquid layer, and it sharply increased from 19.5 to 75.9% when the height of liquid layer increased from 40 to 120 cm. As a matter of fact, with the augment of the liquid layer height, the residence time of NO_x in the reactor increases, then the pollutants have an adequate reaction time. Thus, the NO removal efficiency was significantly promoted. This was in accord with the research of Liu [29,30]. However, as the extent of the reaction between NOx and Ca(ClO)2 solution was very deep and the reaction rate was very fast [31], enhancing the mass transfer rate may become more effective than further lengthening the residence time (increasing the height of liquid layer). Therefore, the effect of Ca(ClO)₂ concentration, a main factor to the mass transfer process, would be investigated in next experiments.

Effect of Ca(ClO)₂ Concentration

Effect of Ca(ClO)₂ concentration on NO_x removal efficiency was shown in Figure 6. As seen in Figure 6, the more $Ca(ClO)_2$ in the solution, the higher denitration efficiency. The result indicated that the efficiency of NOx removal increased quickly as the Ca(ClO)₂ concentration increased from 0 to 0.1 wt %. But when the $Ca(ClO)_2$ concentration exceeded 0.1 wt %, NO_x removal efficiency increased slowly. The two-film theory holds that when the chemical reaction rate is far bigger than the mass-transfer rate, the masstransfer process may be the controlling step. A higher Ca(ClO)₂ concentration could supply more HClO to react with NO_x according to the Eq. 1. The mass transfer would be more rapid and it would accelerate the reaction rate, which was mainly responsible for the absorption process. The results also stated that the reaction was controlled simultaneously by the gas-film and the liquid-film when the Ca(ClO)₂ concentration lower than 0.1 wt %, but mainly controlled by the gas-film as the Ca(ClO)₂ concentration increased above 0.1 wt %.

Table 2. Enthalpy change, entropy change, Gibbs function, and equilibrium constant of reactions.

Reaction	$\Delta_{\rm r} H_m^{\Theta} ({\rm KJ} \cdot {\rm mol}^{-1})$	$\Delta_{\mathbf{r}} \mathcal{S}_{m}^{\Theta} \mathbf{J} \cdot (\mathbf{mol} \cdot \mathbf{K})^{-1}$	$\Delta_{\mathbf{r}} G_m^{\Theta} (\mathbf{kJ} \cdot \mathbf{mol}^{-1})$	К ⁰ (298.15 К)
Equation 2	-749.26	-0.422	-614.55	e ^{247.92}
Equation 3	-982.73	-0.300	-888.21	e ^{358.32}

Table 3. Change of Gibbs function of reactions in different tempera	tures.
---	--------

Reaction temperature (K)		313	323	333	343	353
$\Delta G_{\rm m} (\rm kJ \cdot \rm mol^{-1})$	Equation 2	-614.20	-609.98	-605.76	-601.54	-597.32
	Equation 3	-888.83	-885.83	-882.83	-879.83	-876.83

Figure 4. Simultaneous removal of SO₂ and NO_x using Ca(ClO)₂ solution. (Reaction condition: *Q* (Gas flow rate)= 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; *T* = 60°C; Initial pH value = 12; [O₂](v/v) = 8%; ρ (SO₂) = 1200 mg m⁻³).

Figure 5. Effect of the height of liquid layer on NO_x removal efficiency. (Reaction condition: *Q* (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; ω (Ca(ClO)₂) = 0.1 wt %; *T* = 60°C; Initial pH value = 12; [O₂](v/v) = 8%).

Effect of Reaction Temperature

Reaction temperature could greatly influence the diffusion behavior, dissolution, and reaction characteristics of molecules or ions in liquid phase. Experiments were conducted to investigate its effect on removal efficiency of NOx. From Figure 7, it can be seen that removal efficiency of NO_x initially increased and then reached maximum and finally decreased with increase in temperature. The highest removal efficiency of NOx achieved at 60°C. The temperature dependence of reaction rate constant was assumed to follow the Arrhenius Model [32]. According to the Arrhenius expression of the reaction rate constant, the increasing temperature could improve the reaction rate and enhance the mass transfer of NO_x from gas to the absorbent. The increase of both the ionization of Ca(ClO)₂ and diffusion of NO would increase the removal efficiency at early stage of absorption. Nevertheless, as aforementioned, increasing the reaction temperature was unfavorable to the two reactions (Eqs. 2 and 3)

