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It is widely known that variation of the C/N ratio is dependent on many state variables during composting
processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA)
method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food
waste composting. The experimental data from six bench-scale composting reactors were used to
demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both
specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships
between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy
table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller
sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the
effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH4

+-N
concentrationNMoisture contentNAsh ContentNMean TemperatureNMesophilic bacteria biomass. Such a
rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the
moisture conditions, the total loss of both organic matters and available mineral constituents, and the
mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste
composting. This first application of GASCA to composting modelling indicated that more direct search
algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated
relationships during composting and many other environmental processes.
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1. Introduction

Efficient operations of composting relies on insights of relationships
between state variables (e.g. oxygen concentration, ash content,
moisture content, and pH) and specific characteristics (e.g. microbial
activities, maturity, and stability). Previously, many experimental
approaches were developed in analyzing these relationships (Chefetz
et al., 1996; Tiquia et al., 1996; Herrmann and Shann, 1997; Hsu and Lo,
1999; Sanchez-Monedero et al., 2001; Liang et al., 2003; Galvez-Sola
et al., 2010). However, experiment-based evaluations could hardly help
quantify the interactions among multiple composting state variables.
In comparison, amodel-based analysis could help examine the inherent
impacts of various factors on the biological and physiochemical
processes and gain an in-depth insight into the related mechanisms
(Hamoda et al., 1998; Turner et al., 2005; Mason, 2006; Chikae et al.,
2006, 2007; Lin et al., 2008; D'Imporzano et al., 2008; Khalil et al., 2008;
Mudhoo and Mohee, 2008; Vlyssides et al., 2009; Giusti and Marsili-
Libelli, 2010). Nevertheless, dynamic, nonlinear and interactive features
of these physicochemical or biological properties in composting
inherently make the analysis as a challenge. Conventional continuous
and linear methods cannot efficiently reflect such complicated
relationships.

Stepwise cluster analysis (SCA) is an emerging non-parameter
regression technology. It includes a series of cut or merge operations
according to given statistic criteria and finally generates a cluster tree in
the sense of probability. SCA has been applied to predicting air quality
in the urban environment (Huang, 1992), supporting diagnosis of lung
cancer (Ren et al., 1997), and optimizing groundwater bioremediation
processes (Qin et al., 2007; He et al., 2008b). However, applications of
SCA in approximating the relationships between state variables and
specific characteristics during composting processes were relatively
limited (Sun et al., 2009). Meanwhile, one weakness of SCA is that its
performance is sensitive to both input variables and internal para-
meters. Effective identification of these variables and parameters will
be beneficial for improving the accuracy of SCA predictability. The
identification process essentially involves solution of a nonlinear,
discrete optimization model with the objective function being the
performance of SCA; this could hardly be handled by conventional
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gradient-based methods. Genetic algorithm (GA) is a powerful
searching technique in seeking optimal solutions in large and complex
decision spaces through imitating the principle of natural evolution. It
has been successfully applied to variable or factor selection in various
statistical predictions or machine learning studies (Depczynski et al.,
2000; Cavill et al., 2009), as well as detection of the most relevant
spectral region related to the composting process (Martinez-Sabater
et al., 2009).

Therefore, the objective of this study is to develop a GA-aided
stepwise-cluster analysis model (GASCA) through integrating GA and
SCA within a general framework to quantify the nonlinear relation-
ships between state variables (time, temperatures, pH, moisture
content, ash content, organic content, NH4

+-N concentration, cumu-
lative NH3 emissions and bacterial biomass) and the C/N ratio in food
waste composting. It entails: screening of significant state variables
and system parameters in virtue of the powerful search ability of GA;
development of a GA-aided stepwise-cluster model for analyzing the
effects of multiple state variables on the C/N ratio; and demonstration
of the proposed method based on the data from bench-scale
composting experimental systems.
2. Materials and methods

2.1. Feedstock and reactors

We chose synthetic food waste as the composting feedstock and
used six runs of designed composting experiments (bench-scale
reactors) in our laboratory to describe various representative
operation conditions. The synthetic food waste was produced using
potato, carrot, ground pork, steamed rice (food products from a local
grocery store) and American Elm leaves. Cooked soybean was added
in Runs 1 and 2 to lower the C/N ratio. Baking soda (Sodium hydrogen
carbonate) was added in Runs 3 and 4 to adjust the pH value. Coal ash
was added in Run 6 as a bulking agent. These materials were cut into
pieces of approximately 5 mm in size and mixed thoroughly. The
composting mixtures were manually turned over with a shovel once a
day, and three samples (less than 50 g in total) from three locations of
each reactor were collected for analyzing pH, moisture content, ash
content, organic content, NH4

+-N concentrations, bacterial biomass
and C/N ratio. The weights of samples were kept minimal to avoid
their effects on the composting process. The compositions and
physiochemical characteristics of initial composting mixtures for the
six runs are listed in Table 1.
Table 1
Initial state of raw composting mixtures for six barrels.

