

^{*} Corresponding authors. Tel.: + 86 731 88822829; fax: +86 731 88823701.

E-mail addresses: zgming@hnu.edu.cn (G. Zeng); A.Chen@hunau.edu.cn (A. Chen). ¹These authors contribute equally to this article.

15	Abstract: Antioxidative response of <i>Phanerochaete chrysosporium</i> induced by silver
16	nanoparticles (AgNPs) and their toxicity mechanisms were comprehensively
17	investigated in a complex system with 2,4-dichlorophenol (2,4-DCP) and Ag ⁺ .
18	Malondialdehyde content was elevated by 2,4-DCP, AgNPs, and/or Ag ⁺ in
19	concentration- and time-dependent manners within 24 h, indicating an increase in
20	lipid peroxidation. However, beyond 48 h of exposure, lipid peroxidation was
21	alleviated by upregulation of intracellular protein production and enhancement in the
22	activities of superoxide dismutase (SOD), catalase (CAT), and perochase (POD).
23	Comparatively, POD played more major roles in cell protection realist oxidative
24	damage. Furthermore, the dynamic change in reactive oxygen species (ROS) level
25	was parallel to that of oxidized glutathione (G SC), and ROS levels correlated well
26	with GSSG contents ($R^2 = 0.953$) after exposure to AgNPs for 24 h. This finding
27	suggested that elimination of oxidative tress resulted in depletion of reduced
28	glutathione. Coupled with the analyses of anoxidative responses of <i>P. chrysosporium</i>
29	under the single and combined treatments of AgNPs and Ag ⁺ , HAADF-STEM, SEM,
30	and EDX demonstrated that AgNP-induced cytotoxicity could originate from the
31	original AgNPs, rather than dissolved Ag^+ or the biosynthesized AgNPs.
32	Keywords: Antioxidative enzymes, Oxidative stress, Phanerochaete chrysosporium,

33 Silver nanoparticles, "Particle-specific" effects

1. Introduction

35	Nanomaterials are defined as supramolecular compounds with at least one
36	dimension less than 100 nm that possess peculiar physicochemical properties; they
37	have been rapidly expanding applications in biology, medicine, and biochemical
38	engineering (Shi et al., 2014; Xu et al., 2012; Gong et al., 2009; Lin et al., 2008).
39	Metallic silver nanoparticles (AgNPs) are the most extensively used nanomaterial
40	because of their potent and broad-spectrum antibacterial, antifungal, and antiviral
41	activities (Wang et al., 2012; Windler et al., 2013). Given the exploring in the use of
42	silver nanotechnology, AgNPs have inevitably been released by hudustrial and
43	domestic effluent streams directly or through discharges of municipal wastewater,
44	leading to accumulation, transformation, and degradation in the atmosphere, water,
45	soil, or organisms (Das et al., 2012; Liu et al. 2014; Sheng and Liu, 2011; Zeng et al.,
46	2013a). AgNPs have been proverto be potential threat to environments, especially
47	aquatic environments, because of their relatively high toxicity toward some aquatic
48	organisms and merobia communities in biological treatment processes (Liu and
49	Hurt, 2010; Borm and Berube, 2008;Feng et al., 2010).
50	A myriad of studies have shown that the toxic effect of AgNPs is primarily
51	attributed to the released Ag ⁺ . Blaser et al. (2008) found that 15% of the total Ag from
52	Ag-based products was released into water when analyzing the risk of releasing
53	AgNPs into the ecosystem. It is well known that the Ag^+ can inactivate bacterial cell
54	electron transport, ATP production, and DNA replication and it can interact with thiol
55	groups in enzymes, causing cells to be in a non-culturable state and even leading to

56	cell death (Massarsky et al., 2013; Morones et al., 2005). Furthermore, AgNPs, which
57	have been documented to readily penetrate through biological barriers and cell
58	membranes (AshaRani et al., 2009), interfere with specific biological systems and
59	cellular functions including permeability and respiration (Morones et al., 2005;
60	Fröhlich, 2013; Foldbjerg et al., 2011). Reactive oxygen species (ROS) generation
61	was stimulated, and antioxidant defense system elements were suppressed under
62	AgNP stress. These effects resulted in serious cellular damage, degradation of the
63	membrane structures of cells, protein and lipid peroxidation, and DMA breaks, either
64	directly or indirectly (Krawczyńska et al., 2015; Jones et al., 2011, Vildirimer et al.,
65	2011; Kim and Ryu, 2013; Zeng et al., 2013b). Regaring the extended release of a
66	large amount of Ag ⁺ and differences in antimitrobial mechanisms of Ag ⁺ and AgNPs,
67	influences of coexistence of AgNPs and Ag on evaluation of the ecotoxicity of
68	AgNPs cannot be ignored. Although sy argism or antagonism of combinations of
69	AgNPs and Ag ⁺ on the number of cells and growth rates in <i>Escherichia coli</i> have
70	been reported (Choi et al. 2018), whether the combined toxic effects mainly
71	originated from the 'particle-specific" antimicrobial activity of AgNPs remains an
72	open question (Xiu et al., 2012). Furthermore, AgNPs have been widely used for
73	monitoring, adsorption, photocatalytic degradation of various water contaminants
74	such as cadmium (Cd) and 2,4-dichlorophenol (2,4-DCP) (Zuo et al., 2015; Huang et
75	al., 2017). It provides abundant opportunities for the coexistence of AgNPs, Ag^+ , and
76	2,4-DCP in the environment. Our previous studies have found that exposure of
77	AgNPs to Phanerochaete chrysosporium (P. chrysosporium) can greatly improve the

removal efficiency of Cd(II) and 2,4-DCP (Huang et al., 2017; Zuo et al., 2015). This

could be closely associated with the antioxidant defense systems of microorganisms

80 in complex systems with nanomaterials and toxic pollutants.

- 81 Antioxidant defense systems are composed of non-enzymatic and enzymatic
- 82 antioxidants. Non-enzymatic antioxidants include lipid-soluble membrane-associated
- 83 antioxidants and water-soluble reductants (e.g., ascorbic acid and glutathione).

84 Antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), and

peroxidase (POD), play critical roles in oxidative stress defense in force (Chen et al.,

- 86 2014; Zhang et al., 2007). Reduced glutathione (GSH), a surface containing tripeptide
- thiol, could scavenge free radicals or serve as a cofact r for glutathione peroxidase
- (GPx), oxidizing GSH to diminish H_2O_2 . SOD (the first defense line against ROS,

converts O_2^- to H_2O_2 . Subsequently, H_2O_2 is letoxified by CAT and POD. The

enzymatic action of CAT leads to the humation of water and molecular oxygen, while the decomposition of H_2O_2 by PGD is achieved by oxidizing co-substrates such as

92 aromatic amines, phenoic compounds, and/or antioxidants (Qiu et al., 2008).