Figure 6. Effect of Ca(ClO)₂ concentration on NOx removal efficiency. (Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; $T = 60^{\circ}$ C; Initial pH value = 12; $[O_2](v/v) = 8\%$).

from the thermodynamic point of view. Additionally, a higher temperature would enhance the Henry's Law constant [33], thereby reducing the solubility of NO_x in the absorbent solution. The observation is also due to the lower equilibrium concentration of N_2O_4 and N_2O_3 in the gas phase at higher temperature. Meanwhile, elevated temperature can accelerate the decomposition of nitrous acid, which leads to reduce nitrogen oxides removal [12]. Then the absorption of NO_x was inhibited consequently. Thus, as the temperature increased beyond a certain value, the increase in Henry's Law constant overshadows the enhancement in mass transfer, resulting in low removal efficiency of NO_x .

Effect of Initial pH Value

To study the effect of pH on NO_x removal efficiency, experiments were conducted at different pH in the range of 4–12, while other experimental parameters remained unchanged. The results are exhibited in Figure 8. It stated clearly that the NO_x removal efficiency declined as the initial pH of solution changing from 4 to 10, but enhanced when pH value was above 10. The results seem unexpected as strong acidic conditions are not beneficial to the absorption of NO [13]. Whereas, according to the research of Su [32], this phenomenon could be explained as: acid catalyzed decomposition pathway for Ca(ClO)₂ was observed at a substantially lower pH lever. It means that acidic condition was conducive to the decomposition of Ca(ClO)₂. Therefore, more HClO could be produced to oxidize insoluble NO to soluble NO₂ as follows [19]:

$$HClO + NO \rightarrow NO_2 + HCl$$
 (10)

$$HClO + Cl^{-} + H^{+} \leftrightarrow Cl_{2} + H_{2}O$$
(11)

In the next stage, HClO can reacte with generated HCl to form Cl_2 , which is a strong oxidizing gas [19]. Chlorine is capable of oxidizing NO into NO₂ and nitrate. The stoichiometry of reaction between chlorine with NO can be expressed as formulas (12-13) below [34]. The research of TW Chien and Chu [35] got similar results, it proved that NO is oxidized by Cl_2 under acidic conditions, and NO₂ is formed. Therefore, the removal efficiency was higher at lower initial pH of the solution.

Figure 7. Effect of reaction temperature on NO_x removal efficiency. (Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; Initial pH value = 12; [O₂](v/v) = 8%).

Figure 8. Effect of initial pH value on NO_x removal efficiency. (Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; $T = 60^{\circ}$ C; [O₂](v/v) = 8%).

$$NO + Cl_2 + H_2O \rightarrow NO_2 + 2HCl$$
(12)

$$2NO+3Cl_2+ 4H_2O \rightarrow 2HNO_3+ HCl$$
(13)

However, acidic conditions were not beneficial to the absorption of NO, and it would lead to accelerate the decomposition of nitrous acid. Weak alkalinity was beneficial to the NO removal [36]. In the weak alkaline environment, NO is prone to react as the formula (14). Generated HNO_2 and weak neutralization reacted to improving the water solubility of the NO, thereby improving the removal efficiency. For this reason, the NO_x removal efficiency slightly improved as the pH over 10. Considering the practicability and economy of industrial application, the optimal pH of the Ca(ClO)₂ solution would be chosen at 12.