Barrel Unit 1

Substrate Potato kg 2
Steamed rice kg 3
Carrot kg 3
Leaves kg 0
Meat kg 0
Soy bean kg 3
Starting culture kg 0
Coal ash kg –

Baking soda kg –

Total weight kg 12
Chemical composition pH – 5

Moisture content % 56
Ash content % 1
Organic content % 41
Carbon (dry) % 47
Nitrogen (dry) % 3
C/N ratio – 14

Microorganism Thermophilic bacteria log CFU/g (dry) 4
Mesophilic bacteria log CFU/g (dry) 12
Each reactor is a cylindrical PVC tube (40.64 cm high and an
effective volume of approximately 30 l) with three layers of heat-
insulating materials preventing heat loss. On the bottom, an air inlet
and a leachate outlet were connected. The inlet air, blown in by a
vacuum pump, was distributed flowing upward through a holed
vinyl pipe in the aeration distribution chamber near the bottom of
the reactor. The aeration rate was monitored by a flow-meter. On the
top, an air outlet, a thermometer point and a sampling port were
distributed. The outlet air was discharged through a vinyl tube into a
wide mouth flask containing H2SO4 solution (100 ml 0.1 M) to absorb
NH3. The final gas passing through a condensation bottle was
discharged to the lab ventilation system. A flow diagram of the
composting reactor is shown in Fig. 1.
2.2. State variables and C/N ratio

With the ambient temperature being maintained at 20±1 °C for
all experimental runs, we placed a stainless steel rod with two
thermometers (Traceable 15-077-9E, Control Company, TX, USA) at
different depths of the compost matrix. The lower thermometer was
fixed at a location 2.54 cm away from the segmentation plate to obtain
the surface's temperature. The upper one was placed in the centre of
the compost matrix and adjusted everyday with the change of
compost height to acquire the core's temperature. The pH in a solution
of compost and water (weight ratio: 1:2) was measured through a
bench top pH/Temperature Meter (Thermo Orion, 410A Plus)
(Thomas, 1996). The moisture content by weight loss of compost
sample was determined by the gravimetric method (Gardner, 1986);
the ash content and the organic content were measured by the
ignition method (Nelson and Sommers, 1982). In addition, NH4

+-N
concentrations (mg/kg, wet Sample) and cumulative NH3 emissions
(μg/day) were analyzed through the FIAstar 5000 Analyzer (Foss
analytic AB, Sweden) equipped with 5027 Sampler, interference
filters (540 and 720 nm), and reduction columns (Foss Analytical AB,
2001). The colony numbers of thermophilic and mesophilic bacteria
were counted by the spread plate counting method (Wollum, 1982;
Germida, 1993). The oxygen concentrations in the surrounding air
and the exhaust gas of the reactor were monitored every 3 h by a M40
Multi-Gas Monitor (Industrial Scientific Corp., Oakdale, PA, USA), and
the C/N ratio (the ratio of total carbon and total nitrogen) was
measured by the LECO TruSpec CN Determinator (LECO Corporation,
St. Joseph, MI, USA). More experimental details can be found in the
work of An (2006).
2 3 4 5 6

2 2.2 2.2 2.0 1.7
.1 3.1 3.5 3.5 3.2 2.8

3 3.4 3.4 3.1 2.7
.7 0.7 0.8 0.8 0.7 0.6
.5 0.5 0.6 0.6 0.5 0.5

6 – – – –

.5 0.5 0.5 0.5 0.5 0.5
– – – – 4.0
– 0.2 0.3 – –

.8 15.8 11.2 11.3 12.8 15.8

.86 5.96 8.85 8.77 5.89 5.97

.98 56.38 62.55 66.65 64.27 50.09

.88 2.08 2.90 2.38 1.48 29.73

.14 41.54 34.55 30.97 34.25 20.18

.93 47.77 43.67 44.37 45.88 19.70

.25 3.17 1.34 1.48 1.44 0.56

.75 15.08 32.63 29.89 31.9 34.99

.667 7.146 4.728 4.477 6.080 5.478

.366 11.341 12.284 11.322 8.447 13.068



Fig. 1. Schematic diagram of the composting system.
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3. Theoretical

3.1. Framework of GASCA

A GA-aided stepwise cluster analysis for describing the relation-
ship between state variables and the C/N ratio during food waste
composting consists of several major steps (Fig. 2). Firstly, all the
observed variables during the six runs of composting experiments
are collected as the dataset for the GASCA model, since the sample
numbers from a single experimental run are not enough for
constructing GASCA models. Then, GA searches optimal sets of
specified state variables and SCA parameters through a number of
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3.2. Dataset

All the observed data from the six runs of food waste composting
were collected (198 samples) and combined to form the whole
dataset. Each sample was a combination of inputs (i.e. state variables
and SCA's inherent parameters) and the C/N ratio. The state variables
had potential effects on C/N ratio variation; they included time (X1),
mean temperature (X2), pH (X3), moisture content (X4), ash content
(X5), organic content (X6), NH4

+-N concentration (X7), cumulativeNH3

emissions (X8), log colony count of thermophilic bacteria (X9), log
colony count of mesophilic bacteria (X10), upper temperature (X11),
and lower temperature (X12). Although the sum of X4, X5 and X6 was
one, the three state variableswere still included since itwas difficult to
exclude one of them from the candidates subjectively; The SCA's
inherent parameters wereαcut (significance level for cutting clusters),
αmerge(significance level for merging clusters), and Nmin (the
minimum number of samples within tip clusters). The C/N ratio was
the concerned output. The entire dataset was randomly divided into a
training set (167 samples, 84%) and a test set (31 samples, 16%). The
training set was used for calibrating the GASCA (or SCA) forecasting
trees and the test one was for verification in independent samples
from different reactors. Since the magnitudes of state variables were
significantly different from each other, we firstly converted all input
datasets into the range of [−1, 1] before the training process and then
transformed the values of the predicted dependent variables back to
their original ranges after the training was completed.
3.3. Principle of stepwise cluster analysis (SCA)