P. chrysosporium, as a model strain of white rot fungi, has been employed to

- remove organic substrates and heavy metals in wastewater on account of its desirable
- biodegradation and biosorption ability (Zeng et al., 2012; Huang et al., 2015; Huang
- et al., 2008). However, how *P. chrysosporium* responds to contamination of aquatic
- systems with a combination of AgNPs, Ag^+ , and toxic organics *in vivo* is unclear.
- Hence, in order to maximize the promising applications of AgNPs and white rot fungi
- in bioremediation, it is necessary to understand the bioeffects of AgNPs on the

- antioxidant system and pertinent biochemical detoxification mechanisms to stress
 tolerance in a complex system.
- 102 The present study therefore focused on the antioxidative responses of *P*.
- 103 *chrysosporium*, at the metabolic and physiological levels, following exposure to
- various concentrations of 2,4-DCP, AgNPs, and Ag⁺. Cellular viability, lipid
- 105 peroxidation, activities of antioxidant enzymes (SOD, CAT, and POD), glutathione
- 106 levels, and intracellular protein contents were determined using a UV-vis
- 107 spectrophotometer. ROS generation was also assessed by fluorescence spectrometry.
- 108 Furthermore, relationships between stress intensities and amountant fluctuations, and
- 109 interactions of various antioxidants with free radical vere evaluated to identify
- 110 toxicant-induced oxidative damage, antioxidative detense mechanisms of *P*.
- 111 *chrysosporium* against these stresses, and approaches of AgNP-evoked cytotoxicity.

112 **2. Materials and methods**

113 2.1. Strain and treatments

114 *P. chrysosptainin*, cair BKMF-1767 (CCTCC AF96007) was obtained from the 115 China Center for Type Culture Collection (Wuhan, China) and maintained on malt 116 extract agar slants at 4 °C. The spore suspension was adjusted to a concentration of 117 2.0×10^{6} CFU/mL by scraping the spores into sterilized ultrapure water, inoculated 118 into the culture medium, and cultivated in an incubator at 37 °C and 150 rpm for 3 119 days. *P. chrysosporium* pellets were harvested, rinsed three times with 2 mM 120 NaHCO₃, and then exposed to four treatment groups: 1) 2,4-DCP-treated groups

including a series of 2,4-DCP concentrations (0, 153, 307, and 613 μ M) with 10 μ M

- AgNPs; 2) AgNP-treated groups composed of various concentrations of AgNPs (0, 1,
- 123 10, 30, 60, and 100 μ M) with 153 μ M 2,4-DCP; 3) Ag⁺-treated groups containing
- different concentrations of Ag^+ (using AgNO₃ as the ion source; 0.01, 0.1, 1, 10, and
- 125 100 μ M) with 153 μ M 2,4-DCP; and 4) a combined treatment of AgNPs and Ag⁺
- 126 consisting of 10 μ M AgNPs, 1 μ M Ag⁺, and 153 μ M 2,4-DCP. Subsequently, fungal
- 127 pellets were collected from test solutions at pre-decided intervals for the succeeding
- 128 experiments. Citrate-stabilized AgNPs were used in this work and prepared according
- to our previous report (Huang et al., 2017). The desired doses of AcHPs were
- obtained by dilution of the AgNP stock solution with 2 mM we $4CO_3$ buffer solution
- 131 (Cheng et al., 2016). Detailed descriptions on synthesy and characterization of AgNPs
- 132 can be found in Supporting Information (SI)
- 133 2.2. Cellular viability and ROS generation
- 134 MTT assay was performed to example the metabolic activity of *P. chrysosporium*
- according to previous studies (Chen et al., 2014; Luo et al., 2013). Absorbance was
- 136 measured at 534 the by tilizing a UV-vis spectrophotometer (Model UV-2550,
- 137 Shimadzu Company, Tokyo, Japan), and the viability of *P. chrysosporium* was
- expressed as relative percentages to the control. *P. chrysosporium* cells that untreated
- with 2,4-DCP, AgNPs, and Ag^+ were used as the control.
- 140 ROS generation was determined by a FluoroMax-4 fluorescence spectrometer
- 141 (Horiba Scientific, Tokyo, Japan) with an excitation wavelength of 485 nm and an
- emission wavelength of 525 nm using the cell permeable indicator, 2',7'-
- 143 dichlorodihydrofluorescein diacetate (López et al., 2006). To visualize changes in

144	intracellular ROS, the stained cells were imaged using an Olympus Fluoview 1000
145	laser scanning confocal microscope (LSCM, Olympus TY1318, Tokyo, Japan) (Yang
146	et al., 2010).
147	2.3. Lipid peroxidation
148	Lipid peroxidation was estimated by determining malondialdehyde (MDA)
149	content in P. chrysosporium. Samples of 0.2 g of fungal pellets were homogenized in
150	2.5 mL of 10% tricholoroacetic acid (TCA). 2 mL of the extracts was added into 2 mL
151	of 6% thiobarbituric acid and then absorbance of the mixture was reprided at 532 and
152	600 nm following the reported procedures (Zeng et al., 2012; Crotchary et al., 2007).
153	2.4. Antioxidative analyses
154	For further analysis of antioxidative potential of <i>T</i> . chrysosporium, the activities
155	of SOD and CAT were evaluated by following the method described by Qiu et al.
156	(2008); POD activity was tested by policoring the oxidation of guaiacol (Chen et al.,
157	2014); GSH and total glutatione (tGSH) contents were determined according to
158	Rehman and Anjine (2010) 30% inhibition of the reaction was defined as one unit of
159	SOD activity. One unit of CAT (POD) was defined as decrease (increase) of 0.1
160	(0.01) unit of A_{240} (A_{470}) per min. The enzyme activities were expressed as U/g FW.
161	2.5. Mechanism and data analysis
162	Scanning electron microscope (SEM, FEI, USA) equipped with an energy
163	dispersive x-ray (EDX) was used to measure the surface morphology of the freeze-
164	dried fungal pellets, which were collected from the solutions with single AgNPs (Ag ⁺)

and a combination of AgNPs and Ag^+ . After freeze-dried samples were ground to a