Figure 9. (a) Effect of O₂ percent on NO_x removal efficiency. (Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; $T = 60^{\circ}$ C; Initial pH value = 12). (b) Effect of O₂ percent on NO_x removal efficiency and outlet NO₂ concentration (Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; $T = 60^{\circ}$ C; Initial pH value = 12).

$$NO + NO_2 + H_2O \rightarrow 2HNO_2 \tag{14}$$

Effect of O_2 *Concentration*

To promote the dissolution of nitrogen oxides, O_2 was added to oxidize NO into soluble NO₂ in gas phase. Some tests were carried out to find the effect of O_2 concentration on NO_x removal efficiency. The results were shown in Figure 9a, when the O_2 concentration in the flue gas increased from 4 to 12%, the NO_x removal efficiency raised from 38.5 to 53.7%. It demonstrated that higher O_2 concentration was beneficial to NO_x removal, for the reason that the oxidation degree of nitrogen oxides [12], which was an imperative factor for the reduction of NO_x, could be promoted by O_2 . With the raise of oxygen concentration, the result is that masstransfer driving force increases, and species in gas phase reacted violently with each other. Then lots of NO turned into NO₂ and passed into liquid layer, NO was removed as following pathways:

$$NO \xrightarrow{O_2} NO_2 \xrightarrow{H_2O} HNO_2$$
(15)

Figure 10. Effect of inlet SO₂ concentration on NO_x removal efficiency. [Reaction condition: Q (Gas flow rate) = 500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; $T = 60^{\circ}$ C; Initial pH value = 12; [O₂] = 8% (v/v)].

$$NO \xrightarrow{O_2} NO_2 \xrightarrow{N_2O_3/N_2O_4} HNO_2$$
 (16)

The concentration of outlet NO₂ was also measured, the results were shown in Figure 9b. It depicted that concentration of outlet NO₂ raised as O₂ percent in the simulated flue gas increased, and the NO_x removal efficiency grew, sequentially. This demonstrated that the production of NO₂ was a very important factor for NO_x removal.

Effect of So₂ Concentration

The coexistence of SO₂ and NO_x in the flue gas is bound to affect the absorption of each other. Experiments have been performed to verify the effect of SO₂ concentration on NO_x removal efficiency. The SO₂ concentration ranged from 800 to 3000 mg m⁻³ while the inlet NO concentration kept at 800 mg m⁻³. The results were shown in Figure 10. It indicated that the NO_x removal efficiency first increased when the SO₂ concentration increased from 800 to 2000 mg m⁻³, and then came down with the further increase of SO₂ concentration to 2500 mg m⁻³. The reason may result from the hydrolysis of SO₂, in which the products such as HSO₃⁻ and SO₃²⁻ catalyzed the NO_x absorption as following equations [37–40]:

$$SO_2 + H_2O \rightarrow H_2SO_3$$
 (17)

 $H_2SO_3 \rightarrow HSO_3^- + H^+$ (18)

$$2NO_2 + SO_3^2 + H_2O \rightarrow 2H^+ + 2NO_2^- + SO_4^2$$
 (19)

$$2NO + HSO_3^- + H_2O \rightarrow 3H^+ + 2NO_2^- + SO_4^{2^-}$$
 (20)

However, with the further increase of SO_2 concentration, more $Ca(ClO)_2$ was needed to form HClO and react with SO_2 . Thus, SO_2 could be a competitor of NO_x to react with HClO, and the NO_x removal efficiency gradually declined for the limited HClO concentration. It is interesting that NO_x removal efficiency showed little growth again in the last stage with the increase of SO_2 concentration. This may be due to the fact that almost all $Ca(ClO)_2$ was consumed in the liquid, and SO_2 was no longer the competitor of NO_x for

Figure 11. Effect of additive on NO_x removal efficiency. [Reaction condition: *Q* (Gas flow rate) =500 mL min⁻¹; ρ (NO)_{inlet} = 800 mg m⁻³; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; *T* = 60°C; Initial pH value = 12; [O₂] = 8% (v/v); ω (KMnO₄/NaClO₂/H₂O₂) = 0.02%].

HClO. Literature [41] showed that the NO₂ would be removed by generated $CaSO_3$ under the presence of water vapor. This may be the reason of the rise in NO_x removal again.