SCA is based on the theory of multivariate analysis of variance.
Generally, two phases are involved in its implementation: training
and test. In the training phase, the sample dataset is cut into two
subsets (clusters) and then two are merged into one during the
iterative training process. According to Wilks' likelihood-ratio
criterion, the cutting point is optimal only if the value of Wilks' Λ is
minimum (Wilks, 1962). Since the Λ is directly related to the F
statistic, the sample means of the two sub-clusters can be compared
for significant differences through F test (Rao, 1952). Thus, the criteria
of cutting (or merging or not) clusters rely on a set of F tests (Rao,
1965; Tatsuoka, 1971). Based on the F tests, a tree is shaped step by
step until no subsets could be cut or merged any more. In the test
phase, the values of the new independent variables in the test samples
will be used as references to determinewhich child cluster a sample in
the parent cluster will enter. Thus, the sample would gradually enter
one tip cluster. The mean of dependent variables from the training set
at the tip cluster that the sample finally enters becomes the predicted
value of the sample's dependent variable. A more detailed description
of SCA can be referred to our previous work (Qin et al., 2008).
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3.4. Variable/parameter selection using GA

An integrated GASCA model combining GA with SCA would possess
abilities in both variable searching and nonlinear fitting. GA transfers
chromosome information (certain independent variables and inherent
parameters) to SCAand thenSCA returned thefitness (an index reflecting
both structure and performance of the SCA tree) to the corresponding
chromosome in GA. In detail, the chromosome is a 19-bit binary string.
The first twelve binary strings encode all the SCA's candidate indepen-
dent variables, where the ‘1’ represents that its corresponding indepen-
dent variable is selected while the ‘0’ means not. The last seven binary
strings represent inherent parameters of SCA (αcut, αmerge and Nmin). In
order to unify the calculation, we chosen several representative values
within the appropriate ranges of the three parameters respectively and
used binary strings to represent the locations of each value in the ranges.
Thus the binary strings are capable of describing real-number values of
SCA's inherent parameters. The mapping relationships between the
binary string and the variables/parameters are illustrated in Fig. 3.

An index based on both the SCA's fitting accuracy and the SCA tree's
complexity was developed as the fitness function. The accuracy of SCA's
fitting is defined as RMSE of the training set. The complexity of SCA tree
is depicted as the sum of normalized layer number of the SCA (Ns,layer),
the normalized node number of the SCA (Ns,node) and the normalized
number of independent variables (Ns,x). Four weighting coefficients
(μ1, μ2, μ3, and μ4) were introduced to balance the accuracy and the
complexity. Thus the fitness function has the following definition:

Fitness = μ1RMSEs + μ2Ns;layer + μ3Ns;node + μ4Ns;x ð1Þ

RMSEs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
ðyj−ytraining; jÞ2
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ð4Þ
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Nx; max−Nx; min
ð5Þ

whereRMSEmin andRMSEmax are idealminimumandmaximumvaluesof
RMSE, respectively; n is the number of samples in the training set; yj and
ytraining,j are the predicted and observed values for C/N in the jth sample in
the training set, respectively; Nlayer is the layer number of the SCA tree.
Nlayer,min and Nlayer,max are ideal minimum andmaximumvalues of Nlayer,
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respectively; Nnode is the node number of the SCA tree; Nnode,min and
Nnode,max are ideal minimumandmaximumvalues of Nnode, respectively;
Nx is the number of independent variables; Nx,min and Nx,max are ideal
minimum and maximum values of Nx, respectively.

Similar to the construction of a single chromosome, a population
with a group of chromosomes in GA would be randomly generated.
Parents would be selected based on individuals' fitness values using
the stochastic uniform method, then further intercrossed to exchange
their genetic information by the scattered crossover method, and
mutated through changing their information randomly by the
Gaussian mutation method (The MathWorks, 2008). Generation by
generation, parents with worse fitness would be replaced by children
with better fitness in the evaluated population. Once the stopping
criterion was satisfied; the chromosome with the lowest fitness value
would represent the information of the final optimal combination of
variables/parameters for SCA.

3.5. Program implementation of GASCA

A flow diagram of GASCA is presented in Fig. 2. All programs were
written in Matlab R2008a (The MathWorks, 2008). The main program
for coupling GA and SCA is clarified as follows:

Step 1: Before SCA training, the entire dataset (the state variables
and C/N) is scaled to fall within the range of −1 to 1;
Step 2: A number (the default is 100) of randomly generated
chromosomes (of a bit length equal to the number of state
variables and inherent parameters chosen) form a population;
Step 3: GA invokes the SCA function to evaluate fitness of every
chromosome in the population:
Step 4: New chromosomes are generated through selection,
crossover, and mutation operations; GA invokes the SCA function
to calculate fitness values of new chromosomes.
Step 5: Replace the old chromosomes with new chromosomes;
Step 6: After all operations, the chromosomewith theworst fitness
of the entire population is replaced with the current elitist;
Step 7: Return to Step 4 to begin the evolution of the next
generation; if the generation number exceeds a certain value (e.g.
25), the program will end.