- 166 power, physicochemical transformation of AgNPs under stressed conditions was
- analyzed by scanning transmission electron microscopy in high-angle annular dark
- 168 field mode (HAADF-STEM) coupled with an EDX system. X-ray diffraction (XRD,
- 169 D8 Discover-2500, Bruker, German) of samples was also performed to further
- 170 identify crystalline phases.
- 171 Data are expressed as the means \pm standard deviations of triplicate assays. A one-
- 172 way analysis of variance (ANOVA) was conducted to test for significant differences
- 173 (p < 0.05) between the experimental groups.
- 174 **3. Results and discussion**
- 175 *3.1.* Characteristics of AgNP suspensions
- The as-prepared AgNPs, with an average hydrodynamic diameter of 22.6 ± 2.5
- 177 nm and a negative ζ -potential of -11.4 ± 1.1 v, displayed narrow and intense
- absorption bands with λ_{max} at 39 m (i.e., S1). AgNP suspensions containing 2,4-
- 179 DCP remained relatively high stability with little aggregation and dissolution in
- 180 comparison to As P stock solution (Fig. S1). This could be associated with 2,4-DCP
- in the solutions, which possibly adsorbed onto the surface of AgNPs and restrained
- AgNP dissolution. Details are available in the SI (in section 2.1).
- 183 *3.2.* Viability of *P. chrysosporium*
- 184 As seen in Fig. S3, *P. chrysosporium* survival was stimulated by low-dose
- 185 AgNPs (0–10 μ M), Ag⁺ (0.01–1 μ M) and 2,4-DCP (153 μ M); however, high
- 186 concentrations of AgNPs ($\geq 100 \mu$ M), Ag⁺ ($\geq 10 \mu$ M), and 2,4-DCP ($\geq 307 \mu$ M)
- 187 exhibited a striking cytotoxicity, and *P. chrysosporium* appeared much more

188	susceptible to Ag ⁺ than AgNPs. Although an apparent inhibition following exposure to
189	high-dose AgNPs and 2,4-DCP was observed, Ag ⁺ release from AgNPs for all tested
190	treatments with AgNPs and 2,4-DCP has been well documented at very low levels,
191	much less than 1 μ M (Huang et al., 2017). The findings revealed that significant
192	inhibitory effects could be triggered by high-level exposure to toxicants, rather than
193	by the released Ag^+ in the aqueous solutions. Details on cellular viability are provided
194	in the SI (in section 2.2).
195	Cellular viability after the combined treatment with 10 μ MAcMPs and 1 μ MAg ⁺
196	was appreciably lower than that in each treatment alone. The possibility reason was
197	that Ag ⁺ absorbed onto AgNP surface or formed complexes with the citrate coating on
198	AgNPs through electrostatic attraction, leading to AgNPs surrounded by a "cloud" of
199	Ag ⁺ (Liu and Hurt, 2010; Huynh et al., 2014, which could also cause the lower
200	dissolution of AgNPs. Thus, the concentration of Ag ⁺ surrounding AgNPs was
201	comparatively higher than that in the bulk solution. When AgNPs attached to or came
202	into close proximity with the fungal membranes, the fungi would be exposed to a
203	considerably higher g^+ concentration, leading to inactivation of the <i>P. chrysosporium</i>
204	cells.

205 *3.3.* ROS generation

To illustrate oxidative responses of *P. chrysosporium* to AgNPs, Ag⁺, and 2,4-

- 207 DCP, intracellular ROS generation was evaluated after 24-h stimulation with these
- 208 toxicants. A distinct increase in ROS levels was observed after treatment with low-
- dose AgNPs (especially for 1 μ M); however, ROS production, induced by high

210	concentrations of AgNPs, decreased in a dose-dependent manner, to even lower levels
211	than that of the control (Fig. 1A). Similarly, ROS generation in the Ag ⁺ - and 2,4-DCP-
212	treated groups was noticeably stimulated at exposure concentrations of 0.01, 0.1, and
213	1 μ M Ag ⁺ , and 153 μ M 2,4-DCP, but a contrary concentration-related pattern was
214	observed at high levels of Ag^+ and 2,4-DCP (Fig. 1B and C). It is not unusual for
215	oxidative effects to be more severe at lower exposure concentrations (Choi et al.,
216	2010). This could be accounted for by the fact that ROS were primarily generated as a
217	natural byproduct during the process of normal aerobic metabol smin mitochondria,
218	the functions of which might be disrupted after the occurrence of NOS formation or
219	reaching its detectable level (Chen et al., 2014). Besides, the drastic reduction in the
220	ROS levels for high-concentration exposure cauld be explained by the fact that
221	irreparable metabolic dysfunction and apopteris (programmed cell death) were
222	evoked by oxidative stress (Zeng et 1., 2012), resulting in a diminution in the cell
223	concentration, as depicted if the tell viability assay (Fig. S3).
224	ROS levels induced by the combination of 10 μ M AgNPs and 1 μ M Ag ⁺ were
225	insignificantly different from those triggered by either 10 μ M AgNPs or 1 μ M Ag ⁺ ,
226	but much higher than that in cells subjected to only 10 μ M Ag ⁺ (Fig. 1A and B). This
227	indicated that based on total Ag concentration, Ag^+ ions were more toxic to P.
228	chrysosporium than AgNPs, resulting in the population not easily recovering from
229	Ag ⁺ exposure. Furthermore, as aforementioned, AgNPs can be surrounded by a
230	"cloud" of Ag^+ due to Ag^+ adsorption and complexation. With the addition of
231	exogenous Ag ⁺ , more Ag ⁺ ions will be adsorbed on AgNP surface. The attachment or

232	close proximity of AgNPs to cell membranes could enhance the locally high Ag^+
233	concentration at the nanoparticle-cell interface and accumulation of AgNPs in cell
234	membranes might also induce local disruption of the bilayer structure and affect the
235	lipid bilayer phase behavior (Häffner and Malmsten, 2017). However, changes in
236	ROS levels and cellular viability under stress of AgNP and Ag ⁺ , separately or in
237	combination, indicated that low-dose AgNP/Ag ⁺ -induced cell damage was deemed to
238	be recoverable. Additionally, the pattern of dose-related ROS generation was also
239	verified by LSCM images (Figs. 1D and S4), which showed higher intensity
240	fluorescence at lower exposure concentrations.
241	3.4. Lipid peroxidation
242	A dose-dependent increase in MDA content vas round in P. chrysosporium after
243	2-h exposure to 2,4-DCP (Fig. 2A), suggestive concentration-dependent stimulation
244	in imposed lipid peroxidation of the vertical embrane and other organelles (Chen et al.,
245	2014). The stimulation was nitiated at low concentrations (0–307 μ M). On further
246	increasing the concentration to $613 \mu M$, however, the MDA content was somewhat
247	suppressed. Coupled with the cell viability results (Fig. S3C), high concentrations of
248	2,4-DCP led to cell necrosis or death, causing the release of MDA from these cells
249	(Jiang et al., 2014). It was also observed that although 2,4-DCP concentrations had no
250	pronounced difference in their effects on membrane lipid peroxidation after 24-48 h,
251	higher MDA levels were elicited by 2,4-DCP treatments for 24 and 48 h than those for
252	2 h, indicating that 2,4-DCP induced the oxidative stress in the fungal cells due to
253	prolonged exposure.