Effect of Additives

Some oxidants including KMnO₄, H_2O_2 , NaClO₂, have been proved to have good properties on NO_x removal [8,14,22]. However, it was not property to be used as absorbents in industry on account of economic efficiency. Thus, these oxidants as additives were added into absorbent to get a better NO_x removal efficiency in this work. The results were shown in Figure 11. It suggested that the removal efficiency of NO_x was greatly improved after the addition of additives into the absorbent. The additives in the absorbent could produce MnO₄⁻, OH, ClO₂⁻, respectively. These radicals owned strong oxidability and could react with NO as Eqs. (21–23) [8,14,22], thus the outcome products could be cleaned more easily by absorbent.

$$NO + 2MnO_4^{-} + 2 \cdot OH^{-} \rightarrow NO_2^{-} + 2MnO_4^{2-}$$
 (21)

$$NO + \cdot OH^- \rightarrow H^+ + NO_2^-$$
(22)

$$2NO + ClO_2^- \rightarrow 2NO_2 + Cl^-$$
(23)

Here, the capacity on NO_x removal efficiency of additives was KMnO₄ > H₂O₂ > NaClO₂. The NO_x removal efficiencies reached 86.3, 80.4, and 70.5%, respectively. Therefore, KMnO₄ showed better performance for the promotion of NO_x removal efficiency. Figure 12 showed the SO₂ and NO_x removal efficiency under the best conditions: Q (Gas flow rate) = 500 mL min⁻¹; The height of liquid layer = 80 cm; ω (Ca(ClO)₂) = 0.1 wt %; $T = 60^{\circ}$ C; Initial pH value = 12; [O₂] = 8% (v/v); ρ (NO)_{inlet} = 800 mg m⁻³; ρ (SO₂) = 2000 mg m⁻³. It could be seen from Figure 12 that the SO₂ removal efficiency vetained 100% value, and the NO_x removal efficiency was about 85.9%.

Liquid Reaction Products

To confirm the composition of reaction products, the anions in solution were determined using ion chromatography (Dionex ISC-900). Ion chromatographic analysis of spent scrubbing liquor and reagent blank was depicted in Figure 13. The results indicated that SO_4^{2-} and NO_3^{-} were the major anion products in the solution after the absorption reactions; hence SO_2 and NO_x were mainly removed by oxidation.

Figure 12. Simultaneous removal of SO_2 and NO_x under best conditions.

Figure 13. Ion chromatograms of absorbent solution.

Intermediate products such as SO_3^{-} , HSO_3^{-} , and NO_2^{-} were oxidized to SO_4^{-} and NO_3^{-} as follows:

$$\mathrm{SO_3}^{2^-} + \mathrm{ClO}^- \to \mathrm{Cl}^- + \mathrm{SO_4}^{2^-} \tag{24}$$

$$HSO_3^- + ClO^- \rightarrow H^+ + Cl^- + SO_4^{2-}$$
(25)

$$NO_2^- + ClO^- \rightarrow Cl^- + NO_3^-$$
(26)

In summary, on the basis of the results, although several other side reactions might also possibly occur in solution, the major pathways for SO_2 and NO_x removal using $Ca(ClO)_2$ solution could be concluded as: (a) the ClO^- oxidized NO into NO_2 ; (b) NO_2 and SO_2 was dissolved into water to form NO_2^- and SO_3^{2-} ; (c) the terminal absorption of NO_x and SO_2 by turning NO_2^- and SO_3^{2-} into NO_3^- and SO_4^{2-} through ClO^- oxidation.

Comparison of the Results of This Study with Some Published Works

The results of this study were compared with some published literatures regarding removal of SO2 and NOx. The latest prices of the absorbents were inquired from the website of China Chemical Market Weekly. As shown in Table 4, SO2 can be almost removed by wet method. It can also be knew that $Ca(ClO)_2$ solution is not the most efficiency one for NO_x removal, but it is a promising one due to its low cost, easy storage, and transportation. According to the Twelfth Fiveyear Plan of China, which have set the target of the reducing emission of total amount of major pollutants, the removal efficiency achieved in this work would be sufficient for most small medium sized enterprises to meet the stringent emission standard. Moreover, studies showed that Ca(ClO)₂ solution has potention of mercury removal [9]. Therefore, the research about Ca(ClO)₂ solution will provide reference for simultaneous removal of various pollutants from flue gas.