The computational procedures of the SCA function are described as
follows:

Step 1: GAwill search the proxy table to find out whether the same
chromosome is calculated already or not; if yes, the corresponding
fitness will be assigned to the chromosome directly and the
program goes to Step 12, and if no, goes to Step 2;
Step 2: GA invokes SCA to evaluate the fitness of every
chromosome: the entire training dataset will be cut into a smaller
one based on the independent variable information embedded in
the chromosome; such a dataset is treated as a leaf cluster (i.e. a
cluster without sub-clusters); the parameter information (αcutting,
αmerging and Nmin) will be used in Steps 9, 11 and 12;
Step 3: For every leaf cluster, each state variable Xid (i.e.
independent variables, id=1, 2, …, m) is chosen in the order of
X1 to Xm; the samples (including both independent and dependent
variables) in cluster σ (matrix) are sequenced to σ(Xid) in an
ascending order according to the value of Xid;
Step 4: For the matrix σ(Xid), every cutting line nr (between row i
to row i+1, nr=1, 2, …, n−1) is chosen in the order from 1 to n
−1; n is the number of samples for cluster σ(Xid); the cluster
σ(Xid) will be divided into two sub Clusters β and γ according to
the cutting line;
Step 5 TheWilks' Λ based on the dependent variables (Yβ and Yγ) is
calculated; by comparing all m*(n−1) values of Wilks' Λ, the
minimal value of Λ(id*, nr*) can be obtained;
Step 6: Calculate the Fcal value; if Fcal≥Fα-cuting, the parent cluster
can be cut into two sub-clusters;
Step 7: The independent variable and the value in the cutting point
(xid*, nr*) becomes a judging criterion; all samples in this cluster
with xid*, nr≤xid*, nr* are allocated to one sub-cluster, with the rest
to the other;
Step 8: Repeat Steps 3 to 7 until all clusters are tested for possible
cutting in the present layer;
Step 9:When the cutting operation in the present layer is done, the
merging operations begin; if other old leaf clusters exist, these new
leaf clusters will be tested along with all other leaf clusters to
demonstrate whether pairs of them could be merged into one
cluster; the Wilks' Λ and Fcal values will be calculated for each pair
clusters; if Fcal≥Fα-merging, the two clusters will be considered
having no significant difference and can be merged;
Step 10: If there are no other old leaf clusters or no merged
operations are needed, the new leaf clusters will be treated as new
clusters and tested for further cutting or merging operations
according to Steps 3 to 9;
Step 11: If no leaf cluster can be cut or merged or the number of
samples in every cluster is less than Nmin, the training process is
completed with the SCA tree being shaped; then, the fitness of
chromosome is calculated based on Eqs. (1)–(5);
Step 12: Return to Step 1 for evaluating the next chromosome; if
the fitness of each existing chromosome has been evaluated,
return to the main program.

4. Results

4.1. Structure of GA

In general, GA's fitness function and operation (selection, crossover,
and mutation) configurations have significant impacts on its perfor-
mance. The fitness function is always problem-oriented; determination
of its value (Eqs. (1)–(5)) depends on the relevant coefficients selection,
according to the datasets of food waste composting. Through error and
test, four weighting coefficients (i.e. μ1, μ2, μ3, and μ4) for balancing the
accuracy and the complexity of SCAwere determined as 1.04, 0.35, 0.37
and 0.024. The coefficients for normalizing SCA' complexity calculation
(i.e. RMSEmin, RMSEmax, Nlayer,min, Nlayer,max, Nnode,min, Nnode,max, Nx,min

and Nx,max) were configured as 0, 10, 3, 150, 3, 1500, 2 and 12,
respectively. GA's standard operations are controlled by the relevant
parameters, including the population size (PS), the selection rate (SR),
the crossover fraction (CF, or crossover rate), and the mutation rate
(MR).Usually, the larger thePS, thehigher theCF; thehigher theMR, the
more diversified the chromosomes. However, a larger PS and a higher
MR may lead to the requirement of more computational efforts.

To obtain a relative optimal configuration of GA for supporting
SCA's variable selection, PS and CF (MR=1–CF in our GA program)
were chosen to examine their effects on fitness. We changed one of
them in its possible range and kept the other at its default value
during each observation. The results indicated that, when the PS
increased from 20 to 110 by every 10 units, the obtained optimal
fitness value would fluctuate and keep as a constant after the PS
exceeds 100. Similarly, the obtained optimal fitness value would keep
the same when CF was greater than 0.8 (in the range from 0 to 1 by
every 0.05). Thus, the optimal setting of GA for SCA was set as:
population size=100, crossover fraction=0.8 and maximum allow-
able generation=25. The operation processes of GA under such a
setting are illustrated in Fig. 4. Over the entire GA iteration, the best,
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worse and the average fitness value (the vertical bars in Fig. 4a) would
decrease gradually with the increase of generation number. There
were always significant differences between the best and the average
fitness values at each generation; the average distance would
decrease instantly but automatically keep fluctuating during the
process of GA operation (Fig. 4b). This demonstrated that the
population diversity could be maintained and the undesired prema-
turity could be avoided during GA operations.

4.2. Interactions between SCA and GA

Within the GASCA framework, reduction of SCA's computational
efforts is critical for improving GASCA's efficiency. This is due to: (i) the
SCA's calculation amount increases significantly with the increase of
dataset volume, and (ii) SCA is frequently invoked to calculate the
fitness function during the GA operation. Thus, effective use of SCA's
results that have been calculated during the former generations would
greatly improve the entire efficiency of GASCA. To this end, a proxy table
are introduced to realize this mechanism. During GA operations, when
GASCAneeds to evaluate thefitness of a newchromosome, a proxy table
can be used to find out whether the same chromosome has been
calculated in the previous generations. Fig. 4c shows that the time to
invoke theproxy table gradually increase to itsmaximumvaluewith the
increase of generation numbers. During the early stage of GASCA, the
invoking time was relatively limited. It implied that most of the SCAs
needed to be trained since there were few chromosome records in the
proxy table. At later stages, the invoking timekept increasing sincemore
and more chromosome records were saved in the proxy table.
Therefore, the corresponding fitness values of many SCAs could be
obtained directly from the proxy table since these chromosomes and
theirfitness values had already been recorded. In Fig. 4c, the sumof time
invoking the proxy table was 1879 while that required for calculating
the fitness was 2600; about 72% efforts for fitness calculation had been
saved. It thus demonstrated that the introduction of a proxy table could
effectively reduce the chance of repetitive training and thus significantly
improve the efficiency of GASCA iteration.