254	It has been demonstrated that lipid peroxidation was induced by AgNPs in
255	zebrafish liver, green algae, and higher plants (Choi et al., 2010; Jiang et al., 2014;
256	Oukarroum et al., 2012). In this study, AgNPs dramatically enhanced MDA
257	accumulation to a concentration of 100 μ M in 2 h and the highest concentration of
258	MDA was found after 24 h of exposure (Fig. 2B). Nevertheless, a decrease was
259	observed with a further increase in exposure time to 48 h. It could be postulated that
260	free radicals were possibly neutralized by the antioxidative effect of P. chrysosporium,
261	resulting in the low detected levels of MDA. To test this hypothesis quantification of
262	antioxidants was performed. Changes in MDA content showed a similar trend after
263	treatment with Ag ⁺ and with the AgNPs and Ag ⁺ complex (Fig. 2C). According to
264	comparative treatments of 1 μ M Ag ⁺ with and without 2,4-DCP, slightly lower MDA
265	levels were detected in the samples with Ag and 2,4-DCP after 2–72 h, suggesting
266	that lipid peroxidation might be are included by low concentrations of 2,4-DCP.
267	3.5. Antioxidative analyse
268	3.5.1. SOD active
269	Changes in SOL activity in <i>P. chrysosporium</i> treated with 2,4-DCP, AgNPs, and
270	Ag^+ were presented in Fig. 3. For short-term exposure (2 h), there was a marked
271	enhancement in SOD activity due to the introduction of 2,4-DCP, whereas, after
272	exposure to 2,4-DCP for 24 h, SOD activity was noted to be lower than that in the
273	control (Fig. 3A). The markedly enhanced SOD activity could be assigned to a direct
274	stimulation of 2,4-DCP on the enzyme activity (Qiu et al., 2008), or the upregulation
275	in the expression of genes encoding SOD when cells respond to compensation of

276	excess superoxide radical (Zeng et al., 2012; Ma et al., 2015). However, the
277	decreasing part in SOD activity at 24 h was considered as an exhaustion phase in
278	which antioxidative defense systems were overloaded, causing chronic damages and
279	even cell death. A similar tendency in SOD level was also observed for a combination
280	treatment of 10 µM AgNPs and 1 µM Ag ⁺ and Ag ⁺ treatments with and without 2,4-
281	DCP within 24 h (Fig. 3C). After further exposure to 2,4-DCP, AgNPs, and/or Ag ⁺ for
282	48 and 72 h, none of the activities were remarkably different from the control, but an
283	enhancement in SOD activity occurred again when compared with that after 2–24 h of
284	exposure (Fig. 3A-C). This could be associated with the effective removal of these
285	toxicants by <i>P. chrysosporium</i> after 48 h (Huang et a 2017). And the surviving <i>P</i> .
286	chrysosporium cells may induce more enzyme, against oxidative stress and
287	membrane-damaging lipid peroxidation: in two, the induced enzymes were conducive
288	to recovery of cellular growth and replacedon.
289	A statistically insignificant attention in SOD level was observed under the tested
290	AgNP concentrations with respect to the control at 24 h (Fig. 3B), while 2,4-DCP and
291	Ag ⁺ caused a significant lower SOD activity than the control did. The results
292	exhibited that in comparison to AgNPs, SOD activity was more vulnerable to 2,4-
293	DCP and Ag ⁺ . Furthermore, although the activities of SOD under the combinative
294	stress of AgNPs and Ag ⁺ were lower than those under the stresses of single AgNPs
295	and Ag ⁺ with and without 2,4-DCP within 24 h significantly or insignificantly (Fig.
296	3C), it cannot be concluded that a combination of AgNPs and Ag^+ have more adverse
297	effects on SOD activity than single AgNPs or Ag ⁺ .

3.5.2. CAT activity

299	CAT, existing in all microorganisms and correlating with microbial activity and
300	respiration, boosts oxidization of compounds by means of H ₂ O ₂ . CAT activities were
301	stimulated to a lesser extent when cells were supplemented with 2,4-DCP, AgNPs,
302	and/or $Ag^{\scriptscriptstyle +}$ for 2 h, and the maximum activity was 57.9 U/g FW in the 10- $\mu MAg^{\scriptscriptstyle +}$
303	sample (Fig. 4). After 24 h of incubation with these toxicants, various degrees of
304	suppression in CAT activity were noticed, perhaps due to a variety of inhibitory
305	influences of toxicants on subunits assembly or biosynthesis of CATES r the formation
306	of metal-enzyme complexes, resulting in changing the structure and enzyme activity
307	of CAT (Sun et al., 2009). Specially, CAT activity decreased to non-detectable levels
308	following exposure to 30 and 60 µM AgNPs f r 2. h (rig. 4B). Another possibility of
309	the phenomenon was that AgNP-induced SOD activity was high throughout the
310	exposure period, and that the cataryic a divity of SOD caused H_2O_2 accumulation,
311	leading to the depression of CATYNelson et al., 2006; Pacini et al., 2013). When the
312	cells were expositive low concentrations of 2,4-DCP ($\leq 153 \mu M$), AgNPs ($\leq 30 \mu M$),
313	and/or Ag ⁺ ($\leq 1 \mu$ M) for 48–72 h, CAT activities were enhanced to certain extent in
314	contrast to those for 2–24 h; however, higher concentrations of the toxicants
315	noticeably restrained CAT activity. This finding was consistent with observations in
316	Fig. S3 that 2,4-DCP, AgNPs, and Ag ⁺ showed the expected toxicity with greater
317	biocidal activity with an increase in dose. It has been addressed that recovery of
318	cellular growth and replication occurred more quickly at lower doses than that at
319	higher doses (Mcquillan et al., 2012). Recovery implied an effective adaptive