CONCLUSIONS

In this work, the reaction mechanism and total chemical reaction equations were investigated. Thermodynamic analysis showed that desulfurization and denitration using $Ca(ClO)_2$ solution were feasible. Experiments for simultaneous removal of SO₂ and NO_x exhibited high SO₂ removal efficiency (100%) and limited NO_x removal efficiency (42.4%). Thereafter, some important factors on denitration were investigated and it was concluded that: (1) The factors including the height of liquid layer, the concentration of $Ca(ClO)_2$, temperature and the solution pH could influence the NO_x removal efficiency to some extent; (2) As the component of the flue gas, O₂ played a important role in denitration, while SO₂ only enhanced the NO_x removal efficiency at a limited concentration section; (3) Additives in the solution

Table 4. Comparison of the results of this study with some published works.

S. No.		Price	Removal efficiency (%)			
	Absorbent	(RMB Yuan t^{-1})	SO ₂	NO _x	Remark	Reference
1	NaClO	13,000	100	92	/	[1]
2	H_2O_2	570 (aqueous)	100	70	With UV lamp	[8]
3	Urea	1570-1750	100	92.65	With additive	[12]
4	$KMnO_4$	18,500	98.78	53.5	/	[13]
5	$Ca(ClO)_2$	1600	100	85.9	With additive	This study
6	ClO ₂	15,000	100	66-72	/	[34]
7	$NaCIO_2$	14,100	100	71.9	/	[35]
8	$Ca(OH)_2$	780	/	25-60	/	[41]
9	NaOH	2750	100	77	/	[42]

could promote denitration efficiency. At last, simultaneous removal of SO₂ and NO_x under optimized conditions were studied, the SO₂ and NO_x removal efficiencies reached 100 and 85.9%, respectively. The liquid reaction products were analyzed, and the major anion products in the solution after the absorption reactions were SO₄²⁻ and NO₃⁻. Comparison of the results of this study with some published works showed that Ca(ClO)₂ solution is a promising absorbent in removing various pollutants from flue gas.

ACKNOWLEDGMENTS

The project is financially supported by the National Natural Science Foundation of China (51278177), the National High Technology Research and Development Program of China (863 Program, No.2011AA060803), and the Scientific and Technological Major Special Project of Hunan Province in China (2010XK6003).

Literature Cited

- 1. Mondal, M.K., & Chelluboyana, V.R. (2013). New experimental results of combined so_2 and NO removal from simulated gas stream by NaClO as low-cost absorbent, Chemical Engineering Journal, 217, 48–53
- Qu, L., Li, C.T., Zeng, G.M., Zhang, M.Y., Fu, M.F., Ma, J.F., Zhan, F.M., & Luo, D.Q. (2014). Support modification for improving the performance of MNOx–CeO_y/γ-al₂O₃ in selective catalytic reduction of NO by nh₃, Chemical Engineering Journal, 242, 76–85
- 3. Li, J., Chang, H., Ma, L., Hao, J., & Yang, R.T. (2011). Low-temperature selective catalytic reduction of NO_x with nh_3 over metal oxide and zeolite catalysts—a review, Catalysis Today, 175, 147–156
- 4. Lau, L.C., Lee, K.T., & Mohamed. A.R. (2013). Effect of operating conditions towards simultaneous removal of so₂ and NO using copper modified rice husk ash: Role as sorbent and catalyst, Journal of Environmental Chemical Engineering, 1, 755–761.
- Yuan, Y., Zhang, J., Li, H., Li, Y., Zhao, Y., & Zheng C. (2012). Simultaneous removal of so₂, NO and mercury using TiO₂-aluminum silicate fiber by photocatalysis, Chemical Engineering Journal, 192, 21–28
- Basfar, A.A., Fageeha, O.I., Kunnummal, N., Al-Ghamdi, S., Chmielewski, A.G., Licki, J., Pawelec, A., Tymiński, B., & Zimek Z. (2008). Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of so₂ and NO_x from combustion of liquid fuels, Fuel, 87, 1446–1452
- 7. Yu, Q., Yang, H.M., Zeng, K.S., Zhang, Z.W., & Yu, G. (2007). Simultaneous removal of NO and so_2 from dry gas stream using non-thermal plasma, Journal of Environmental Science, 19, 1393–1397.
- Liu, Y., Zhang, J., Sheng, C., Zhang, Y., & Zhao, L. (2010). Simultaneous removal of NO and so₂ from coalfired flue gas by UV/h₂o₂ advanced oxidation process, Chemical Engineering Journal, 162, 1006–1011.
- 9. Hutson, N.D., Krzyzynska, R., & Srivastava, R.K. (2008). Simultaneous removal of so₂, NO_x, and hg from coal flue gas using a NaClO₂-enhanced wet scrubber, Industrial & Engineering Chemistry Research, 47, 5825–5831.
- 10. Pillai, K.C., Chung, S.J., Raju, T., & Moon, I.S. (2009). Experimental aspects of combined NO_x and so_2 removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system, Chemosphere, 76, 657–664.
- Wei, J., Luo, Y., Yu, P., Cai, B., & Tan, H. (2009). Removal of NO from flue gas by wet scrubbing with NaClO₂/ (nh₂)₂CO solutions, Journal Industrial Engineering Chemistry, 15, 16–22.
- 12. Fang, P., Cen, C.P., Tang, Z.X., Zhong, P.Y., Chen, D.S., & Chen, Z.H. (2011). Simultaneous removal of so₂ and NO_x