In addition to efficiency, the accuracy of the final result of GASCA is
also critical. The manner that GA affects the construction of a SCA tree
largely determines the performance of a GASCA tree. The factors for
controlling SCA's performance consist of dataset quality, dataset
partition strategy, SCA's internal parameters (αcut, αmerge and Nmin),
and the combination of candidate independent variables (Qin et al.,
2007). In this study, the candidate independent variables and
inherent parameters of SCA are considered as the major factors that
GA would affect a SCA tree. In our practice for the current dataset of
foodwaste composting, it is found that the SCAwould tend to be over-
fitting (i.e. the RMSE for the test set is muchworse than the one for the
training set) in one of following settings: 1) when the αcut is less than
0.03 or greater than 0.065; 2) when the αmerge is less than 0.05 or
greater than 0.065; 3) when the αcut is greater than αmerge; 4) and
when Nmin is less than 7 and greater than 10. Thus, the variation range
of inherent parameters are set as: αcut∈ [0.03, 0.065], αmerge∈ [0.05,
0.065], and Nmin∈ integer in [7, 10]. Since αcut and αmerge are real
numbers, it is difficult to incorporate them into binary-bit chromo-
somes. Alternatively, a set of representative values for these inherent
parameters are chosen as: αcut∈{0.03, 0.035, 0.04, 0.045, 0.05, 0.055,
0.06, 0.065}, αmerge∈{0.05, 0.055, 0.06, 0.065}, and Nmin∈ {7, 8, 9, 10}.
Meanwhile, 3, 2 and 2 binary-bits are used to represent 23, 22, and 22

numbers of representative values, respectively. For example, the last
seven bit of chromosome (1010110) includes three parts 101 (No.6 in
αcut's representative values), 01 (No.2 for αmerge) and 10 (No.3 for
Nmin), which means the corresponding values were chosen as:
αcut=0.055, αmerge=0.055, and Nmin=9. In this manner, the values
of chromosomes in GA represent the locations of parameters in the
given ranges. Along with the evolution of GA, the performance of the
chromosomes will be improved and the related parameters will be
transferred to SCA.

4.3. GASCA vs. SCA

To compare GASCA with SCA, four optional SCA/GASCA models
were calculated (Table 2). SCA1 has all of the candidate independent
variables and uses each internal parameter at its default value; SCA2

selects these variables/parameters through the trial and error
method; GASCA1 uses GA to select only independent variables for
SCA and employs default SCA's inherent parameters; GASCA2 uses GA
to select both independent variables and SCA's inherent parameters.
The results indicated that the R2 for training sets of GASCA were much
higher than those of SCA [R2-train: GASCA2 (0.990)≈GASCA1



Table 2
Performance of different SCA/GASCA trees.

Model SCA1 SCA2 GASCA1 GASCA2

Selctions X variables All Xs Trial and error GA-aided GA-aided
SCA internal parameters Default Trial and error Default GA-aided

X 1,2,3,4,5,6,7,8,9,10,11,12 1,3,4,5,6,7,9,10,12 2,4,5,7,10,11 2,4,5,7,10
Y C/N C/N C/N C/N
αcut 0.05 0.04 0.05 0.04
αmerge 0.05 0.06 0.05 0.06
Nmin 10 10 10 9
Layer 25 21 20 17
Node 165 128 123 100
Training set R2 0.985 0.977 0.991 0.990

RMSE 0.770 0.949 0.582 0.615
Test set R2 0.946 0.958 0.946 0.945

RMSE 1.614 1.454 1.566 1.560
Fitness 0.19647 0.18920 0.14024 0.12851
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(0.991)NSCA1(0.985)NSCA2(0.977)]; the R2 for test sets of GASCA
were almost the same as those of SCA1 while SCA2 had the highest
value [R2-test: SCA2 (0.958)NGASCA2 (0.945)≈GASCA1 (0.946)=
SCA1 (0.946)]; the RMSEs for training sets of GASCA were lower than
those of SCA [RMSEs-train: GASCA1 (0.582)bGASCA2 (0.615)bSCA2

(0.949)bSCA1(0.770)]; the RMSEs for test sets of GASCA were lower
than those of SCA1 while SCA2 had the lowest value [RMSEs-test: SCA2

(1.454)bGASCA2 (1.560)bGASCA1 (1.566)bSCA1 (1.614)]. As for the
configuration, the number of independent variables of GASCA were
much less than those of SCA [GASCA2 (5)bGASCA1 (6)bSCA2 (9)b
SCA1 (12)]; the layer number of GASCA were less than those of SCA
[GASCA2 (17)bGASCA1 (20)bSCA2 (21)bSCA1 (25)]; and the node
number of GASCA were much less than those of SCA [GASCA2 (100)b
GASCA1 (123)bSCA2 (128)bSCA1 (165)]. Thus, the fitness of the four
models could be ranged in a descending order as: GASCA2 (0.12851)b
GASCA1 (0.14024)bSCA2 (0.18920)bSCA1 (0.19647).