320	response of microbes to toxicants, which suggested that more enzymes were produce
321	to repair oxidative damage. If enzyme activity under stressed conditions was still
322	depressed with respect to that of the control, it would take longer time for its activity
323	recovery, or enzyme activities cannot be recovered following high-dose and long-term
324	exposure to toxicants.
325	Besides, it is well-known that AgNPs can enter into the cells through
326	macropinocytosis and endocytosis (Huang et al., 2018a and b; Huang et al., 2017;
327	Wang et al., 2015). Internalization of AgNPs resulted in <i>P. chrycospatium</i> being
328	exposed to a locally high Ag^+ concentration within the small size of cells because of
329	large amounts of Ag ⁺ surrounding AgNP and its dissection. It was speculated that the
330	influences of both single AgNPs and a combinition of AgNPs and Ag ⁺ on CAT
331	activity were more serious and more difficult to recovery than those of single Ag ⁺ .
332	However, this is not the case. In my study, CAT activities under single 10 µM AgNP
333	stress and the combined stress of 0 μ M AgNPs and 1 μ M Ag ⁺ were enhanced with
334	respect to those of the control, and higher than those under 1 μ M Ag ⁺ treatments with
335	and without 2,4-DCh and 10 µM Ag ⁺ treatments at 48 and 72 h (Fig. 4C). Differences
336	in CAT activity between treatments of 1 μ M Ag ⁺ with and without 2,4-DCP indicated
337	that CAT activity was reinforced by low-dose 2,4-DCP. A similar case was acquired
338	for POD activity evoked by single AgNPs and Ag ⁺ (with and without 2,4-DCP), as
339	well as their combination during the same exposure period (in section 3.5.3, Fig. 5C).
340	The findings not only demonstrated that Ag ⁺ was indeed more potent than AgNPs, but
341	also highlighted that the dissolved Ag ⁺ could not be the predominant mechanism

342 underlying AgNP-induced cytotoxicity.

343	3.5.3. POD activity

344	Changes in POD activity throughout the process were implicated in development
345	of lignolytic microorganisms and degradation of metabolizable constituents (Serra-
346	Wittling et al., 1995). The tendency of POD was similar to those of SOD and CAT
347	within 24 h of exposure to 2,4-DCP, AgNPs and Ag ⁺ (Fig. 5A-C). POD activities were
348	enhanced with the increasing levels of 2,4-DCP, AgNPs, and Ag ⁺ at 2 h, but were
349	significantly inhibited compared to the control after 24 h of exposure Likewise, an
350	increase in POD induced by 2,4-DCP and AgNPs at 48–72 hearing ded with the
351	increase in SOD, and over the same period, the alter ions in POD achieved from
352	treatments with Ag ⁺ (with and without 2,4-DC ²) and a combination of AgNPs and
353	Ag ⁺ were consistent with those in CAT. The prolonged treatment with 2,4-DCP,
354	AgNPs, and Ag ⁺ induced a sharp a nucleuse in POD activities, up to 528.8, 468.8, and
355	334.6 U/g Fw, respectively, than those in SOD and CAT, the maximum activities of
356	which were 281.4 and 120.2 U/g Fw, respectively. Besides, the distinct difference
357	between POD and CAT after 48–72 h of exposure to 2,4-DCP, AgNPs, and Ag^+
358	signified that POD was more tolerant to toxicants, playing more important roles in
359	detoxification of H ₂ O ₂ for long-term exposure than CAT doing. Meanwhile, these
360	results indicated that although these three enzyme activities were all at high levels
361	over a long period of exposure, POD exerted the most pronounced influence,
362	protecting P. chrysosporium against oxidative stress, chemical toxicity, and certain
363	chronic disorders.

364	The changing patterns of intracellular proteins in 2,4-DCP, AgNP, and/or Ag ⁺ -
365	treated groups over the exposure time were consistent with those of antioxidative
366	enzymes SOD, CAT, and POD, which further validated the protection of antioxidative
367	enzymes against oxidative damage (Fig. S5). Detailed assessments of intracellular
368	proteins are supplied in the SI (in section 2.3). Furthermore, the enhancement in free
369	radical-scavenging enzymes (SOD, CAT, and POD) at 48–72 h also corroborated the
370	aforementioned hypothesis that lipid peroxidation for prolonged toxic exposure was
371	relieved to a certain extent by the augmenting antioxidative defense extern.
372	Interestingly, the activities of SOD, CAT and POD were all inhibited when <i>P</i> .
373	chrysosporium was exposed to toxicants for 24 h, while cellular viability and ROS
374	levels following low-dose treatments were significantly higher than those of the
375	control. This signified that for short-term exposure, excessive free radicals could be
376	scavenged by non-enzymatic antioxidate, such as glutathione, to protect P.
377	chrysosporium against oxid tive tress-induced cell damage.
378	3.5.4. Glutathion
379	To determine whether glutathione was effective against oxidative damage, the
380	contents of tGSH, GSH, and GSH/oxidized glutathione (GSSG) were assessed in
381	samples treated with 2,4-DCP, AgNPs, and Ag ⁺ . As noted in Fig. 6, the tGSH levels
382	changed little for 2, 48, and 72 h of exposure, except for the case of 30 μM AgNPs at

- 48 h; however, greater tGSH synthesis was evident in the control and treatments with
- 384 0–153 μ M 2,4-DCP, 0–60 μ M AgNPs, and 1 μ M Ag⁺ at 24 h. Notably, a drop in tGSH
- levels was provoked after being exposed to high concentrations of 2,4-DCP, AgNPs,

386	and Ag^+ for 24 h compared to levels in the control. Meanwhile, the overall GSH
387	levels were low and remained almost unchanged, probably because toxicants impeded
388	the generation of GSH-synthesizing enzymes, such as glutamate-cysteine ligase
389	catalytic subunit and GSH synthetase (Piao et al., 2011). Thus, the GSSG content,
390	which was calculated by subtracting GSH from tGSH, was relatively high at low
391	toxicant concentrations and diminished with increasing doses of toxicants. These
392	results led to an increase in GSH/GSSG ratios, the rates of which were faster at higher
393	concentrations of toxicants than those at lower exposure concentrations. In addition,
394	the high GSSG contents obtained at 24 h suggested that dependent of GSH in the
395	reaction of ROS predominantly occurred over this period. Besides, linear analyses of
396	tGSH, GSSG, and ROS levels were performed up er AgNP stress (Fig. S6). ROS,
397	tGSH, and GSSG levels were well correlated with AgNP concentrations ($R^2 = 0.961$,
398	0.991, and 0.965, respectively), and significant correlations between tGSH, GSSG
399	contents, and ROS levels ($I^{2} = 0.361$ and 0.953, respectively) were also observed.
400	The findings indicated that OSH depletion indeed played important roles in
401	detoxification of oxidative stress and the potential of <i>P. chrysosporium</i> to toxicant
402	tolerance. Our results agreed with the findings of Ma et al. (2015) who reported the
403	involvement of glutathione in AgNP detoxification in Crambe abyssinica. Details are
404	provided in SI (in section 2.4).
405	Further information can be obtained at 24 h. There was no visible difference in

- tGSH amount between the treatments of single 10 μ M AgNPs and 1 μ M Ag⁺ (Fig.
- 407 6C). However, tGSH contents under combined treatments of AgNPs and Ag^+ were