by wet scrubbing using urea solution, Chemical Engineering Journal, 168, 52–59.

- Fang, P., Cen, C., Wang, X., Tang, Z., Tang, Z., & Chen, D. (2013). Simultaneous removal of so₂, NO and HgO by wet scrubbing using urea+KMnO₄ solution, Fuel Processing Technology, 106, 645–653.
- 14. Chu, H., Chien, T.W. & Li, S.Y. (2001). Simultaneous absorption of so_2 and NO from flue gas with KMnO₄/NaOH solutions, Science of the Total Environment, 275, 127–135.
- 15. Boukhoubza, F., Jail, A., Korchi, F., Idrissi, L.L., Hannache, H., Duarte, J.C., Hassani, L., & Nejmeddine, A. (2009). Application of lime and calcium hypochlorite in the dephenolisation and discolouration of olive mill wastewater, Journal of Environmental Management, 91, 124–132.
- 16. Kolthoff, I., & Stenger, V. (1935). Calcium hypochlorite as a volumetric oxidizing agent: Stability and standardization of the solution. Determination of ammonia, Industrial Engineering Chemistry Analytical Edition, 7, 79–81.
- 17. Bartow, E. (1913). Examples of the efficiency of calcium hypochlorite in treating turbid waters, Journal of Industrial Engineering Chemistry, 5, 18–19.
- Dutta, A., & Saunders, W.P. (2012). Comparative evaluation of calcium hypochlorite and sodium hypochlorite on soft-tissue dissolution, Journal of Endodontics, 38, 1395– 1398.
- 19. Zhao, Y., Guo, T., Chen, Z., & Du, Y. (2010). Simultaneous removal of so₂ and NO using M/NaClO₂ complex absorbent, Chemical Engineering Journal, 160, 42–47.
- Carta, G., & Pigford, R.L. (1983). Absorption of nitric oxide in nitric acid and water, Industrial & Engineering Chemistry Fundamentals, 22, 329–335.
- 21. Thomas, D., & Vanderschuren, J. (1996). The absorption-oxidation of NO_x with hydrogen peroxide for the treatment of tail gases, Chemical Engineering Science, 51, 2649–2654.
- 22. Deshwal, B.R., Lee, S.H., Jung, J.H., Shon, B.H., & Lee, H.K. (2008). Study on the removal of NO_x from simulated flue gas using acidic NaClO₂ solution, Journal of Environmental Science, 20, 33–38.
- 23. Dean, J.A. (2003). Lange's Handbook of Chemistry, 2th ed. Beijing (in Chinese): Science Press.
- 24. Li, D.Z. (1982). Chemical thermodynamics basement, Beijing (in Chinese): Beijing Normal University Press.
- Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye reactive blue 181 solution by UV/h₂o₂ process, Journal of Photochemistry and Photobiology A: Chemistry, 299, 67–72.
- 26. Pirom, T., Sunsandee, N., Wongsawa, T., Ramakul, P., Pancharoen, U., & Nootong, K. (2015). The effect of temperature on mass transfer and thermodynamic parameters in the removal of amoxicillin via hollow fiber supported liquid membrane, Chemical Engineering Journal, 265, 75–83.
- 27. Wang, Z.L., Zhou, Y.P. (2001). Physical Chemistry, 4th ed. Beijing (in Chinese): Higher Education Press.
- Slavutsky, A.M., & Bertuzzi, M.A. (2015). Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum, Appl Clay Sci, 108, 144–148.
- 29. Liu, Y., Zhang, J., Sheng, C., Zhang, Y., & Zhao, L. (2010). Preliminary study on a new technique for wet removal of nitric oxide from simulated flue gas with an ultraviolet (UV)/h₂o₂ process, Energy & Fuels, 24, 4925– 4930.
- 30. Liu, Y.X., & Zhang, J. (2011). Photochemical oxidation removal of NO and so₂ from simulated flue gas of coal-fired power plants by wet scrubbing using UV/h₂o₂