The results indicated that the predictive capability of SCA2 for the
test setwas better thanGASCA2while SCA2's other performanceswere
worse. This implied that the trial and error methodmight improve the
SCA's performance to some degree. The comparison between GASCA2

and SCA1was further illustrated in Figs. 5 to 7. It showed that the size of
GASCA2 was much smaller than that of SCA1 while the performance of
GASCA2 was better. Thus, the GASCA trees have better fitting and
predictive ability in performance and higher efficiency in computation
than the SCA trees when building nonlinear relationships between the
state variables and the C/N ratio during food waste composting. The
strength of GASCA is derived from themutual compensation of GA and
SCA. Their integration brings about not only a better GASCA tree but
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Fig. 5. GASCA2 tree f
also intense calculation for searching the optimal SCA tree in GA's
evolution environment. SCA only needs to calculate all possible Wilks'
Λ values in the corresponding dataset; in comparison, GASCA would
have to invoke the SCA function to compare all possibleWilks'Λ values
in the GA-selected dataset when GASCA needs to evaluate fitness. The
computational effort would inevitably increase but the problem could
be mitigated by the use of a proxy table. The final GASCA tree was
smaller in size but better in performance, which implied its excellent
ability to avoid over-fitting, since the models with bigger size would
often over-fit the dataset.

The optimal GASCA2 tree was finally generated to reflect the
relationships between the state variables and the C/N ratio (Table 3;
Fig. 5). The optimal combination of input variables include mean
temperature (X2), moisture content (X4), ash content (X5), NH4

+-N
concentration (X7), and log colony count of mesophilic bacteria (X10);
the internal configuration parameters are: αcut=0.04, αmerge=0.06
and Nmin=9. The GASCA tree is a forecasting system flexible to reflect
C/N variation during foodwaste composting based on the relationship
between the C/N ratio and state variables. For example, let X2=47.85,
X4=0.6554, X5=0.0186, X7=666.92, and X10=8.4627 as a new
sample for the GASCA tree. To predict the C/N ratio, we have:
X7N87.51 for the first branch knot so that the sample enters cluster 3
(Fig. 5); X5≤0.04, so that it enters cluster 6 and then merges into
cluster 8; X7N273.78, so that it enters cluster 12; X7N624.22, so that it
enters cluster 19; X2N28.25, so that it enters cluster 30; X10≤8.49 so
that it enters cluster 38 and then merges into cluster 46; X4N0.63, so
that it enters cluster 57 and then finally merges into cluster 68 with a
prediction value of 11.11±0.26.
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Fig. 6. SCA1 tree for the C/N ratio.
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Based on the configuration of the optimal GASCA tree (Fig. 5 and
Table 3), the effect of input (Xk) on the output (Y) in GASCA is
quantified using the following equation:

EffectðXk;YÞ = ∑
NN

i=1
NXk

ðiÞ ð6Þ

where NN is the number of total nodes in the GASCA tree; NXk(i) is the
number of patterns (samples) at node i of the GASCA tree where the
corresponding Xk variable is used as the cutting criteria at node i. NXk

(i) represents the number of samples on which Xk variable has effects
at node i. According to our previous work (Sun et al., 2009), the effects
of the state variables on the C/N ratio could be ranged in a descending
order as: NH4

+-NNMoisture contentNAsh ContentNMean Tempera-
tureNMesophilic bacteria biomass. The result might imply that the
variation of NH4

+-N concentration, the associated temperature and
moisture conditions, the total loss of both organic matters and
available mineral constituents, andmesophilic bacteria activity, might
be the important factors affecting C/N ratio during the food waste
composting.

4.4. Effect of state variables on the C/N ratio

Dynamic variations of the C/N ratios during the six runs of
composting experiments follow different patterns (Fig. 8). In Runs 1
and 2, the initial C/N ratios drop to 14.75 and 15.08 due to the addition
of soybean. This is consistent with the conclusion of Wong et al.
(2001) where adding soybean residues could lower the C/N ratio
because of its relatively high nitrogen content (Wong et al., 2001). The
C/N ratios in these two runs gradually drop to the minimum (9.57 and
9.38) in Day 28 and Day 30, respectively, possibly due to the carbon
loss by CO2 emission. The two C/N ratios then gradually rise to 13.70
until Day 37 and to 12.70 until Day 42; then both keep fluctuating or
stable, individually. This is possibly due to the decrease of total
nitrogen content caused by NH3 emission. In Runs 3 and 4, the initial
C/N ratios are adjusted to about 32.63 and 29.89. The C/N ratio in Run
3 keeps decreasing to 17.46 until Day 33 and slowly increases to 19.43
until the last day. The C/N ratio in Run 4 keeps decreasing to 19.85
until Day 18, keeps fluctuating to 20.92 until Day 33, and then slowly
drops to 17.15 until Day 43. In Run 5, the initial C/N ratio of the
composting material is 31.9. The C/N ratio keeps decreasing until Day
35 and become stable (11.79) until Day 39. The decrease of C/N ratio
may be associated with the mass loss of organic materials by CO2

emission (maturating processes). In Runs 6, the initial C/N ratio is
raised to 34.99 after adding coal ash amendment. The C/N ratio
decreases to 11.88 until Day 15 and fluctuates in a small range
between 11.41 and 12.84 in the latter stage. The final composts
obtained in all of the six runs are considered mature, since the C/N
ratio should be less than 20 for growing plant (Lin, 2008). The good
agreement between the predicted and the experimental values of the
C/N ratios in Fig. 8 further verifies the good performance of the GASCA
tree.