408	strikingly lower than those under single AgNPs or Ag ⁺ stress. The lowest amount of
409	tGSH was achieved in 10 μ M Ag ⁺ -incubated cells. According to the aforementioned
410	analysis, surrounding each AgNP, if there was a "cloud" of Ag^+ causing adverse
411	effects on cellular metabolism, a higher tGSH level was not induced by single AgNPs
412	and a combination of AgNPs and Ag ⁺ . These observations further demonstrated that
413	AgNP cytotoxicity might be contributed not by dissolved Ag ⁺ , but by AgNPs
414	themselves.
415	<i>3.6.</i> Particle-specific toxicity mechanism of AgNPs
416	In consideration of the analyses of anoxidative responses of SOD, CAT, POD,
417	and glutathione to the single and combined treatment of AgNPs and Ag^+ in <i>P</i> .
418	chrysosporium, AgNP-induced cytotoxicity wis proposed presumably through a
419	"particle-specific" pathway, namely, by nanovarticles themselves. To gain further
420	insight into the "particle-specific" to the mechanism of AgNPs, freeze-dried fungal
421	pellets from samples treated with 10 μ M AgNPs, 1 and 10 μ M Ag ⁺ , and a
422	combination of 1 μM Agr were analyzed by HAADF-STEM and
423	EDX.
424	Spherical nanoparticles (bright dots) with diameters of approximately 10-20 nm
425	were observed in samples dosed with AgNPs alone and the combination of AgNPs
426	and Ag ⁺ (Fig. 7A and B), which was roughly in conformity with the size of as-

- prepared AgNPs (11.9 ±9.4 nm) previously described (Huang et al., 2017). Although 427
- the reduction of Ag^+ to AgNPs by the reducing sugars, derived from saccharides 428

secreted by P. chrysosporium, has been documented (Vigneshwaran et al., 2006), no 429

430	bright dots were found in the single Ag ⁺ -treated samples in the present study (data not
431	shown), ruling out biosynthesis of AgNPs by P. chrysosporium. EDX observations
432	further confirmed that the nano-sized bright spots were mainly composed of the Ag
433	element, containing a trace quantity of sulfur and undetectable amount of chlorine
434	(Fig. 7C and D). Clear peaks at 2θ values of 38.1° , which can be indexed to (111) of
435	the cubic crystalline structures of AgNPs, were displayed in the XRD patterns of the
436	mycelium samples (Fig. S7). The reason for the weak peak intensities was that AgNP
437	concentrations in samples were low (Chen et al., 2006).
438	Moreover, SEM images of the AgNPs/Ag ⁺ -treated funger were obtained to
439	examine whether AgNPs were loaded on the surface of fungal mycelia under the
440	stresses of single 10 μ M AgNPs and the combination of 10 μ M AgNPs and 1 μ M Ag^+
441	(Fig. 7E and F). The surface of both samples uppeared clean and smooth with void
442	spaces but without adhered particles. However, for the combined treatment of AgNPs
443	and Ag^+ , widened and tight nyce a were observed (Fig. 7F), indicating that Ag^+
444	addition indeed charges in the morphological characteristics of <i>P</i> .
445	chrysosporium. This was in accordance with the above-mentioned observation
446	regarding cellular viability. Besides, the EDX spectra were also used to analyze the
447	elemental composition of fungal mycelia as indicated in Fig. S8A and B. Negligible
448	peaks corresponding to Ag suggested only a small amount of Ag being absorbed onto
449	the surface of the biomass.
450	Collectively, it could be ascertained that AgNPs were directly taken up into the

451 cells and AgNP toxicity to *P. chrysosporium* primarily originated from the original

452 AgNPs via "particle-specific" effects, excluding dissolved Ag⁺ and the biosynthesized
453 AgNPs.

454 **4. Conclusions**

455	In the present study, lipid peroxidation was alleviated at 48–72 h via
456	improvement of SOD, CAT, and POD activitives, and upregulation of proteins
457	production. ROS levels were well correlated with GSSG contents after 24-h AgNP
458	treatments, suggesting that depletion of GSH contributed to suppression of ROS
459	generation. Coupled with antioxidative responses under the single and combined
460	stresses of AgNPs and Ag ⁺ , HAADF-STEM, SEM and EDA observations revealed
461	the "particle-specific" toxicity of AgNPs to P. chryse porium. Results from this work
462	may be utilized to advance the mechanistic uncertaining of the fungal toxicity
463	mediated by toxicants and the pathways by which AgNPs exert cytotoxicity against
464	microorganisms in complex system
465	References
466	AshaRani, P.V., Inv K.& Min, G., Hande, M.P., Valiyaveettil, S., 2009. Cytotoxicity
467	and genotoxicit, of silver nanoparticles in human cells. ACS Nano 3 (2), 279-
468	290.
469	Blaser, S.A., Scheringer, M., Macleod, M., Hungerbuhler, K., 2008. Estimation of
470	cumulative aquatic exposure and risk due to silver: contribution of nano-
471	functionalized plastics and textiles. Sci. Total Environ. 390 (2-3), 396-409.

Borm, P.J.A., Berube, D., 2008. A tale of opportunities, uncertainties, and risks. Nano

473 Today 3 (1), 56-59.

474	Chen, A., Zeng, G., Chen, G., Liu, L., Shang, C., Hu, X., Lu, L., Chen, M., Zhou, Y.,
475	Zhang, Q., 2014. Plasma membrane behavior, oxidative damage, and defense
476	mechanism in Phanerochaete chrysosporium under cadmium stress. Process
477	Biochem. 49 (4), 589-598.
478	Chen, M., Wang, L.Y., Han, J.T., Zhang, J.Y., Li, Z.Y., Qian, D.J., 2006. Preparation
479	and study of polyacryamide-stabilized silver nanoparticles through a one-pot
480	process. J. Phys. Chem. B 110 (23), 11224-11231.
481	Cheng, Y., He, H.J., Yang, C.P., Zeng, G.M., Li, X., Chen, H., Yu, GL., 2016.
482	Challenges and solutions for biofiltration of hydrophotic velatile organic
483	compounds. Biotechnol. Adv. 34, 1091-1102.
484	Choi, Y., Kim, H.A., Kim, K.W., Lee, B.T., 20 8 Comparative toxicity of silver
485	nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. 66 (4), 50-60.
486	Choi, J.E., Kim, S., Ahn, J.H., Yum P., Kang, J.S., Yi, J., Ryu, D.Y., 2010. Induction
487	of oxidative stress and popposis by silver nanoparticles in the liver of adult
488	zebrafish. Augt. Texicol. 100 (2), 151-159.
489	Choudhary, M., Jetley, U.K., Khan, M.A., Zutshi, S., Fatma, T., 2007. Effect of heavy
490	metal stress on proline, malondialdehyde, and superoxide dismutase activity in
491	the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66 (2),
492	204-209.
493	Das, P., Williams, C.J., Fulthorpe, R.R., Hoque, M.E., Metcalfe, C.D., Xenopoulos,
494	M.A., 2012. Changes in bacterial community structure after exposure to silver
495	nanoparticles in natural waters. Environ. Sci. Technol. 46 (16), 9120-9128.