advanced oxidation process, Industrial & Engineering Chemistry Research, 50, 3836–3841.

- 31. Liu, H., Wang, J., & Zhang, S. (2012). Thermodynamics analysis of integrated process for simultaneous desulfurization and denitrification with calcium hypochlorite, Environmental Science & Technology, 35, 55–57 (in Chinese).
- Su, Y.S., Morrison, D.T., & Ogle, R.A. (2009). Chemical kinetics of calcium hypochlorite decomposition in aqueous solutions, Journal of Chemical Health and Safety, 16, 21–25.
- 33. Monteiro, J.G., & Svendsen, H.F. (2015). The N₂O analogy in the co₂ capture context: Literature review and thermodynamic modelling considerations, Chemical Engineering Science, 126, 455–470.
- 34. Jin, D.S., Deshwal, B.R., Park, Y.S., & Lee, H.K. (2006). Simultaneous removal of so_2 and NO by wet scrubbing using aqueous chlorine dioxide solution, Journal of Hazardous Materials, 135, 412–417.
- 35. Chien, T.W., & Chu, H. (2000). Removal of so₂ and NO from flue gas by wet scrubbing using an aqueous NaClO₂ solution, Journal of Hazardous Materials, 80, 43–57.
- 36. Yan, B., Yang, J., Guo, M., Chen, G., Li, Z., & Ma, S. (2014). Study on NO enhanced absorption using fe(II)-EDTA in $(NH_4)_2SO_3$ solution, J Ind Eng Chem, 20, 2528–2534.

- 37. Turšič, J., & Grgić, I. 2001 Influence of no_2 on S (IV) oxidation in aqueous suspensions of aerosol particles from two different origins, Atmospheric Environment, 35, 3897–3904.
- 38. Chen, L., Lin, J., & Yang, C. (2002). Absorption of no₂ in a packed tower with na₂so₃ aqueous solution, Environmental Progress, 21, 225–230.
- 39. Sarwar, G., Fahey, K., Kwok, R., Gilliam, R.C., Roselle, S.J., Mathur, R., Xue, J., Yu, J., & Carter, W.P.L. (2013). Potential impacts of two so₂ oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by no₂ and gas-phase oxidation by stabilized criegee intermediates, Atmospheric Environment, 68, 186–197.
- 40. Tang, N., Liu, Y., Wang, H., Xiao, L., & Wu, Z. (2010). Enhanced absorption process of no_2 in CaSO₃ slurry by the addition of MgSO₄, Chemical Engineering Journal, 160, 145–149.
- 41. Chen, G.Q., Gao, J.H., Gao, J.M., Du, Q., Fu, X.L., Yin, Y.J., & Qin, Y.K. (2010). Simultaneous removal of so₂ and NO_x by calcium hydroxide at low temperature: Effect of so₂ absorption on no₂ removal, Industrial & Engineering Chemistry Research, 49, 12140–12147
- 42. Pourmohammadbagher, A., Jamshidi, E., Ebrahim, H.A., Dabirb, B., & Zeinabad, M.M. (2011). Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber, Chemical Engineering Process, 50, 773–779.