As the base run (without addition of cooked soybean, baking soda
and coal ash), Run 5 is chosen to further analyze the relationship
between state variables and C/N ratio (Fig. 9). The total composting
period in Run 5 lasts for 39 days. A rapid heat-generating process (less
than one day) raises the temperature of the composting materials
from ambient to thermophilic (higher than 45 °C). This is because of
the quick initiation of microbial activities through easy utilization of
the high contents of organic materials in the simulated food waste.
The mean temperature continues keeping at a high level (higher than
45 °C) for about 25 days and then rising to a peak (52.7 °C) in Day 31.
The composting materials then start to cool down and finally reach
the ambient temperature (21.15 °C) until Day 39. This is because the
heat generation rate becomes less than heat loss rate since the easily
degradable materials are consumed gradually. Similar tendencies of
temperature could be found in composting processes involving the
mixtures of canteen food waste and office waste papers (Bari et al.,
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2000) and a standard mixture of food waste used in Japan (He et al.,
2000). From the GASCA tree, the mean temperature is the fourth
important variable affecting the C/N ratio.

With the rapid temperature increasing at the initial stage, the
thermophilic bacteria start to grow and remain a fluctuant increase
during thermophilic period (from 6.08 to 11.94 log CFU/g (dry)). In
comparison, the population of mesophilic bacteria decreases gradu-
ally from 8.45 to 5.77 log CFU/g (dry) until Day 9, increase gradually in
the middle stage of composting (between Day 10 and Day 28), reach a
peak (14.20 log CFU/g (dry)) in Day 29, and tend to be stable after Day
32 when the system starts to cool down to the ambient temperature.
The mesophilic bacteria are active from Day 10 to Day 28 and are
inhibited by the higher temperature stage (during the first several
Table 3
Configuration of the optimal GASCA2 tree.

X Variables Number of patterns (locations in the G

1 Time –

2 Mean temp (°C) 72(N4), 41(N19), 20(N40), 25(N44), 9(
3 pH –

4 Moisture content (%) 58(N9), 55(N14), 22(N17), 33(N21), 27
5 Ash content (%) 77(N2), 90(N3), 11(N28), 26(N39)
6 Organic content (%) –

7 NH4
+-N (mg/kg,wet) 167(N1), 76(N8), 14(N10), 57(N12), 22

8 Cumulative NH3 emissions (μg/day) –

9 Thermophilic bacteria (log CFU/g (dry)) –

10 Mesophilic bacteria (log CFU/g (dry)) 9(N16), 16(N18), 35(N30), 9(N47), 19(
11 Upper temperature (°C) –

12 Lower temperature (°C) –

Note: M(Ni) represents that there are M patterns in node i of the GASCA tree, where the co
days and the later stage around Day 30). The activity could be
explained by the fact that the mean temperature is in the range only
slightly higher than 45 °C (between 44.8 °C and 48.4 °C) during the
middle stage (Day 10 to Day 28), which results in that mesophilic
bacteria could become more active than thermophilic bacteria.
Stagnation or decline in microbial activity in the transition from
mesophilic to thermophilic conditions was reported in laboratory-
scale reactors when composting food waste or other acid wastes
(Schloss and Walker, 2000; Sundberg et al., 2004). This is also
reflected in the GASCA tree thatmesophilic bacteria biomass is the last
important variable affecting the C/N ratio while thermophilic bacteria
biomass is excluded.

The pH drops rapidly on the first day and keeps low at the early
stage (between 3.99 and 4.89 before Day 27). This is a result of a
balance between the generated short-chain organic acids and
inhibited microbial activities (Sanchez-Monedero et al., 2001). The
pH has a subsequent rapid increase from 4.55 in Day 25 to 7.15 in Day
33, which might be caused by the generation of ammonia by
decomposition of nitrogen-containing organic matter and the bio-
degradation of short-chain organic acids. The pH keeps stable (around
7.12) at the later stage (after Day 33), which is due to reduced
production and increased evaporation of the alkaline ammonia
(Wong et al., 2001). Similar tendencies of pH could be found in
other composting food wastes (Lin, 2008; Chang and Hsu, 2008).

Moisture content is maintained at a level between 62.66% and
75.50%. Its fluctuant increase reflects that water generated by the
metabolism of microorganisms is much more than that taken
away through aeration. The increase could also be explained by
that the decrease rate of compost weight is larger than that of
moisture content. The range of moisture contents in this study is
considered suitable since many previous studies suggest that 50%
moisture content is the minimal requirement for obtaining adequate
microbial activities (Liang et al., 2003) and the optimum moisture
content for composting could vary significantly for different
compost mixtures and stages (Richard et al., 2002). The tendency
of moisture content variations is inversely related to the change
of the C/N ratio in Run 5 (Figs. 4 and 5), which supports the fact
from the GASCA tree that the moisture content is the second impor-
tant variable affecting the C/N ratio. The reason is that the moisture
content could directly affect microbial activities, which further in-
fluence the C/N ratio.

The ash content has a fluctuating increase (from 1.48% to 2.80%)
while the organic content keeps a decreasing tendency (from 34.25%
to 21.92%) during the composting process. This is resulted from both
biodegradation of organic matter in the composting materials and
mass loss of the composting bulk materials. In Run 5, the ash content
has a negative relationship with the change of the C/N ratio, which is
reflected in its third important position among all independent
variables in the GASCA tree. Since ash content represents the relative
mass of conserved mineral constituents (Larney et al., 2005), it
ASCA tree) Sum of patterns

–

N62), 19(N77) 186
–

(N24), 11(N34), 10(N46), 14(N52), 18(N64) 248
204
–

(N31), 11(N32), 10(N49), 23(N50), 16(N56), 19(N67), 16(N89) 431
–

–

N54), 9(N71), 15(N76), 9(N88), 14(N97) 135
–

–

rresponding X variable is used as cutting criteria.
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implies that the total loss of both organic matters and available
mineral constituents have significant effects on the C/N ratio
variation.