496	Feng, Y., Gong, J.L., Zeng, G.M., Niu, Q.Y., Zhang, H.Y., Niu, C.G., Deng, J.H.,
497	Yan, M., 2010. Adsorption of Cd(II) and Zn(II) from aqueous solutions using
498	magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 162 (2),
499	487-494.
500	Foldbjerg, R., Dang, D.A., Autrup, H., 2011. Cytotoxicity and genotoxicity of silver
501	nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85 (7),
502	743-750.
503	Fröhlich, E., 2013. Cellular targets and mechanisms in the cytoloxicastion of non-
504	biodegradable engineered nanoparticles. Curr. Drug Marsh, M. (9), 976-988.
505	Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, G., Niu, Q.Y., Zhou, W.J.,
506	Liang, Y., 2009. Removal of cationic dyer from aqueous solution using magnetic
507	multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164
508	(2), 1517-1522.
509	Häffner, S.M., Malmsten, N., 2017. Membrane interactions and antimicrobial effects
510	of inorganic perpertices. Adv. Colloid Interface Sci. 248, 105-128.
511	Huang, D.L., Zeng, C.M., Feng, C.L., Hu, S., Jiang, X.Y., Tang, L., Su, F.F., Zhang,
512	Y., Zeng, W., Liu, H.L., 2008. Degradation of lead-contaminated lignocellulosic
513	waste by Phanerochaete chrysosporium and the reduction of lead toxicity.
514	Environ. Sci. Technol. 42 (13), 4946-4951.
515	Huang, Z., Chen, G., Zeng, G., Chen, A., Zuo, Y., Guo, Z., Tan, Q., Song, Z., Niu, Q.,
516	2015. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its

- application in the bioremediation of composite-polluted wastewater. J. Hazard.
 Mater. 289, 174-183.
- 519 Huang, Z., Chen, G., Zeng, G., Guo, Z., He, K., Hu, L., Wu, J., Zhang, L., Zhu, Y.,
- 520 Song, Z., 2017. Toxicity mechanisms and synergies of silver nanoparticles in
- 521 2,4-dichlorophenol degradation by *Phanerochaete chrysosporium*. J. Hazard.
- 522 Mater. 321, 37-46.
- 523 Huang, Z., Xu, P., Chen, G., Zeng, G., Chen, A., Song, Z., He, K., Yuan, L., Li, H.,
- 524 Hu, L., 2018a. Silver ion-enhanced particle-specific cytotoxicity of silver
- 525 nanoparticles and effect on the production of extracellular secretions of
- 526 *Phanerochaete chrysosporium*. Chemosphere 1575-584.
- 527 Huang, Z., Zeng, Z., Chen, A., Zeng, G., Xiao R. Xu, P., He, K., Song, Z., Hu, L.,
- 528 Peng, M., Huang, T., Chen, G., 2018b. Differential behaviors of silver
- 529 nanoparticles and silver ion to vale cysteine: Bioremediation and toxicity to
- 530 *Phanerochaete chryso.porian.* Chemosphere 203, 199-208.
- Huynh, K.A., McSeffer, J.M., Chen, K.L., 2014. Heteroaggregation reduces
- antimicrobial activity of silver nanoparticles: evidence for nanoparticle–cell
- proximity effects. Environ. Sci. Technol. Let. 1, 361-366.
- Jiang, H.S., Qiu, X.N., Li, G.B., Li, W., Yin, L.Y., 2014. Silver nanoparticles induced
- accumulation of reactive oxygen species and alteration of antioxidant systems in
- the aquatic plant *Spirodela polyrhiza*. Environ. Toxicol. Chem. 33 (6), 1398-
- 537 1405.
- Jones, A.M., Garg, S., He, D., Pham, A.N., Waite, T.D., 2011. Superoxide-mediated

- formation and charging of silver nanoparticles. Environ. Sci. Technol. 45 (4),
 1428-1434.
- 541 Kim, S., Ryu, D.Y., 2013. Silver nanoparticle-induced oxidative stress, genotoxicity
- and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 33 (2), 78-89.
- 543 Krawczyńska, A., Dziendzikowska, K., Gromadzka-Ostrowska, J., Lankoff, A.,
- Herman, A.P., Oczkowski, M., Królikowski, T., Wilczak, J., Wojewódzka, M.,
- 545 Kruszewski, M., 2015. Silver and titanium dioxide nanoparticles alter
- 546 oxidative/inflammatory response and renin–angiotensin_system brain. Food
- 547 Chem. Toxicol. 85, 96-105.
- Lin T., Zeng, G.M., Shen, G.L., Li, Y.P., Zhang, Y. Luang, D.L., 2008. Rapid
- 549 detection of picloram in agricultural field samples using a disposable
- immunomembrane-based electrochemic L sensor. Environ. Sci. Technol.42 (4),
- 551 1207-1212.
- Liu, J., Hurt, R.H., 2010. Iou release kinetics and particle persistence in aqueous
 nanosilver colloids Environ. Sci. Technol. 44 (6), 2169-2175.
- Liu, X., Jin, X., Cao, B., Tang, C.Y., 2014. Bactericidal activity of silver nanoparticles
- in environmentally relevant freshwater matrices: influences of organic matter and
- chelating agent. J. Environ. Chem. Eng. 2 (1), 525-531.
- 557 López, E., Arce, C., Oset-Gasque, M.J., Cañadas, S., Gonz alez, M.P., 2006. Cadmium
- induces reactive oxygen species generation and lipid peroxidation in cortical
- neurons in culture. Free Radical Bio. Med. 40 (6), 940-951.
- 560 Luo, Y.H., Wu, S.B., Wei, Y.H., Chen, Y.C., Tsai, M.H., Ho, C.C., Lin, S.Y., Yang,

561	C.S., Lin, P., 2013. Cadmium-based quantum dot induced autophagy formation
562	for cell survival via oxidative stress. Chem. Res. Toxicol. 26 (5), 662-673.
563	Ma, C., Chhikara, S., Minocha, R., Long, S., Musante, C., White, J.C., Xing, B.,
564	Dhankher, O.P., 2015. Reduced silver nanoparticle phytotoxicity in Crambe
565	<i>abyssinica</i> with enhanced glutathione production by overexpressing bacterial γ -
566	glutamylcysteine synthase. Environ. Sci. Technol. 49, 10117-10126.
567	Massarsky, A., Dupuis, L., Taylor, J., Eisa-Beygi, S., Strek, L., Trudeau, V.L., Moon,
568	T.W., 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio)
569	development. Chemosphere 92 (1), 59-66.
570	Mcquillan, J.S., Infante, H.G., Stokes, E., Shaw, A.M. 2012. Silver nanoparticle
571	enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6,
572	857-866.
573	Morones, J.R., Elechiguerra, J.L., Smarko, A., Holt, K., Kouri, J.B., Ramirez, J.T.,
574	Yacaman, M.J., 2005. The bictericidal effect of silver nanoparticles.
575	Nanotechnology 11 (10, 2346-2353.
576	Nelson, S.K., Bose, K., Grunwald, G.K., Myhill, P., McCord, J.M., 2006. The
577	induction of human superoxide dismutase and catalase in vivo: a fundamentally
578	new approach to antioxidant therapy. Free Radical Biol. Med. 40 (2), 341-347.
579	Oukarroum, A., Bras, S., Perreault, F., Popovic, R., 2012. Inhibitory effects of silver
580	nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.
581	Ecotoxicol. Environ. Saf. 78, 80-85.
582	Pacini, N., Elia, A.C., Abete, M.C., Dörr, P., Brizio, A.J.M., Gasco, L., Righetti, M.,

583	Prearo, M., 2013. Antioxidant response versus selenium accumulation in the liver
584	and kidney of the Siberian sturgeon (Acipenser baeri). Chemosphere 93 (10),
585	2405-2412.

- 586 Piao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, J.Y., Choi, J., Hyun, J.W.,
- 587 2011. Silver nanoparticles induce oxidative cell damage in human liver cells
- 588 through inhibition of reduced glutathione and induction of mitochondria-
- 589 involved apoptosis. Toxicol. Lett. 201 (1), 92-100.
- 590 Qiu, R.L., Zhao, X., Tang, Y.T., Yu, F.M., Hu, P.J., 2008. Antioxidation response to Cd
- 591 in a newly discovered cadmium hyperaccumulator, *Aradis naniculata* F.
- 592 Chemosphere 74 (1), 6-12.
- Rehman, A., Anjum, M.S., 2010. Multiple metal therance and biosorption of
- 594 cadmium by Candida tropicalis isolated from industrial effluents: glutathione as
- detoxifying agent. Environ aroun essess. 174 (1), 585-595.
- 596 Serra-Wittling, C., Houot, S., Barriuso, E., 1995. Soil enzymatic response to addition
- of municipal solid vaste compost. Biol. Fert. Soils 20 (4), 226-236.
- 598 Sheng, Z., Liu, Y., 2011. Effects of silver nanoparticles on wastewater biofilms. Water
- 599Res. 45 (18), 6039-6050.
- 600 Shi, J., Sun, X., Zou, X., Zhang, H., 2014. Amino acid-dependent transformations of
- 601 citrate-coated silver nanoparticles: impact on morphology, stability and toxicity.
- 602 Toxicol. Lett. 229 (1), 17-24.
- Sun, S.Q., He, M., Cao, T., Zhang, Y.C., Han, W., 2009. Response mechanisms of
- antioxidants in bryophyte (*Hypnum plumaeforme*) under the stress of single or

- 605 combined Pb and/or Ni. Environ. Monit. Assess. 149 (1), 291-302.
- 606 Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, R.P., Balasubramanya,
- 607 R.H., 2006. Biomimetics of silver nanoparticles by white rot fungus,
- 608 *Phaenerochaete chrysosporium*. Colloids Surf. B 53 (1), 55-59.
- 609 Wang, Y., Westerhoff, P., Hristovski, K.D., 2012. Fate and biological effects of silver,
- titanium dioxide, and C_{60} (fullerene) nanomaterials during simulated wastewater
- 611 treatment processes. J. Hazard. Mater. 201, 16-22.
- Wang, Z., Xia, T., Liu, S., 2015. Mechanisms of nanosilver-induced xicological
- effects: more attention should be paid to its sublethal effects. Nanoscale 7 (17),
- 614 7470-7481.
- Windler, L., Heightx, L., Nowack, B., 2013. Comparative evaluation of antimicrobials
 for textile applications. Environ. Int. 53, 62-73.
- Kiu, Z.M., Zhang, Q.B., Puppala T.L., Colvin, V.L., Alvarez, P.J.J., 2012. Negligible
- particle-specific antibatteria activity of silver nanoparticles. Nano Lett. 12 (8),
 4271-4275.
- 620 Xu, P., Zeng, G.M., Juang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z.,
- Huang, C., Xie, G.X., Liu, Z.F., 2012. Use of iron oxide nanomaterials in
- wastewater treatment: A review. Sci. Total Environ. 424, 1-10.
- Yang, C., Chen, H., Zeng, G., Yu, G., Luo, S., 2010. Biomass accumulation and
- 624 control strategies in gas biofilters. Biotechnol. Adv. 28, 531-540.
- 425 Yildirimer, L., Thanh, N.T.K., Loizidou, M., Seifalian, A.M., 2011. Toxicological
- 626 considerations of clinically applicable nanoparticles. Nano Today 6, 585-607.

- Zeng, G., Chen, M., Zeng, Z., 2013a. Shale gas: surface water also at risk. Nature 499
 (7457), 154-154.
- Zeng, G., Chen, M., Zeng, Z., 2013b. Risks of neonicotinoid pesticides. Science 340
- 630 (6139), 1403-1403.
- Zeng, G.M., Chen, A.W., Chen, G.Q., Hu, X.J., Guan, S., Shang, C., Lu, L.H., Zou,
- 632 Z.J., 2012. Responses of *Phanerochaete chrysosporium* to toxic pollutants:
- 633 physiological flux, oxidative stress, and detoxification. Environ. Sci. Technol. 46
- 634 (14), 7818-7825.
- 635 Zhang, Y., Zeng, G.M., Tang, L., Huang, D.L., Jiang, X.Y., Chen, Y.N., 2007. A
- hydroquinone biosensor based on immobilizing ccase to modified core-shell
- 637 magnetic nanoparticles supported on carbon laste electrode. Biosens.
- 638 Bioelectron. 22, 2121-2126.
- 639 Zuo, Y., Chen, G., Zeng, G., Li, Z., Yan, M., Chen, A., Guo, Z., Huang, Z., Tan, Q.,
- 640 2015. Transport fate, and stimulating impact of silver nanoparticles on the
- removal of **GV**(II) as *Planerochaete chrysosporium* in aqueous solutions. J.
- 642 Hazard. Mater. **185**, 236-244.