The NH4
+-N concentration keeps a very low increasing tendency

(from 20.86 to 154.41 mg/kg, wet Sample) before Day 21 and rapidly
reaches a peak (828.16 mg/kg, wet Sample) in Day 33, which indicates
a significant biodegradation of organic nitrogen content (ammoni-
fication process) in the latter stage. It is noted that NH4

+-N
concentration is the first important variable affecting the C/N ratio
in the GASCA tree. This implies that the variation of NH4

+-N
concentration plays a major role in the variation of total nitrogen.
NH3 emission in the outlet gas fluctuates within a very small range
(between 52.99 and 99.11 μg/day) before Day 29 and increases
rapidly to a peak (5.99×104 μg/day) in Day 35. The low pH
environment in the initial stage (before Day 27) might inhibit the
NH3 release from ammonium. The NH3 emission peak occurs when
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the pH reaches the highest level (7.15) in Day 35. The similar
tendencies of NH3 emission variation and its close relationships with
compost pH level were observed in other composting food wastes
(Lin, 2008).

5. Discussion

Quantitative analysis of complicated interactions between state
variables and the C/N ratio during food waste composting is a
challenge. Most previous studies focused on the relationships
between initial C/N ratios and final compost quality (Larsen and
McCartney, 2000; Eiland et al., 2001; Huang et al., 2004; Kumar et al.,
2010) or the effects of initial conditions on the final C/N ratios in
compost (Gao et al., 2010). In fact, inherent composting mechanisms
exist in dynamic interactions between state variables and target
characteristics.
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The statistical models employed to directly quantify these
relationships during composting processes are mostly multiple linear
regression or response surface analysis (Turner et al., 2005; Khalil
et al., 2008; Chang and Chen, 2010). However, the inherently
nonlinearity leads to difficulties in applying these conventional
models. Simulation-based models can explicitly express dynamic
composting mechanisms (Komilis, 2006; Sole-Mauri et al., 2007).
However, they are not straightforward to directly interpret such
multiple interactions. In comparison, the proposed GASCA model can
not only establish a nonlinear relationship between state variables
and the C/N ratio but also select more significant state variables and
adjust the related statistical parameters automatically.

To ensure a good performance of GASCA, a careful design of fitness
function to balance the accuracy and the complexity is indispensable
since an optimal SCA largely relies on the expression of fitness
function. The convergence efficiency should be further improved
through avoiding unnecessary calculation of SCA. A good solution in
this study is through introducing the proxy table to store the features
of already-calculated SCA trees. Alternatively, more efficient direct-
searching algorithms could be introduced in the future to facilitate
variable or parameter selection for SCA.

SCA itself still has some weakness besides its high calculation
workload during the training phase. Although the effects of the GA-
selected state variables on the C/N ratio were quantified in this study,
more straightforward methods are required to reflect these effects
and to interpret the embedded mechanism. Also, the new samples
dropped in the tip-cluster of SCA trees have to possess the same
values for the predicted independent variables. If more accuracy of
prediction is concerned, other multiple regression models could be
developed among samples in the specific tip-cluster to distinguish the
sample's difference within the tip-cluster (He et al., 2008a).

In addition, besides the C/N ratio, GASCA can be applied to many
other characteristics of interest in waste composting (Chefetz et al.,
1996) or co-composting for remediation (Thorn et al., 2002).
Especially, some indexes (e.g. mature index, stable index, inactivated
pathogen) are expensive or time-consuming for monitoring. Building
GASCA-based relationships between the ordinary state variables and
these indexes would help identify the most significant relationships,
understand the interactive mechanisms, and infer the hard-to-obtain
characteristics in an easier manner, during composting and many
other environmental processes.

6. Conclusions

Through integrating Genetic-Algorithm (GA)with stepwise cluster
analysis (SCA), a GA-aided SCA model (GASCA), was developed to
reflect the nonlinear relationships among state variables and the C/N
ratio in food waste composting. Six runs of designed experiments
through bench-scale reactors in a laboratory were constructed to
demonstrate GASCA's performance. The optimal GASCA's inherent
parameters were configured as: population size is 100, crossover
fraction is 0.8,αcut is 0.055,αmerge is 0.055, and Nmin is 9. A proxy table
was introduced to avoid unnecessary and time-consuming calculation
of the fitness function, which could save around 70% computational
efforts. A GASCA tree with smaller size and better performance than
the corresponding SCA tree was obtained. This demonstrated the
enhanced ability of GASCA through integration of both GA's variable-
screening ability and SCA's nonlinear mapping advantages.

The results showed that GASCA could successfully establish a
statistical relationship between the selected state variables and the
C/N ratio under discrete and nonlinear complexities. The effects of
the GA-selected state variables on the C/N ratio were ranged in a
descending order as: NH4

+-N concentrationNMoisture contentNAsh
contentNMean TemperatureNMesophilic bacteria biomass. This rank
implied that the variation of ammonium nitrogen concentration, the
associated temperature and moisture conditions, the total loss of both
organic matters and available mineral constituents, and mesophilic
bacteria activity, were the important factors affecting on the C/N ratio
during the food waste composting processes. This study, for the first
time, combined GA and SCA within a framework to map the
relationships in composting processes. It is expected that more direct
search algorithms could be coupled with SCA to compensate each
other's ability forming more powerful methods to analyze other more
complicated relationships during composting.
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